Properties

Label 175.4.f.g.132.8
Level $175$
Weight $4$
Character 175.132
Analytic conductor $10.325$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [175,4,Mod(118,175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("175.118"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(175, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-4,0,0,0,0,-32,-176,0,0,-152] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 10654x^{12} + 22102125x^{8} + 5700572500x^{4} + 44626562500 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 132.8
Root \(-4.94129 + 4.94129i\) of defining polynomial
Character \(\chi\) \(=\) 175.132
Dual form 175.4.f.g.118.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.57033 + 3.57033i) q^{2} +(4.94129 + 4.94129i) q^{3} +17.4944i q^{4} +35.2840i q^{6} +(-0.826888 - 18.5018i) q^{7} +(-33.8983 + 33.8983i) q^{8} +21.8328i q^{9} -30.6825 q^{11} +(-86.4452 + 86.4452i) q^{12} +(38.4644 + 38.4644i) q^{13} +(63.1052 - 69.0097i) q^{14} -102.100 q^{16} +(34.5683 - 34.5683i) q^{17} +(-77.9500 + 77.9500i) q^{18} +22.1767 q^{19} +(87.3369 - 95.5087i) q^{21} +(-109.546 - 109.546i) q^{22} +(3.20638 - 3.20638i) q^{23} -335.002 q^{24} +274.661i q^{26} +(25.5329 - 25.5329i) q^{27} +(323.679 - 14.4660i) q^{28} -179.259i q^{29} +37.6201i q^{31} +(-93.3444 - 93.3444i) q^{32} +(-151.611 - 151.611i) q^{33} +246.840 q^{34} -381.952 q^{36} +(135.426 + 135.426i) q^{37} +(79.1782 + 79.1782i) q^{38} +380.128i q^{39} -326.823i q^{41} +(652.818 - 29.1760i) q^{42} +(-193.381 + 193.381i) q^{43} -536.773i q^{44} +22.8956 q^{46} +(91.5534 - 91.5534i) q^{47} +(-504.506 - 504.506i) q^{48} +(-341.633 + 30.5978i) q^{49} +341.624 q^{51} +(-672.914 + 672.914i) q^{52} +(-210.622 + 210.622i) q^{53} +182.321 q^{54} +(655.209 + 599.149i) q^{56} +(109.582 + 109.582i) q^{57} +(640.012 - 640.012i) q^{58} -230.155 q^{59} +37.1467i q^{61} +(-134.316 + 134.316i) q^{62} +(403.945 - 18.0532i) q^{63} +150.261i q^{64} -1082.60i q^{66} +(-325.340 - 325.340i) q^{67} +(604.753 + 604.753i) q^{68} +31.6873 q^{69} -474.107 q^{71} +(-740.092 - 740.092i) q^{72} +(-642.183 - 642.183i) q^{73} +967.032i q^{74} +387.970i q^{76} +(25.3710 + 567.681i) q^{77} +(-1357.18 + 1357.18i) q^{78} -636.110i q^{79} +841.815 q^{81} +(1166.87 - 1166.87i) q^{82} +(993.219 + 993.219i) q^{83} +(1670.87 + 1527.91i) q^{84} -1380.87 q^{86} +(885.770 - 885.770i) q^{87} +(1040.08 - 1040.08i) q^{88} +1205.77 q^{89} +(679.855 - 743.467i) q^{91} +(56.0938 + 56.0938i) q^{92} +(-185.892 + 185.892i) q^{93} +653.751 q^{94} -922.484i q^{96} +(-917.344 + 917.344i) q^{97} +(-1328.98 - 1110.50i) q^{98} -669.883i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} - 32 q^{7} - 176 q^{8} - 152 q^{11} - 504 q^{16} - 288 q^{18} + 328 q^{21} - 348 q^{22} + 72 q^{23} + 528 q^{28} - 432 q^{32} + 344 q^{36} + 256 q^{37} + 1300 q^{42} + 312 q^{43} - 1856 q^{46}+ \cdots - 3308 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.57033 + 3.57033i 1.26230 + 1.26230i 0.949975 + 0.312325i \(0.101108\pi\)
0.312325 + 0.949975i \(0.398892\pi\)
\(3\) 4.94129 + 4.94129i 0.950952 + 0.950952i 0.998852 0.0478999i \(-0.0152528\pi\)
−0.0478999 + 0.998852i \(0.515253\pi\)
\(4\) 17.4944i 2.18681i
\(5\) 0 0
\(6\) 35.2840i 2.40078i
\(7\) −0.826888 18.5018i −0.0446478 0.999003i
\(8\) −33.8983 + 33.8983i −1.49811 + 1.49811i
\(9\) 21.8328i 0.808620i
\(10\) 0 0
\(11\) −30.6825 −0.841010 −0.420505 0.907290i \(-0.638147\pi\)
−0.420505 + 0.907290i \(0.638147\pi\)
\(12\) −86.4452 + 86.4452i −2.07955 + 2.07955i
\(13\) 38.4644 + 38.4644i 0.820624 + 0.820624i 0.986198 0.165573i \(-0.0529474\pi\)
−0.165573 + 0.986198i \(0.552947\pi\)
\(14\) 63.1052 69.0097i 1.20468 1.31740i
\(15\) 0 0
\(16\) −102.100 −1.59531
\(17\) 34.5683 34.5683i 0.493179 0.493179i −0.416127 0.909306i \(-0.636613\pi\)
0.909306 + 0.416127i \(0.136613\pi\)
\(18\) −77.9500 + 77.9500i −1.02072 + 1.02072i
\(19\) 22.1767 0.267773 0.133887 0.990997i \(-0.457254\pi\)
0.133887 + 0.990997i \(0.457254\pi\)
\(20\) 0 0
\(21\) 87.3369 95.5087i 0.907546 0.992462i
\(22\) −109.546 109.546i −1.06161 1.06161i
\(23\) 3.20638 3.20638i 0.0290685 0.0290685i −0.692423 0.721492i \(-0.743457\pi\)
0.721492 + 0.692423i \(0.243457\pi\)
\(24\) −335.002 −2.84925
\(25\) 0 0
\(26\) 274.661i 2.07175i
\(27\) 25.5329 25.5329i 0.181993 0.181993i
\(28\) 323.679 14.4660i 2.18463 0.0976360i
\(29\) 179.259i 1.14785i −0.818910 0.573923i \(-0.805421\pi\)
0.818910 0.573923i \(-0.194579\pi\)
\(30\) 0 0
\(31\) 37.6201i 0.217960i 0.994044 + 0.108980i \(0.0347585\pi\)
−0.994044 + 0.108980i \(0.965242\pi\)
\(32\) −93.3444 93.3444i −0.515660 0.515660i
\(33\) −151.611 151.611i −0.799761 0.799761i
\(34\) 246.840 1.24508
\(35\) 0 0
\(36\) −381.952 −1.76830
\(37\) 135.426 + 135.426i 0.601728 + 0.601728i 0.940771 0.339043i \(-0.110103\pi\)
−0.339043 + 0.940771i \(0.610103\pi\)
\(38\) 79.1782 + 79.1782i 0.338010 + 0.338010i
\(39\) 380.128i 1.56075i
\(40\) 0 0
\(41\) 326.823i 1.24491i −0.782656 0.622454i \(-0.786136\pi\)
0.782656 0.622454i \(-0.213864\pi\)
\(42\) 652.818 29.1760i 2.39838 0.107189i
\(43\) −193.381 + 193.381i −0.685823 + 0.685823i −0.961306 0.275483i \(-0.911162\pi\)
0.275483 + 0.961306i \(0.411162\pi\)
\(44\) 536.773i 1.83913i
\(45\) 0 0
\(46\) 22.8956 0.0733864
\(47\) 91.5534 91.5534i 0.284137 0.284137i −0.550620 0.834756i \(-0.685608\pi\)
0.834756 + 0.550620i \(0.185608\pi\)
\(48\) −504.506 504.506i −1.51707 1.51707i
\(49\) −341.633 + 30.5978i −0.996013 + 0.0892065i
\(50\) 0 0
\(51\) 341.624 0.937979
\(52\) −672.914 + 672.914i −1.79455 + 1.79455i
\(53\) −210.622 + 210.622i −0.545871 + 0.545871i −0.925244 0.379373i \(-0.876140\pi\)
0.379373 + 0.925244i \(0.376140\pi\)
\(54\) 182.321 0.459459
\(55\) 0 0
\(56\) 655.209 + 599.149i 1.56350 + 1.42972i
\(57\) 109.582 + 109.582i 0.254640 + 0.254640i
\(58\) 640.012 640.012i 1.44893 1.44893i
\(59\) −230.155 −0.507858 −0.253929 0.967223i \(-0.581723\pi\)
−0.253929 + 0.967223i \(0.581723\pi\)
\(60\) 0 0
\(61\) 37.1467i 0.0779696i 0.999240 + 0.0389848i \(0.0124124\pi\)
−0.999240 + 0.0389848i \(0.987588\pi\)
\(62\) −134.316 + 134.316i −0.275131 + 0.275131i
\(63\) 403.945 18.0532i 0.807814 0.0361031i
\(64\) 150.261i 0.293478i
\(65\) 0 0
\(66\) 1082.60i 2.01908i
\(67\) −325.340 325.340i −0.593232 0.593232i 0.345271 0.938503i \(-0.387787\pi\)
−0.938503 + 0.345271i \(0.887787\pi\)
\(68\) 604.753 + 604.753i 1.07849 + 1.07849i
\(69\) 31.6873 0.0552855
\(70\) 0 0
\(71\) −474.107 −0.792481 −0.396240 0.918147i \(-0.629685\pi\)
−0.396240 + 0.918147i \(0.629685\pi\)
\(72\) −740.092 740.092i −1.21140 1.21140i
\(73\) −642.183 642.183i −1.02961 1.02961i −0.999548 0.0300668i \(-0.990428\pi\)
−0.0300668 0.999548i \(-0.509572\pi\)
\(74\) 967.032i 1.51912i
\(75\) 0 0
\(76\) 387.970i 0.585568i
\(77\) 25.3710 + 567.681i 0.0375492 + 0.840172i
\(78\) −1357.18 + 1357.18i −1.97013 + 1.97013i
\(79\) 636.110i 0.905923i −0.891530 0.452962i \(-0.850367\pi\)
0.891530 0.452962i \(-0.149633\pi\)
\(80\) 0 0
\(81\) 841.815 1.15475
\(82\) 1166.87 1166.87i 1.57145 1.57145i
\(83\) 993.219 + 993.219i 1.31349 + 1.31349i 0.918823 + 0.394670i \(0.129141\pi\)
0.394670 + 0.918823i \(0.370859\pi\)
\(84\) 1670.87 + 1527.91i 2.17032 + 1.98463i
\(85\) 0 0
\(86\) −1380.87 −1.73143
\(87\) 885.770 885.770i 1.09155 1.09155i
\(88\) 1040.08 1040.08i 1.25992 1.25992i
\(89\) 1205.77 1.43608 0.718041 0.696001i \(-0.245039\pi\)
0.718041 + 0.696001i \(0.245039\pi\)
\(90\) 0 0
\(91\) 679.855 743.467i 0.783167 0.856445i
\(92\) 56.0938 + 56.0938i 0.0635672 + 0.0635672i
\(93\) −185.892 + 185.892i −0.207270 + 0.207270i
\(94\) 653.751 0.717332
\(95\) 0 0
\(96\) 922.484i 0.980736i
\(97\) −917.344 + 917.344i −0.960229 + 0.960229i −0.999239 0.0390103i \(-0.987579\pi\)
0.0390103 + 0.999239i \(0.487579\pi\)
\(98\) −1328.98 1110.50i −1.36987 1.14466i
\(99\) 669.883i 0.680058i
\(100\) 0 0
\(101\) 295.537i 0.291159i 0.989347 + 0.145580i \(0.0465047\pi\)
−0.989347 + 0.145580i \(0.953495\pi\)
\(102\) 1219.71 + 1219.71i 1.18401 + 1.18401i
\(103\) −59.7442 59.7442i −0.0571531 0.0571531i 0.677953 0.735106i \(-0.262867\pi\)
−0.735106 + 0.677953i \(0.762867\pi\)
\(104\) −2607.76 −2.45876
\(105\) 0 0
\(106\) −1503.98 −1.37811
\(107\) −697.268 697.268i −0.629976 0.629976i 0.318086 0.948062i \(-0.396960\pi\)
−0.948062 + 0.318086i \(0.896960\pi\)
\(108\) 446.684 + 446.684i 0.397983 + 0.397983i
\(109\) 869.901i 0.764417i −0.924076 0.382208i \(-0.875164\pi\)
0.924076 0.382208i \(-0.124836\pi\)
\(110\) 0 0
\(111\) 1338.36i 1.14443i
\(112\) 84.4254 + 1889.03i 0.0712272 + 1.59372i
\(113\) 787.832 787.832i 0.655867 0.655867i −0.298532 0.954400i \(-0.596497\pi\)
0.954400 + 0.298532i \(0.0964970\pi\)
\(114\) 782.485i 0.642864i
\(115\) 0 0
\(116\) 3136.03 2.51011
\(117\) −839.785 + 839.785i −0.663574 + 0.663574i
\(118\) −821.728 821.728i −0.641070 0.641070i
\(119\) −668.159 610.991i −0.514706 0.470668i
\(120\) 0 0
\(121\) −389.586 −0.292702
\(122\) −132.626 + 132.626i −0.0984210 + 0.0984210i
\(123\) 1614.93 1614.93i 1.18385 1.18385i
\(124\) −658.142 −0.476636
\(125\) 0 0
\(126\) 1506.67 + 1377.76i 1.06528 + 0.974131i
\(127\) −691.381 691.381i −0.483072 0.483072i 0.423039 0.906111i \(-0.360963\pi\)
−0.906111 + 0.423039i \(0.860963\pi\)
\(128\) −1283.24 + 1283.24i −0.886117 + 0.886117i
\(129\) −1911.11 −1.30437
\(130\) 0 0
\(131\) 1847.22i 1.23200i −0.787746 0.616000i \(-0.788752\pi\)
0.787746 0.616000i \(-0.211248\pi\)
\(132\) 2652.35 2652.35i 1.74892 1.74892i
\(133\) −18.3377 410.309i −0.0119555 0.267506i
\(134\) 2323.14i 1.49767i
\(135\) 0 0
\(136\) 2343.61i 1.47767i
\(137\) 1532.08 + 1532.08i 0.955432 + 0.955432i 0.999048 0.0436159i \(-0.0138878\pi\)
−0.0436159 + 0.999048i \(0.513888\pi\)
\(138\) 113.134 + 113.134i 0.0697870 + 0.0697870i
\(139\) 160.189 0.0977488 0.0488744 0.998805i \(-0.484437\pi\)
0.0488744 + 0.998805i \(0.484437\pi\)
\(140\) 0 0
\(141\) 904.784 0.540401
\(142\) −1692.72 1692.72i −1.00035 1.00035i
\(143\) −1180.18 1180.18i −0.690154 0.690154i
\(144\) 2229.13i 1.29000i
\(145\) 0 0
\(146\) 4585.61i 2.59937i
\(147\) −1839.30 1536.91i −1.03199 0.862330i
\(148\) −2369.21 + 2369.21i −1.31586 + 1.31586i
\(149\) 398.652i 0.219187i 0.993976 + 0.109594i \(0.0349549\pi\)
−0.993976 + 0.109594i \(0.965045\pi\)
\(150\) 0 0
\(151\) −3472.49 −1.87144 −0.935718 0.352748i \(-0.885247\pi\)
−0.935718 + 0.352748i \(0.885247\pi\)
\(152\) −751.753 + 751.753i −0.401153 + 0.401153i
\(153\) 754.721 + 754.721i 0.398795 + 0.398795i
\(154\) −1936.22 + 2117.39i −1.01315 + 1.10795i
\(155\) 0 0
\(156\) −6650.13 −3.41306
\(157\) −515.983 + 515.983i −0.262292 + 0.262292i −0.825985 0.563692i \(-0.809380\pi\)
0.563692 + 0.825985i \(0.309380\pi\)
\(158\) 2271.12 2271.12i 1.14355 1.14355i
\(159\) −2081.49 −1.03819
\(160\) 0 0
\(161\) −61.9750 56.6724i −0.0303374 0.0277417i
\(162\) 3005.55 + 3005.55i 1.45765 + 1.45765i
\(163\) 70.5300 70.5300i 0.0338916 0.0338916i −0.689958 0.723850i \(-0.742371\pi\)
0.723850 + 0.689958i \(0.242371\pi\)
\(164\) 5717.59 2.72237
\(165\) 0 0
\(166\) 7092.23i 3.31605i
\(167\) −1207.85 + 1207.85i −0.559676 + 0.559676i −0.929215 0.369539i \(-0.879516\pi\)
0.369539 + 0.929215i \(0.379516\pi\)
\(168\) 277.010 + 6198.15i 0.127213 + 2.84641i
\(169\) 762.027i 0.346849i
\(170\) 0 0
\(171\) 484.179i 0.216527i
\(172\) −3383.10 3383.10i −1.49976 1.49976i
\(173\) −800.716 800.716i −0.351892 0.351892i 0.508921 0.860813i \(-0.330044\pi\)
−0.860813 + 0.508921i \(0.830044\pi\)
\(174\) 6324.97 2.75572
\(175\) 0 0
\(176\) 3132.68 1.34168
\(177\) −1137.26 1137.26i −0.482949 0.482949i
\(178\) 4304.99 + 4304.99i 1.81277 + 1.81277i
\(179\) 1435.34i 0.599343i 0.954042 + 0.299672i \(0.0968771\pi\)
−0.954042 + 0.299672i \(0.903123\pi\)
\(180\) 0 0
\(181\) 3536.87i 1.45245i 0.687458 + 0.726224i \(0.258727\pi\)
−0.687458 + 0.726224i \(0.741273\pi\)
\(182\) 5081.72 227.114i 2.06968 0.0924990i
\(183\) −183.553 + 183.553i −0.0741453 + 0.0741453i
\(184\) 217.381i 0.0870954i
\(185\) 0 0
\(186\) −1327.39 −0.523273
\(187\) −1060.64 + 1060.64i −0.414769 + 0.414769i
\(188\) 1601.68 + 1601.68i 0.621352 + 0.621352i
\(189\) −493.517 451.291i −0.189937 0.173686i
\(190\) 0 0
\(191\) 1402.92 0.531474 0.265737 0.964046i \(-0.414385\pi\)
0.265737 + 0.964046i \(0.414385\pi\)
\(192\) −742.482 + 742.482i −0.279084 + 0.279084i
\(193\) −3290.28 + 3290.28i −1.22715 + 1.22715i −0.262110 + 0.965038i \(0.584418\pi\)
−0.965038 + 0.262110i \(0.915582\pi\)
\(194\) −6550.43 −2.42419
\(195\) 0 0
\(196\) −535.292 5976.67i −0.195077 2.17809i
\(197\) −1207.31 1207.31i −0.436636 0.436636i 0.454242 0.890878i \(-0.349910\pi\)
−0.890878 + 0.454242i \(0.849910\pi\)
\(198\) 2391.70 2391.70i 0.858438 0.858438i
\(199\) 1348.10 0.480221 0.240111 0.970746i \(-0.422816\pi\)
0.240111 + 0.970746i \(0.422816\pi\)
\(200\) 0 0
\(201\) 3215.20i 1.12827i
\(202\) −1055.16 + 1055.16i −0.367530 + 0.367530i
\(203\) −3316.61 + 148.227i −1.14670 + 0.0512487i
\(204\) 5976.52i 2.05118i
\(205\) 0 0
\(206\) 426.612i 0.144289i
\(207\) 70.0040 + 70.0040i 0.0235054 + 0.0235054i
\(208\) −3927.22 3927.22i −1.30915 1.30915i
\(209\) −680.437 −0.225200
\(210\) 0 0
\(211\) −1242.22 −0.405298 −0.202649 0.979251i \(-0.564955\pi\)
−0.202649 + 0.979251i \(0.564955\pi\)
\(212\) −3684.71 3684.71i −1.19371 1.19371i
\(213\) −2342.70 2342.70i −0.753611 0.753611i
\(214\) 4978.95i 1.59044i
\(215\) 0 0
\(216\) 1731.04i 0.545289i
\(217\) 696.038 31.1076i 0.217743 0.00973143i
\(218\) 3105.83 3105.83i 0.964924 0.964924i
\(219\) 6346.43i 1.95823i
\(220\) 0 0
\(221\) 2659.30 0.809429
\(222\) −4778.39 + 4778.39i −1.44461 + 1.44461i
\(223\) −803.061 803.061i −0.241152 0.241152i 0.576174 0.817327i \(-0.304545\pi\)
−0.817327 + 0.576174i \(0.804545\pi\)
\(224\) −1649.85 + 1804.22i −0.492123 + 0.538169i
\(225\) 0 0
\(226\) 5625.63 1.65580
\(227\) 3190.90 3190.90i 0.932986 0.932986i −0.0649056 0.997891i \(-0.520675\pi\)
0.997891 + 0.0649056i \(0.0206746\pi\)
\(228\) −1917.07 + 1917.07i −0.556847 + 0.556847i
\(229\) 4312.63 1.24448 0.622242 0.782825i \(-0.286222\pi\)
0.622242 + 0.782825i \(0.286222\pi\)
\(230\) 0 0
\(231\) −2679.71 + 2930.44i −0.763256 + 0.834671i
\(232\) 6076.56 + 6076.56i 1.71959 + 1.71959i
\(233\) 4511.59 4511.59i 1.26852 1.26852i 0.321661 0.946855i \(-0.395759\pi\)
0.946855 0.321661i \(-0.104241\pi\)
\(234\) −5996.61 −1.67526
\(235\) 0 0
\(236\) 4026.43i 1.11059i
\(237\) 3143.21 3143.21i 0.861490 0.861490i
\(238\) −204.109 4566.98i −0.0555900 1.24384i
\(239\) 1219.08i 0.329941i 0.986298 + 0.164971i \(0.0527529\pi\)
−0.986298 + 0.164971i \(0.947247\pi\)
\(240\) 0 0
\(241\) 2266.52i 0.605807i −0.953021 0.302904i \(-0.902044\pi\)
0.953021 0.302904i \(-0.0979560\pi\)
\(242\) −1390.95 1390.95i −0.369477 0.369477i
\(243\) 3470.27 + 3470.27i 0.916123 + 0.916123i
\(244\) −649.860 −0.170504
\(245\) 0 0
\(246\) 11531.6 2.98874
\(247\) 853.016 + 853.016i 0.219741 + 0.219741i
\(248\) −1275.25 1275.25i −0.326527 0.326527i
\(249\) 9815.57i 2.49814i
\(250\) 0 0
\(251\) 2913.88i 0.732758i 0.930466 + 0.366379i \(0.119403\pi\)
−0.930466 + 0.366379i \(0.880597\pi\)
\(252\) 315.832 + 7066.79i 0.0789505 + 1.76653i
\(253\) −98.3796 + 98.3796i −0.0244469 + 0.0244469i
\(254\) 4936.91i 1.21956i
\(255\) 0 0
\(256\) −7961.05 −1.94362
\(257\) 2533.26 2533.26i 0.614866 0.614866i −0.329344 0.944210i \(-0.606828\pi\)
0.944210 + 0.329344i \(0.106828\pi\)
\(258\) −6823.28 6823.28i −1.64651 1.64651i
\(259\) 2393.65 2617.61i 0.574262 0.627994i
\(260\) 0 0
\(261\) 3913.71 0.928171
\(262\) 6595.16 6595.16i 1.55515 1.55515i
\(263\) −4347.32 + 4347.32i −1.01927 + 1.01927i −0.0194552 + 0.999811i \(0.506193\pi\)
−0.999811 + 0.0194552i \(0.993807\pi\)
\(264\) 10278.7 2.39625
\(265\) 0 0
\(266\) 1399.47 1530.41i 0.322582 0.352765i
\(267\) 5958.06 + 5958.06i 1.36565 + 1.36565i
\(268\) 5691.64 5691.64i 1.29728 1.29728i
\(269\) −719.233 −0.163020 −0.0815100 0.996673i \(-0.525974\pi\)
−0.0815100 + 0.996673i \(0.525974\pi\)
\(270\) 0 0
\(271\) 5060.37i 1.13430i −0.823614 0.567151i \(-0.808046\pi\)
0.823614 0.567151i \(-0.191954\pi\)
\(272\) −3529.43 + 3529.43i −0.786775 + 0.786775i
\(273\) 7033.05 314.324i 1.55919 0.0696840i
\(274\) 10940.0i 2.41209i
\(275\) 0 0
\(276\) 554.352i 0.120899i
\(277\) −365.718 365.718i −0.0793281 0.0793281i 0.666329 0.745658i \(-0.267864\pi\)
−0.745658 + 0.666329i \(0.767864\pi\)
\(278\) 571.928 + 571.928i 0.123388 + 0.123388i
\(279\) −821.349 −0.176247
\(280\) 0 0
\(281\) 914.357 0.194114 0.0970569 0.995279i \(-0.469057\pi\)
0.0970569 + 0.995279i \(0.469057\pi\)
\(282\) 3230.37 + 3230.37i 0.682149 + 0.682149i
\(283\) 6608.81 + 6608.81i 1.38817 + 1.38817i 0.829155 + 0.559019i \(0.188822\pi\)
0.559019 + 0.829155i \(0.311178\pi\)
\(284\) 8294.24i 1.73300i
\(285\) 0 0
\(286\) 8427.28i 1.74236i
\(287\) −6046.82 + 270.246i −1.24367 + 0.0555824i
\(288\) 2037.97 2037.97i 0.416973 0.416973i
\(289\) 2523.07i 0.513549i
\(290\) 0 0
\(291\) −9065.73 −1.82626
\(292\) 11234.6 11234.6i 2.25157 2.25157i
\(293\) −1637.54 1637.54i −0.326505 0.326505i 0.524751 0.851256i \(-0.324159\pi\)
−0.851256 + 0.524751i \(0.824159\pi\)
\(294\) −1079.62 12054.2i −0.214165 2.39120i
\(295\) 0 0
\(296\) −9181.43 −1.80290
\(297\) −783.412 + 783.412i −0.153058 + 0.153058i
\(298\) −1423.32 + 1423.32i −0.276680 + 0.276680i
\(299\) 246.663 0.0477087
\(300\) 0 0
\(301\) 3737.81 + 3418.00i 0.715760 + 0.654519i
\(302\) −12397.9 12397.9i −2.36232 2.36232i
\(303\) −1460.34 + 1460.34i −0.276878 + 0.276878i
\(304\) −2264.25 −0.427182
\(305\) 0 0
\(306\) 5389.20i 1.00680i
\(307\) −2309.09 + 2309.09i −0.429273 + 0.429273i −0.888380 0.459108i \(-0.848169\pi\)
0.459108 + 0.888380i \(0.348169\pi\)
\(308\) −9931.26 + 443.851i −1.83729 + 0.0821129i
\(309\) 590.427i 0.108700i
\(310\) 0 0
\(311\) 4040.25i 0.736661i 0.929695 + 0.368331i \(0.120071\pi\)
−0.929695 + 0.368331i \(0.879929\pi\)
\(312\) −12885.7 12885.7i −2.33817 2.33817i
\(313\) −2531.50 2531.50i −0.457153 0.457153i 0.440566 0.897720i \(-0.354778\pi\)
−0.897720 + 0.440566i \(0.854778\pi\)
\(314\) −3684.45 −0.662184
\(315\) 0 0
\(316\) 11128.4 1.98108
\(317\) 2394.74 + 2394.74i 0.424297 + 0.424297i 0.886680 0.462383i \(-0.153006\pi\)
−0.462383 + 0.886680i \(0.653006\pi\)
\(318\) −7431.60 7431.60i −1.31051 1.31051i
\(319\) 5500.10i 0.965350i
\(320\) 0 0
\(321\) 6890.81i 1.19815i
\(322\) −18.9321 423.610i −0.00327654 0.0733132i
\(323\) 766.612 766.612i 0.132060 0.132060i
\(324\) 14727.1i 2.52522i
\(325\) 0 0
\(326\) 503.630 0.0855629
\(327\) 4298.44 4298.44i 0.726924 0.726924i
\(328\) 11078.7 + 11078.7i 1.86500 + 1.86500i
\(329\) −1769.61 1618.20i −0.296540 0.271167i
\(330\) 0 0
\(331\) 1609.07 0.267198 0.133599 0.991036i \(-0.457347\pi\)
0.133599 + 0.991036i \(0.457347\pi\)
\(332\) −17375.8 + 17375.8i −2.87235 + 2.87235i
\(333\) −2956.73 + 2956.73i −0.486570 + 0.486570i
\(334\) −8624.80 −1.41296
\(335\) 0 0
\(336\) −8917.10 + 9751.44i −1.44782 + 1.58329i
\(337\) 7839.49 + 7839.49i 1.26719 + 1.26719i 0.947531 + 0.319663i \(0.103570\pi\)
0.319663 + 0.947531i \(0.396430\pi\)
\(338\) −2720.69 + 2720.69i −0.437828 + 0.437828i
\(339\) 7785.82 1.24740
\(340\) 0 0
\(341\) 1154.28i 0.183307i
\(342\) −1728.68 + 1728.68i −0.273322 + 0.273322i
\(343\) 848.606 + 6295.51i 0.133587 + 0.991037i
\(344\) 13110.6i 2.05487i
\(345\) 0 0
\(346\) 5717.63i 0.888387i
\(347\) 8391.62 + 8391.62i 1.29823 + 1.29823i 0.929561 + 0.368668i \(0.120186\pi\)
0.368668 + 0.929561i \(0.379814\pi\)
\(348\) 15496.1 + 15496.1i 2.38700 + 2.38700i
\(349\) −504.762 −0.0774192 −0.0387096 0.999251i \(-0.512325\pi\)
−0.0387096 + 0.999251i \(0.512325\pi\)
\(350\) 0 0
\(351\) 1964.22 0.298696
\(352\) 2864.04 + 2864.04i 0.433675 + 0.433675i
\(353\) 2910.85 + 2910.85i 0.438892 + 0.438892i 0.891639 0.452747i \(-0.149556\pi\)
−0.452747 + 0.891639i \(0.649556\pi\)
\(354\) 8120.80i 1.21925i
\(355\) 0 0
\(356\) 21094.3i 3.14043i
\(357\) −282.485 6320.66i −0.0418787 0.937044i
\(358\) −5124.64 + 5124.64i −0.756552 + 0.756552i
\(359\) 122.174i 0.0179612i −0.999960 0.00898060i \(-0.997141\pi\)
0.999960 0.00898060i \(-0.00285865\pi\)
\(360\) 0 0
\(361\) −6367.19 −0.928297
\(362\) −12627.8 + 12627.8i −1.83343 + 1.83343i
\(363\) −1925.06 1925.06i −0.278345 0.278345i
\(364\) 13006.5 + 11893.7i 1.87288 + 1.71263i
\(365\) 0 0
\(366\) −1310.68 −0.187187
\(367\) −7525.98 + 7525.98i −1.07044 + 1.07044i −0.0731207 + 0.997323i \(0.523296\pi\)
−0.997323 + 0.0731207i \(0.976704\pi\)
\(368\) −327.371 + 327.371i −0.0463734 + 0.0463734i
\(369\) 7135.45 1.00666
\(370\) 0 0
\(371\) 4071.04 + 3722.72i 0.569698 + 0.520955i
\(372\) −3252.07 3252.07i −0.453258 0.453258i
\(373\) −3824.72 + 3824.72i −0.530929 + 0.530929i −0.920849 0.389920i \(-0.872503\pi\)
0.389920 + 0.920849i \(0.372503\pi\)
\(374\) −7573.66 −1.04713
\(375\) 0 0
\(376\) 6207.00i 0.851334i
\(377\) 6895.09 6895.09i 0.941950 0.941950i
\(378\) −150.759 3373.27i −0.0205138 0.459001i
\(379\) 6001.43i 0.813385i 0.913565 + 0.406692i \(0.133318\pi\)
−0.913565 + 0.406692i \(0.866682\pi\)
\(380\) 0 0
\(381\) 6832.64i 0.918757i
\(382\) 5008.87 + 5008.87i 0.670880 + 0.670880i
\(383\) −5683.84 5683.84i −0.758305 0.758305i 0.217709 0.976014i \(-0.430142\pi\)
−0.976014 + 0.217709i \(0.930142\pi\)
\(384\) −12681.7 −1.68531
\(385\) 0 0
\(386\) −23494.7 −3.09806
\(387\) −4222.05 4222.05i −0.554571 0.554571i
\(388\) −16048.4 16048.4i −2.09983 2.09983i
\(389\) 5540.42i 0.722134i 0.932540 + 0.361067i \(0.117587\pi\)
−0.932540 + 0.361067i \(0.882413\pi\)
\(390\) 0 0
\(391\) 221.678i 0.0286719i
\(392\) 10543.5 12618.0i 1.35849 1.62577i
\(393\) 9127.64 9127.64i 1.17157 1.17157i
\(394\) 8620.98i 1.10233i
\(395\) 0 0
\(396\) 11719.2 1.48716
\(397\) 3568.08 3568.08i 0.451076 0.451076i −0.444636 0.895711i \(-0.646667\pi\)
0.895711 + 0.444636i \(0.146667\pi\)
\(398\) 4813.14 + 4813.14i 0.606184 + 0.606184i
\(399\) 1936.85 2118.07i 0.243017 0.265755i
\(400\) 0 0
\(401\) −304.302 −0.0378956 −0.0189478 0.999820i \(-0.506032\pi\)
−0.0189478 + 0.999820i \(0.506032\pi\)
\(402\) 11479.3 11479.3i 1.42422 1.42422i
\(403\) −1447.03 + 1447.03i −0.178863 + 0.178863i
\(404\) −5170.26 −0.636708
\(405\) 0 0
\(406\) −12370.6 11312.1i −1.51217 1.38279i
\(407\) −4155.21 4155.21i −0.506060 0.506060i
\(408\) −11580.5 + 11580.5i −1.40519 + 1.40519i
\(409\) 11817.3 1.42867 0.714334 0.699805i \(-0.246730\pi\)
0.714334 + 0.699805i \(0.246730\pi\)
\(410\) 0 0
\(411\) 15140.9i 1.81714i
\(412\) 1045.19 1045.19i 0.124983 0.124983i
\(413\) 190.312 + 4258.28i 0.0226747 + 0.507352i
\(414\) 499.874i 0.0593417i
\(415\) 0 0
\(416\) 7180.88i 0.846326i
\(417\) 791.543 + 791.543i 0.0929545 + 0.0929545i
\(418\) −2429.38 2429.38i −0.284270 0.284270i
\(419\) −6280.26 −0.732246 −0.366123 0.930567i \(-0.619315\pi\)
−0.366123 + 0.930567i \(0.619315\pi\)
\(420\) 0 0
\(421\) 5592.95 0.647467 0.323734 0.946148i \(-0.395062\pi\)
0.323734 + 0.946148i \(0.395062\pi\)
\(422\) −4435.13 4435.13i −0.511608 0.511608i
\(423\) 1998.86 + 1998.86i 0.229759 + 0.229759i
\(424\) 14279.4i 1.63554i
\(425\) 0 0
\(426\) 16728.4i 1.90257i
\(427\) 687.280 30.7161i 0.0778918 0.00348117i
\(428\) 12198.3 12198.3i 1.37764 1.37764i
\(429\) 11663.3i 1.31261i
\(430\) 0 0
\(431\) 3211.63 0.358930 0.179465 0.983764i \(-0.442563\pi\)
0.179465 + 0.983764i \(0.442563\pi\)
\(432\) −2606.91 + 2606.91i −0.290336 + 0.290336i
\(433\) 8998.00 + 8998.00i 0.998652 + 0.998652i 0.999999 0.00134740i \(-0.000428890\pi\)
−0.00134740 + 0.999999i \(0.500429\pi\)
\(434\) 2596.15 + 2374.02i 0.287141 + 0.262573i
\(435\) 0 0
\(436\) 15218.4 1.67163
\(437\) 71.1070 71.1070i 0.00778377 0.00778377i
\(438\) 22658.8 22658.8i 2.47187 2.47187i
\(439\) −15391.3 −1.67332 −0.836658 0.547725i \(-0.815494\pi\)
−0.836658 + 0.547725i \(0.815494\pi\)
\(440\) 0 0
\(441\) −668.035 7458.78i −0.0721342 0.805397i
\(442\) 9494.57 + 9494.57i 1.02174 + 1.02174i
\(443\) 5980.38 5980.38i 0.641391 0.641391i −0.309506 0.950897i \(-0.600164\pi\)
0.950897 + 0.309506i \(0.100164\pi\)
\(444\) −23413.9 −2.50265
\(445\) 0 0
\(446\) 5734.38i 0.608813i
\(447\) −1969.86 + 1969.86i −0.208436 + 0.208436i
\(448\) 2780.09 124.249i 0.293185 0.0131031i
\(449\) 9630.65i 1.01225i −0.862461 0.506123i \(-0.831078\pi\)
0.862461 0.506123i \(-0.168922\pi\)
\(450\) 0 0
\(451\) 10027.7i 1.04698i
\(452\) 13782.7 + 13782.7i 1.43425 + 1.43425i
\(453\) −17158.6 17158.6i −1.77965 1.77965i
\(454\) 22785.1 2.35542
\(455\) 0 0
\(456\) −7429.26 −0.762954
\(457\) −10749.0 10749.0i −1.10025 1.10025i −0.994380 0.105873i \(-0.966236\pi\)
−0.105873 0.994380i \(-0.533764\pi\)
\(458\) 15397.5 + 15397.5i 1.57091 + 1.57091i
\(459\) 1765.26i 0.179510i
\(460\) 0 0
\(461\) 7419.80i 0.749620i −0.927102 0.374810i \(-0.877708\pi\)
0.927102 0.374810i \(-0.122292\pi\)
\(462\) −20030.1 + 895.191i −2.01706 + 0.0901473i
\(463\) −7829.44 + 7829.44i −0.785886 + 0.785886i −0.980817 0.194931i \(-0.937552\pi\)
0.194931 + 0.980817i \(0.437552\pi\)
\(464\) 18302.3i 1.83117i
\(465\) 0 0
\(466\) 32215.7 3.20250
\(467\) −2236.87 + 2236.87i −0.221649 + 0.221649i −0.809193 0.587543i \(-0.800095\pi\)
0.587543 + 0.809193i \(0.300095\pi\)
\(468\) −14691.6 14691.6i −1.45111 1.45111i
\(469\) −5750.35 + 6288.39i −0.566154 + 0.619127i
\(470\) 0 0
\(471\) −5099.24 −0.498855
\(472\) 7801.85 7801.85i 0.760825 0.760825i
\(473\) 5933.42 5933.42i 0.576784 0.576784i
\(474\) 22444.5 2.17492
\(475\) 0 0
\(476\) 10689.0 11689.1i 1.02926 1.12556i
\(477\) −4598.46 4598.46i −0.441402 0.441402i
\(478\) −4352.52 + 4352.52i −0.416485 + 0.416485i
\(479\) −16127.0 −1.53833 −0.769167 0.639047i \(-0.779329\pi\)
−0.769167 + 0.639047i \(0.779329\pi\)
\(480\) 0 0
\(481\) 10418.2i 0.987586i
\(482\) 8092.22 8092.22i 0.764711 0.764711i
\(483\) −26.2018 586.272i −0.00246838 0.0552304i
\(484\) 6815.59i 0.640081i
\(485\) 0 0
\(486\) 24780.0i 2.31284i
\(487\) −7934.50 7934.50i −0.738288 0.738288i 0.233958 0.972247i \(-0.424832\pi\)
−0.972247 + 0.233958i \(0.924832\pi\)
\(488\) −1259.21 1259.21i −0.116807 0.116807i
\(489\) 697.019 0.0644587
\(490\) 0 0
\(491\) −4160.37 −0.382393 −0.191196 0.981552i \(-0.561237\pi\)
−0.191196 + 0.981552i \(0.561237\pi\)
\(492\) 28252.3 + 28252.3i 2.58885 + 2.58885i
\(493\) −6196.67 6196.67i −0.566093 0.566093i
\(494\) 6091.09i 0.554759i
\(495\) 0 0
\(496\) 3841.01i 0.347715i
\(497\) 392.033 + 8771.83i 0.0353825 + 0.791691i
\(498\) −35044.8 + 35044.8i −3.15340 + 3.15340i
\(499\) 5858.81i 0.525603i −0.964850 0.262802i \(-0.915353\pi\)
0.964850 0.262802i \(-0.0846465\pi\)
\(500\) 0 0
\(501\) −11936.6 −1.06445
\(502\) −10403.5 + 10403.5i −0.924961 + 0.924961i
\(503\) −13951.3 13951.3i −1.23669 1.23669i −0.961345 0.275347i \(-0.911207\pi\)
−0.275347 0.961345i \(-0.588793\pi\)
\(504\) −13081.1 + 14305.0i −1.15610 + 1.26428i
\(505\) 0 0
\(506\) −702.494 −0.0617187
\(507\) −3765.40 + 3765.40i −0.329837 + 0.329837i
\(508\) 12095.3 12095.3i 1.05639 1.05639i
\(509\) 18246.3 1.58891 0.794454 0.607324i \(-0.207757\pi\)
0.794454 + 0.607324i \(0.207757\pi\)
\(510\) 0 0
\(511\) −11350.5 + 12412.6i −0.982618 + 1.07456i
\(512\) −18157.7 18157.7i −1.56731 1.56731i
\(513\) 566.236 566.236i 0.0487328 0.0487328i
\(514\) 18089.1 1.55229
\(515\) 0 0
\(516\) 33433.8i 2.85240i
\(517\) −2809.08 + 2809.08i −0.238962 + 0.238962i
\(518\) 17891.8 799.627i 1.51761 0.0678255i
\(519\) 7913.14i 0.669265i
\(520\) 0 0
\(521\) 14936.8i 1.25603i −0.778200 0.628016i \(-0.783867\pi\)
0.778200 0.628016i \(-0.216133\pi\)
\(522\) 13973.2 + 13973.2i 1.17163 + 1.17163i
\(523\) 15191.9 + 15191.9i 1.27017 + 1.27017i 0.946001 + 0.324165i \(0.105083\pi\)
0.324165 + 0.946001i \(0.394917\pi\)
\(524\) 32316.0 2.69415
\(525\) 0 0
\(526\) −31042.7 −2.57324
\(527\) 1300.46 + 1300.46i 0.107493 + 0.107493i
\(528\) 15479.5 + 15479.5i 1.27587 + 1.27587i
\(529\) 12146.4i 0.998310i
\(530\) 0 0
\(531\) 5024.92i 0.410664i
\(532\) 7178.14 320.808i 0.584984 0.0261443i
\(533\) 12571.1 12571.1i 1.02160 1.02160i
\(534\) 42544.4i 3.44771i
\(535\) 0 0
\(536\) 22056.9 1.77745
\(537\) −7092.44 + 7092.44i −0.569947 + 0.569947i
\(538\) −2567.89 2567.89i −0.205780 0.205780i
\(539\) 10482.1 938.817i 0.837657 0.0750236i
\(540\) 0 0
\(541\) 8027.88 0.637977 0.318988 0.947759i \(-0.396657\pi\)
0.318988 + 0.947759i \(0.396657\pi\)
\(542\) 18067.2 18067.2i 1.43183 1.43183i
\(543\) −17476.7 + 17476.7i −1.38121 + 1.38121i
\(544\) −6453.51 −0.508625
\(545\) 0 0
\(546\) 26232.5 + 23988.0i 2.05613 + 1.88021i
\(547\) −5287.54 5287.54i −0.413307 0.413307i 0.469582 0.882889i \(-0.344405\pi\)
−0.882889 + 0.469582i \(0.844405\pi\)
\(548\) −26802.9 + 26802.9i −2.08935 + 2.08935i
\(549\) −811.014 −0.0630478
\(550\) 0 0
\(551\) 3975.37i 0.307362i
\(552\) −1074.14 + 1074.14i −0.0828236 + 0.0828236i
\(553\) −11769.2 + 525.992i −0.905020 + 0.0404475i
\(554\) 2611.47i 0.200272i
\(555\) 0 0
\(556\) 2802.43i 0.213758i
\(557\) 4891.64 + 4891.64i 0.372111 + 0.372111i 0.868245 0.496135i \(-0.165248\pi\)
−0.496135 + 0.868245i \(0.665248\pi\)
\(558\) −2932.48 2932.48i −0.222477 0.222477i
\(559\) −14876.6 −1.12561
\(560\) 0 0
\(561\) −10481.9 −0.788850
\(562\) 3264.55 + 3264.55i 0.245030 + 0.245030i
\(563\) 1138.04 + 1138.04i 0.0851916 + 0.0851916i 0.748418 0.663227i \(-0.230814\pi\)
−0.663227 + 0.748418i \(0.730814\pi\)
\(564\) 15828.7i 1.18175i
\(565\) 0 0
\(566\) 47191.2i 3.50459i
\(567\) −696.087 15575.1i −0.0515572 1.15360i
\(568\) 16071.4 16071.4i 1.18722 1.18722i
\(569\) 7200.63i 0.530521i 0.964177 + 0.265260i \(0.0854579\pi\)
−0.964177 + 0.265260i \(0.914542\pi\)
\(570\) 0 0
\(571\) 2089.22 0.153119 0.0765597 0.997065i \(-0.475606\pi\)
0.0765597 + 0.997065i \(0.475606\pi\)
\(572\) 20646.7 20646.7i 1.50923 1.50923i
\(573\) 6932.22 + 6932.22i 0.505406 + 0.505406i
\(574\) −22554.0 20624.2i −1.64004 1.49972i
\(575\) 0 0
\(576\) −3280.61 −0.237312
\(577\) −7943.75 + 7943.75i −0.573141 + 0.573141i −0.933005 0.359864i \(-0.882823\pi\)
0.359864 + 0.933005i \(0.382823\pi\)
\(578\) −9008.17 + 9008.17i −0.648253 + 0.648253i
\(579\) −32516.5 −2.33392
\(580\) 0 0
\(581\) 17555.0 19197.6i 1.25354 1.37083i
\(582\) −32367.6 32367.6i −2.30529 2.30529i
\(583\) 6462.40 6462.40i 0.459083 0.459083i
\(584\) 43537.8 3.08494
\(585\) 0 0
\(586\) 11693.1i 0.824295i
\(587\) −18688.9 + 18688.9i −1.31410 + 1.31410i −0.395727 + 0.918368i \(0.629507\pi\)
−0.918368 + 0.395727i \(0.870493\pi\)
\(588\) 26887.5 32177.5i 1.88575 2.25677i
\(589\) 834.290i 0.0583639i
\(590\) 0 0
\(591\) 11931.4i 0.830440i
\(592\) −13827.0 13827.0i −0.959945 0.959945i
\(593\) 5453.19 + 5453.19i 0.377632 + 0.377632i 0.870247 0.492615i \(-0.163959\pi\)
−0.492615 + 0.870247i \(0.663959\pi\)
\(594\) −5594.07 −0.386410
\(595\) 0 0
\(596\) −6974.20 −0.479320
\(597\) 6661.34 + 6661.34i 0.456668 + 0.456668i
\(598\) 880.667 + 880.667i 0.0602227 + 0.0602227i
\(599\) 13401.4i 0.914136i 0.889432 + 0.457068i \(0.151100\pi\)
−0.889432 + 0.457068i \(0.848900\pi\)
\(600\) 0 0
\(601\) 15689.8i 1.06489i 0.846464 + 0.532446i \(0.178727\pi\)
−0.846464 + 0.532446i \(0.821273\pi\)
\(602\) 1141.82 + 25548.6i 0.0773045 + 1.72970i
\(603\) 7103.06 7103.06i 0.479700 0.479700i
\(604\) 60749.2i 4.09247i
\(605\) 0 0
\(606\) −10427.8 −0.699008
\(607\) 9429.70 9429.70i 0.630543 0.630543i −0.317661 0.948204i \(-0.602897\pi\)
0.948204 + 0.317661i \(0.102897\pi\)
\(608\) −2070.08 2070.08i −0.138080 0.138080i
\(609\) −17120.8 15655.9i −1.13919 1.04172i
\(610\) 0 0
\(611\) 7043.10 0.466339
\(612\) −13203.4 + 13203.4i −0.872086 + 0.872086i
\(613\) 13138.6 13138.6i 0.865681 0.865681i −0.126310 0.991991i \(-0.540313\pi\)
0.991991 + 0.126310i \(0.0403133\pi\)
\(614\) −16488.4 −1.08374
\(615\) 0 0
\(616\) −20103.4 18383.4i −1.31492 1.20241i
\(617\) 10622.2 + 10622.2i 0.693088 + 0.693088i 0.962910 0.269822i \(-0.0869648\pi\)
−0.269822 + 0.962910i \(0.586965\pi\)
\(618\) 2108.02 2108.02i 0.137212 0.137212i
\(619\) 1244.71 0.0808224 0.0404112 0.999183i \(-0.487133\pi\)
0.0404112 + 0.999183i \(0.487133\pi\)
\(620\) 0 0
\(621\) 163.736i 0.0105805i
\(622\) −14425.0 + 14425.0i −0.929888 + 0.929888i
\(623\) −997.036 22308.9i −0.0641178 1.43465i
\(624\) 38811.1i 2.48989i
\(625\) 0 0
\(626\) 18076.6i 1.15413i
\(627\) −3362.24 3362.24i −0.214155 0.214155i
\(628\) −9026.83 9026.83i −0.573582 0.573582i
\(629\) 9362.91 0.593519
\(630\) 0 0
\(631\) −7532.27 −0.475206 −0.237603 0.971362i \(-0.576362\pi\)
−0.237603 + 0.971362i \(0.576362\pi\)
\(632\) 21563.0 + 21563.0i 1.35717 + 1.35717i
\(633\) −6138.17 6138.17i −0.385419 0.385419i
\(634\) 17100.0i 1.07118i
\(635\) 0 0
\(636\) 36414.5i 2.27033i
\(637\) −14317.6 11963.8i −0.890558 0.744148i
\(638\) −19637.1 + 19637.1i −1.21856 + 1.21856i
\(639\) 10351.1i 0.640816i
\(640\) 0 0
\(641\) −6109.53 −0.376462 −0.188231 0.982125i \(-0.560275\pi\)
−0.188231 + 0.982125i \(0.560275\pi\)
\(642\) 24602.4 24602.4i 1.51243 1.51243i
\(643\) 1890.33 + 1890.33i 0.115937 + 0.115937i 0.762695 0.646758i \(-0.223876\pi\)
−0.646758 + 0.762695i \(0.723876\pi\)
\(644\) 991.452 1084.22i 0.0606657 0.0663419i
\(645\) 0 0
\(646\) 5474.11 0.333399
\(647\) 18918.1 18918.1i 1.14953 1.14953i 0.162889 0.986644i \(-0.447919\pi\)
0.986644 0.162889i \(-0.0520811\pi\)
\(648\) −28536.1 + 28536.1i −1.72994 + 1.72994i
\(649\) 7061.72 0.427114
\(650\) 0 0
\(651\) 3593.04 + 3285.62i 0.216317 + 0.197809i
\(652\) 1233.88 + 1233.88i 0.0741144 + 0.0741144i
\(653\) 3650.44 3650.44i 0.218764 0.218764i −0.589214 0.807977i \(-0.700562\pi\)
0.807977 + 0.589214i \(0.200562\pi\)
\(654\) 30693.6 1.83519
\(655\) 0 0
\(656\) 33368.7i 1.98602i
\(657\) 14020.6 14020.6i 0.832567 0.832567i
\(658\) −540.579 12095.6i −0.0320273 0.716617i
\(659\) 30832.1i 1.82253i −0.411817 0.911267i \(-0.635106\pi\)
0.411817 0.911267i \(-0.364894\pi\)
\(660\) 0 0
\(661\) 4032.29i 0.237274i 0.992938 + 0.118637i \(0.0378524\pi\)
−0.992938 + 0.118637i \(0.962148\pi\)
\(662\) 5744.90 + 5744.90i 0.337284 + 0.337284i
\(663\) 13140.4 + 13140.4i 0.769729 + 0.769729i
\(664\) −67336.8 −3.93550
\(665\) 0 0
\(666\) −21113.0 −1.22839
\(667\) −574.771 574.771i −0.0333661 0.0333661i
\(668\) −21130.6 21130.6i −1.22390 1.22390i
\(669\) 7936.32i 0.458649i
\(670\) 0 0
\(671\) 1139.75i 0.0655732i
\(672\) −17067.6 + 762.791i −0.979758 + 0.0437877i
\(673\) −17723.3 + 17723.3i −1.01513 + 1.01513i −0.0152461 + 0.999884i \(0.504853\pi\)
−0.999884 + 0.0152461i \(0.995147\pi\)
\(674\) 55979.1i 3.19916i
\(675\) 0 0
\(676\) −13331.2 −0.758491
\(677\) −9377.64 + 9377.64i −0.532366 + 0.532366i −0.921276 0.388910i \(-0.872852\pi\)
0.388910 + 0.921276i \(0.372852\pi\)
\(678\) 27797.9 + 27797.9i 1.57459 + 1.57459i
\(679\) 17731.0 + 16214.0i 1.00214 + 0.916399i
\(680\) 0 0
\(681\) 31534.4 1.77445
\(682\) 4121.14 4121.14i 0.231388 0.231388i
\(683\) −11971.7 + 11971.7i −0.670693 + 0.670693i −0.957876 0.287183i \(-0.907281\pi\)
0.287183 + 0.957876i \(0.407281\pi\)
\(684\) −8470.45 −0.473502
\(685\) 0 0
\(686\) −19447.2 + 25506.8i −1.08236 + 1.41961i
\(687\) 21310.0 + 21310.0i 1.18344 + 1.18344i
\(688\) 19744.3 19744.3i 1.09410 1.09410i
\(689\) −16202.9 −0.895910
\(690\) 0 0
\(691\) 4704.44i 0.258995i −0.991580 0.129497i \(-0.958664\pi\)
0.991580 0.129497i \(-0.0413364\pi\)
\(692\) 14008.1 14008.1i 0.769519 0.769519i
\(693\) −12394.0 + 553.918i −0.679380 + 0.0303631i
\(694\) 59921.6i 3.27751i
\(695\) 0 0
\(696\) 60052.1i 3.27050i
\(697\) −11297.7 11297.7i −0.613962 0.613962i
\(698\) −1802.16 1802.16i −0.0977263 0.0977263i
\(699\) 44586.2 2.41260
\(700\) 0 0
\(701\) 29583.6 1.59395 0.796974 0.604014i \(-0.206433\pi\)
0.796974 + 0.604014i \(0.206433\pi\)
\(702\) 7012.89 + 7012.89i 0.377044 + 0.377044i
\(703\) 3003.31 + 3003.31i 0.161127 + 0.161127i
\(704\) 4610.37i 0.246818i
\(705\) 0 0
\(706\) 20785.4i 1.10803i
\(707\) 5467.97 244.376i 0.290869 0.0129996i
\(708\) 19895.8 19895.8i 1.05612 1.05612i
\(709\) 29637.0i 1.56988i −0.619574 0.784938i \(-0.712695\pi\)
0.619574 0.784938i \(-0.287305\pi\)
\(710\) 0 0
\(711\) 13888.0 0.732548
\(712\) −40873.5 + 40873.5i −2.15140 + 2.15140i
\(713\) 120.624 + 120.624i 0.00633577 + 0.00633577i
\(714\) 21558.2 23575.4i 1.12997 1.23569i
\(715\) 0 0
\(716\) −25110.5 −1.31065
\(717\) −6023.85 + 6023.85i −0.313758 + 0.313758i
\(718\) 436.199 436.199i 0.0226724 0.0226724i
\(719\) 19761.2 1.02499 0.512496 0.858690i \(-0.328721\pi\)
0.512496 + 0.858690i \(0.328721\pi\)
\(720\) 0 0
\(721\) −1055.97 + 1154.78i −0.0545444 + 0.0596479i
\(722\) −22732.9 22732.9i −1.17179 1.17179i
\(723\) 11199.5 11199.5i 0.576094 0.576094i
\(724\) −61875.5 −3.17622
\(725\) 0 0
\(726\) 13746.2i 0.702711i
\(727\) 2991.47 2991.47i 0.152610 0.152610i −0.626673 0.779283i \(-0.715584\pi\)
0.779283 + 0.626673i \(0.215584\pi\)
\(728\) 2156.32 + 48248.2i 0.109778 + 2.45631i
\(729\) 11566.2i 0.587624i
\(730\) 0 0
\(731\) 13369.7i 0.676467i
\(732\) −3211.15 3211.15i −0.162141 0.162141i
\(733\) 14061.2 + 14061.2i 0.708542 + 0.708542i 0.966229 0.257687i \(-0.0829602\pi\)
−0.257687 + 0.966229i \(0.582960\pi\)
\(734\) −53740.4 −2.70244
\(735\) 0 0
\(736\) −598.595 −0.0299789
\(737\) 9982.22 + 9982.22i 0.498914 + 0.498914i
\(738\) 25475.9 + 25475.9i 1.27071 + 1.27071i
\(739\) 3186.25i 0.158604i 0.996851 + 0.0793018i \(0.0252691\pi\)
−0.996851 + 0.0793018i \(0.974731\pi\)
\(740\) 0 0
\(741\) 8430.00i 0.417927i
\(742\) 1243.62 + 27826.3i 0.0615294 + 1.37673i
\(743\) 8149.04 8149.04i 0.402368 0.402368i −0.476699 0.879067i \(-0.658167\pi\)
0.879067 + 0.476699i \(0.158167\pi\)
\(744\) 12602.8i 0.621024i
\(745\) 0 0
\(746\) −27311.0 −1.34038
\(747\) −21684.7 + 21684.7i −1.06212 + 1.06212i
\(748\) −18555.3 18555.3i −0.907018 0.907018i
\(749\) −12324.1 + 13477.3i −0.601221 + 0.657475i
\(750\) 0 0
\(751\) −33944.9 −1.64936 −0.824679 0.565601i \(-0.808644\pi\)
−0.824679 + 0.565601i \(0.808644\pi\)
\(752\) −9347.61 + 9347.61i −0.453287 + 0.453287i
\(753\) −14398.3 + 14398.3i −0.696818 + 0.696818i
\(754\) 49235.4 2.37805
\(755\) 0 0
\(756\) 7895.09 8633.81i 0.379817 0.415355i
\(757\) 1632.37 + 1632.37i 0.0783743 + 0.0783743i 0.745207 0.666833i \(-0.232351\pi\)
−0.666833 + 0.745207i \(0.732351\pi\)
\(758\) −21427.1 + 21427.1i −1.02674 + 1.02674i
\(759\) −972.244 −0.0464957
\(760\) 0 0
\(761\) 8358.98i 0.398177i −0.979981 0.199089i \(-0.936202\pi\)
0.979981 0.199089i \(-0.0637982\pi\)
\(762\) 24394.7 24394.7i 1.15975 1.15975i
\(763\) −16094.7 + 719.311i −0.763654 + 0.0341295i
\(764\) 24543.3i 1.16223i
\(765\) 0 0
\(766\) 40586.3i 1.91442i
\(767\) −8852.78 8852.78i −0.416761 0.416761i
\(768\) −39337.9 39337.9i −1.84829 1.84829i
\(769\) 26741.8 1.25401 0.627006 0.779014i \(-0.284280\pi\)
0.627006 + 0.779014i \(0.284280\pi\)
\(770\) 0 0
\(771\) 25035.2 1.16942
\(772\) −57561.6 57561.6i −2.68353 2.68353i
\(773\) −842.330 842.330i −0.0391934 0.0391934i 0.687238 0.726432i \(-0.258823\pi\)
−0.726432 + 0.687238i \(0.758823\pi\)
\(774\) 30148.2i 1.40007i
\(775\) 0 0
\(776\) 62192.7i 2.87705i
\(777\) 24762.1 1106.68i 1.14329 0.0510962i
\(778\) −19781.1 + 19781.1i −0.911551 + 0.911551i
\(779\) 7247.88i 0.333353i
\(780\) 0 0
\(781\) 14546.8 0.666485
\(782\) 791.462 791.462i 0.0361926 0.0361926i
\(783\) −4576.99 4576.99i −0.208900 0.208900i
\(784\) 34880.7 3124.04i 1.58895 0.142312i
\(785\) 0 0
\(786\) 65177.3 2.95776
\(787\) 5939.92 5939.92i 0.269041 0.269041i −0.559673 0.828714i \(-0.689073\pi\)
0.828714 + 0.559673i \(0.189073\pi\)
\(788\) 21121.2 21121.2i 0.954838 0.954838i
\(789\) −42962.7 −1.93855
\(790\) 0 0
\(791\) −15227.8 13924.9i −0.684496 0.625930i
\(792\) 22707.9 + 22707.9i 1.01880 + 1.01880i
\(793\) −1428.83 + 1428.83i −0.0639837 + 0.0639837i
\(794\) 25478.4 1.13879
\(795\) 0 0
\(796\) 23584.2i 1.05015i
\(797\) 11178.2 11178.2i 0.496803 0.496803i −0.413639 0.910441i \(-0.635742\pi\)
0.910441 + 0.413639i \(0.135742\pi\)
\(798\) 14477.4 647.028i 0.642222 0.0287024i
\(799\) 6329.69i 0.280261i
\(800\) 0 0
\(801\) 26325.3i 1.16125i
\(802\) −1086.46 1086.46i −0.0478356 0.0478356i
\(803\) 19703.8 + 19703.8i 0.865917 + 0.865917i
\(804\) 56248.1 2.46731
\(805\) 0 0
\(806\) −10332.8 −0.451559
\(807\) −3553.94 3553.94i −0.155024 0.155024i
\(808\) −10018.2 10018.2i −0.436187 0.436187i
\(809\) 8276.48i 0.359685i 0.983695 + 0.179843i \(0.0575589\pi\)
−0.983695 + 0.179843i \(0.942441\pi\)
\(810\) 0 0
\(811\) 38978.8i 1.68771i −0.536572 0.843854i \(-0.680281\pi\)
0.536572 0.843854i \(-0.319719\pi\)
\(812\) −2593.15 58022.2i −0.112071 2.50761i
\(813\) 25004.8 25004.8i 1.07867 1.07867i
\(814\) 29670.9i 1.27760i
\(815\) 0 0
\(816\) −34879.8 −1.49637
\(817\) −4288.57 + 4288.57i −0.183645 + 0.183645i
\(818\) 42191.4 + 42191.4i 1.80341 + 1.80341i
\(819\) 16231.9 + 14843.1i 0.692539 + 0.633285i
\(820\) 0 0
\(821\) −23105.0 −0.982180 −0.491090 0.871109i \(-0.663401\pi\)
−0.491090 + 0.871109i \(0.663401\pi\)
\(822\) −54057.9 + 54057.9i −2.29378 + 2.29378i
\(823\) −3288.90 + 3288.90i −0.139300 + 0.139300i −0.773318 0.634018i \(-0.781404\pi\)
0.634018 + 0.773318i \(0.281404\pi\)
\(824\) 4050.45 0.171243
\(825\) 0 0
\(826\) −14524.0 + 15882.9i −0.611808 + 0.669053i
\(827\) −786.261 786.261i −0.0330604 0.0330604i 0.690383 0.723444i \(-0.257442\pi\)
−0.723444 + 0.690383i \(0.757442\pi\)
\(828\) −1224.68 + 1224.68i −0.0514017 + 0.0514017i
\(829\) −24870.0 −1.04194 −0.520971 0.853575i \(-0.674430\pi\)
−0.520971 + 0.853575i \(0.674430\pi\)
\(830\) 0 0
\(831\) 3614.24i 0.150874i
\(832\) −5779.70 + 5779.70i −0.240835 + 0.240835i
\(833\) −10751.9 + 12867.4i −0.447218 + 0.535207i
\(834\) 5652.13i 0.234673i
\(835\) 0 0
\(836\) 11903.9i 0.492469i
\(837\) 960.549 + 960.549i 0.0396672 + 0.0396672i
\(838\) −22422.6 22422.6i −0.924314 0.924314i
\(839\) −22765.1 −0.936755 −0.468378 0.883528i \(-0.655161\pi\)
−0.468378 + 0.883528i \(0.655161\pi\)
\(840\) 0 0
\(841\) −7744.68 −0.317548
\(842\) 19968.7 + 19968.7i 0.817299 + 0.817299i
\(843\) 4518.11 + 4518.11i 0.184593 + 0.184593i
\(844\) 21731.9i 0.886309i
\(845\) 0 0
\(846\) 14273.2i 0.580049i
\(847\) 322.144 + 7208.03i 0.0130685 + 0.292410i
\(848\) 21504.5 21504.5i 0.870835 0.870835i
\(849\) 65312.2i 2.64017i
\(850\) 0 0
\(851\) 868.455 0.0349827
\(852\) 40984.3 40984.3i 1.64800 1.64800i
\(853\) 11703.5 + 11703.5i 0.469777 + 0.469777i 0.901842 0.432065i \(-0.142215\pi\)
−0.432065 + 0.901842i \(0.642215\pi\)
\(854\) 2563.48 + 2344.15i 0.102717 + 0.0939286i
\(855\) 0 0
\(856\) 47272.3 1.88754
\(857\) 25881.3 25881.3i 1.03161 1.03161i 0.0321229 0.999484i \(-0.489773\pi\)
0.999484 0.0321229i \(-0.0102268\pi\)
\(858\) 41641.7 41641.7i 1.65690 1.65690i
\(859\) −11267.9 −0.447563 −0.223782 0.974639i \(-0.571840\pi\)
−0.223782 + 0.974639i \(0.571840\pi\)
\(860\) 0 0
\(861\) −31214.5 28543.7i −1.23552 1.12981i
\(862\) 11466.6 + 11466.6i 0.453077 + 0.453077i
\(863\) −21760.8 + 21760.8i −0.858338 + 0.858338i −0.991142 0.132804i \(-0.957602\pi\)
0.132804 + 0.991142i \(0.457602\pi\)
\(864\) −4766.71 −0.187693
\(865\) 0 0
\(866\) 64251.6i 2.52120i
\(867\) −12467.2 + 12467.2i −0.488361 + 0.488361i
\(868\) 544.210 + 12176.8i 0.0212807 + 0.476161i
\(869\) 19517.4i 0.761891i
\(870\) 0 0
\(871\) 25028.0i 0.973642i
\(872\) 29488.1 + 29488.1i 1.14518 + 1.14518i
\(873\) −20028.1 20028.1i −0.776460 0.776460i
\(874\) 507.750 0.0196509
\(875\) 0 0
\(876\) 111027. 4.28227
\(877\) 10089.3 + 10089.3i 0.388473 + 0.388473i 0.874143 0.485669i \(-0.161424\pi\)
−0.485669 + 0.874143i \(0.661424\pi\)
\(878\) −54951.9 54951.9i −2.11223 2.11223i
\(879\) 16183.1i 0.620982i
\(880\) 0 0
\(881\) 12811.2i 0.489920i 0.969533 + 0.244960i \(0.0787748\pi\)
−0.969533 + 0.244960i \(0.921225\pi\)
\(882\) 24245.2 29015.4i 0.925598 1.10771i
\(883\) 30984.3 30984.3i 1.18086 1.18086i 0.201344 0.979521i \(-0.435469\pi\)
0.979521 0.201344i \(-0.0645310\pi\)
\(884\) 46523.0i 1.77006i
\(885\) 0 0
\(886\) 42703.8 1.61926
\(887\) 15820.5 15820.5i 0.598871 0.598871i −0.341141 0.940012i \(-0.610813\pi\)
0.940012 + 0.341141i \(0.110813\pi\)
\(888\) −45368.1 45368.1i −1.71448 1.71448i
\(889\) −12220.1 + 13363.5i −0.461022 + 0.504159i
\(890\) 0 0
\(891\) −25829.0 −0.971160
\(892\) 14049.1 14049.1i 0.527353 0.527353i
\(893\) 2030.36 2030.36i 0.0760843 0.0760843i
\(894\) −14066.1 −0.526219
\(895\) 0 0
\(896\) 24803.2 + 22681.1i 0.924797 + 0.845671i
\(897\) 1218.83 + 1218.83i 0.0453687 + 0.0453687i
\(898\) 34384.6 34384.6i 1.27776 1.27776i
\(899\) 6743.72 0.250184
\(900\) 0 0
\(901\) 14561.7i 0.538424i
\(902\) −35802.3 + 35802.3i −1.32160 + 1.32160i
\(903\) 1580.27 + 35358.9i 0.0582372 + 1.30307i
\(904\) 53412.3i 1.96512i
\(905\) 0 0
\(906\) 122523.i 4.49290i
\(907\) 24731.1 + 24731.1i 0.905384 + 0.905384i 0.995895 0.0905113i \(-0.0288501\pi\)
−0.0905113 + 0.995895i \(0.528850\pi\)
\(908\) 55823.1 + 55823.1i 2.04026 + 2.04026i
\(909\) −6452.39 −0.235437
\(910\) 0 0
\(911\) 24805.3 0.902127 0.451063 0.892492i \(-0.351045\pi\)
0.451063 + 0.892492i \(0.351045\pi\)
\(912\) −11188.3 11188.3i −0.406230 0.406230i
\(913\) −30474.4 30474.4i −1.10466 1.10466i
\(914\) 76754.6i 2.77770i
\(915\) 0 0
\(916\) 75447.1i 2.72144i
\(917\) −34176.8 + 1527.44i −1.23077 + 0.0550061i
\(918\) 6302.54 6302.54i 0.226596 0.226596i
\(919\) 33228.1i 1.19270i 0.802724 + 0.596351i \(0.203383\pi\)
−0.802724 + 0.596351i \(0.796617\pi\)
\(920\) 0 0
\(921\) −22819.8 −0.816435
\(922\) 26491.1 26491.1i 0.946245 0.946245i
\(923\) −18236.3 18236.3i −0.650329 0.650329i
\(924\) −51266.5 46880.1i −1.82526 1.66909i
\(925\) 0 0
\(926\) −55907.3 −1.98405
\(927\) 1304.38 1304.38i 0.0462152 0.0462152i
\(928\) −16732.8 + 16732.8i −0.591898 + 0.591898i
\(929\) 41777.1 1.47542 0.737708 0.675120i \(-0.235908\pi\)
0.737708 + 0.675120i \(0.235908\pi\)
\(930\) 0 0
\(931\) −7576.29 + 678.560i −0.266706 + 0.0238871i
\(932\) 78927.8 + 78927.8i 2.77400 + 2.77400i
\(933\) −19964.1 + 19964.1i −0.700530 + 0.700530i
\(934\) −15972.7 −0.559576
\(935\) 0 0
\(936\) 56934.5i 1.98821i
\(937\) 12969.5 12969.5i 0.452183 0.452183i −0.443896 0.896078i \(-0.646404\pi\)
0.896078 + 0.443896i \(0.146404\pi\)
\(938\) −42982.2 + 1920.97i −1.49618 + 0.0668678i
\(939\) 25017.8i 0.869462i
\(940\) 0 0
\(941\) 6982.50i 0.241895i 0.992659 + 0.120947i \(0.0385932\pi\)
−0.992659 + 0.120947i \(0.961407\pi\)
\(942\) −18206.0 18206.0i −0.629705 0.629705i
\(943\) −1047.92 1047.92i −0.0361876 0.0361876i
\(944\) 23498.8 0.810193
\(945\) 0 0
\(946\) 42368.5 1.45615
\(947\) −12625.2 12625.2i −0.433226 0.433226i 0.456498 0.889724i \(-0.349103\pi\)
−0.889724 + 0.456498i \(0.849103\pi\)
\(948\) 54988.6 + 54988.6i 1.88391 + 1.88391i
\(949\) 49402.5i 1.68985i
\(950\) 0 0
\(951\) 23666.2i 0.806972i
\(952\) 43361.0 1937.90i 1.47619 0.0659746i
\(953\) −77.2788 + 77.2788i −0.00262676 + 0.00262676i −0.708419 0.705792i \(-0.750591\pi\)
0.705792 + 0.708419i \(0.250591\pi\)
\(954\) 32836.0i 1.11436i
\(955\) 0 0
\(956\) −21327.2 −0.721517
\(957\) −27177.6 + 27177.6i −0.918001 + 0.918001i
\(958\) −57578.7 57578.7i −1.94184 1.94184i
\(959\) 27079.3 29613.0i 0.911822 0.997138i
\(960\) 0 0
\(961\) 28375.7 0.952493
\(962\) −37196.3 + 37196.3i −1.24663 + 1.24663i
\(963\) 15223.3 15223.3i 0.509411 0.509411i
\(964\) 39651.5 1.32478
\(965\) 0 0
\(966\) 1999.63 2186.73i 0.0666015 0.0728332i
\(967\) −9581.76 9581.76i −0.318644 0.318644i 0.529602 0.848246i \(-0.322341\pi\)
−0.848246 + 0.529602i \(0.822341\pi\)
\(968\) 13206.3 13206.3i 0.438498 0.438498i
\(969\) 7576.11 0.251166
\(970\) 0 0
\(971\) 8228.52i 0.271952i −0.990712 0.135976i \(-0.956583\pi\)
0.990712 0.135976i \(-0.0434171\pi\)
\(972\) −60710.4 + 60710.4i −2.00338 + 2.00338i
\(973\) −132.459 2963.79i −0.00436427 0.0976514i
\(974\) 56657.5i 1.86388i
\(975\) 0 0
\(976\) 3792.68i 0.124386i
\(977\) −37618.1 37618.1i −1.23184 1.23184i −0.963256 0.268587i \(-0.913443\pi\)
−0.268587 0.963256i \(-0.586557\pi\)
\(978\) 2488.58 + 2488.58i 0.0813662 + 0.0813662i
\(979\) −36996.0 −1.20776
\(980\) 0 0
\(981\) 18992.3 0.618123
\(982\) −14853.9 14853.9i −0.482695 0.482695i
\(983\) −6732.17 6732.17i −0.218436 0.218436i 0.589403 0.807839i \(-0.299363\pi\)
−0.807839 + 0.589403i \(0.799363\pi\)
\(984\) 109487.i 3.54706i
\(985\) 0 0
\(986\) 44248.2i 1.42916i
\(987\) −748.155 16740.1i −0.0241277 0.539862i
\(988\) −14923.0 + 14923.0i −0.480532 + 0.480532i
\(989\) 1240.11i 0.0398717i
\(990\) 0 0
\(991\) −26503.0 −0.849543 −0.424771 0.905301i \(-0.639646\pi\)
−0.424771 + 0.905301i \(0.639646\pi\)
\(992\) 3511.62 3511.62i 0.112393 0.112393i
\(993\) 7950.88 + 7950.88i 0.254092 + 0.254092i
\(994\) −29918.6 + 32718.0i −0.954688 + 1.04401i
\(995\) 0 0
\(996\) −171718. −5.46294
\(997\) −20316.7 + 20316.7i −0.645372 + 0.645372i −0.951871 0.306499i \(-0.900842\pi\)
0.306499 + 0.951871i \(0.400842\pi\)
\(998\) 20917.8 20917.8i 0.663470 0.663470i
\(999\) 6915.65 0.219020
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.f.g.132.8 16
5.2 odd 4 35.4.f.b.13.2 yes 16
5.3 odd 4 inner 175.4.f.g.118.7 16
5.4 even 2 35.4.f.b.27.1 yes 16
7.6 odd 2 inner 175.4.f.g.132.7 16
35.2 odd 12 245.4.l.b.178.8 32
35.4 even 6 245.4.l.b.117.7 32
35.9 even 6 245.4.l.b.227.2 32
35.12 even 12 245.4.l.b.178.7 32
35.13 even 4 inner 175.4.f.g.118.8 16
35.17 even 12 245.4.l.b.68.2 32
35.19 odd 6 245.4.l.b.227.1 32
35.24 odd 6 245.4.l.b.117.8 32
35.27 even 4 35.4.f.b.13.1 16
35.32 odd 12 245.4.l.b.68.1 32
35.34 odd 2 35.4.f.b.27.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.f.b.13.1 16 35.27 even 4
35.4.f.b.13.2 yes 16 5.2 odd 4
35.4.f.b.27.1 yes 16 5.4 even 2
35.4.f.b.27.2 yes 16 35.34 odd 2
175.4.f.g.118.7 16 5.3 odd 4 inner
175.4.f.g.118.8 16 35.13 even 4 inner
175.4.f.g.132.7 16 7.6 odd 2 inner
175.4.f.g.132.8 16 1.1 even 1 trivial
245.4.l.b.68.1 32 35.32 odd 12
245.4.l.b.68.2 32 35.17 even 12
245.4.l.b.117.7 32 35.4 even 6
245.4.l.b.117.8 32 35.24 odd 6
245.4.l.b.178.7 32 35.12 even 12
245.4.l.b.178.8 32 35.2 odd 12
245.4.l.b.227.1 32 35.19 odd 6
245.4.l.b.227.2 32 35.9 even 6