Defining parameters
Level: | \( N \) | \(=\) | \( 35 = 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 35.f (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 35 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(16\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(35, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 28 | 28 | 0 |
Cusp forms | 20 | 20 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(35, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
35.4.f.a | $4$ | $2.065$ | \(\Q(i, \sqrt{5})\) | None | \(-8\) | \(0\) | \(0\) | \(-42\) | \(q+(-2-2\beta _{2})q^{2}+(1+2\beta _{1}+\beta _{2})q^{3}+\cdots\) |
35.4.f.b | $16$ | $2.065$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(4\) | \(0\) | \(0\) | \(32\) | \(q+\beta _{7}q^{2}-\beta _{8}q^{3}+(-4\beta _{3}+\beta _{6}-\beta _{7}+\cdots)q^{4}+\cdots\) |