Properties

Label 338.4.c.j.315.1
Level $338$
Weight $4$
Character 338.315
Analytic conductor $19.943$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,4,Mod(191,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.191"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,3,-8,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{217})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 55x^{2} + 54x + 2916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 315.1
Root \(-3.43273 - 5.94566i\) of defining polynomial
Character \(\chi\) \(=\) 338.315
Dual form 338.4.c.j.191.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{2} +(-2.93273 - 5.07964i) q^{3} +(-2.00000 + 3.46410i) q^{4} +10.8655 q^{5} +(5.86546 - 10.1593i) q^{6} +(-14.9327 + 25.8642i) q^{7} -8.00000 q^{8} +(-3.70181 + 6.41172i) q^{9} +(10.8655 + 18.8195i) q^{10} +(-24.5291 - 42.4857i) q^{11} +23.4618 q^{12} -59.7309 q^{14} +(-31.8655 - 55.1926i) q^{15} +(-8.00000 - 13.8564i) q^{16} +(3.03816 - 5.26225i) q^{17} -14.8072 q^{18} +(-2.93273 + 5.07964i) q^{19} +(-21.7309 + 37.6391i) q^{20} +175.175 q^{21} +(49.0582 - 84.9713i) q^{22} +(2.79819 + 4.84661i) q^{23} +(23.4618 + 40.6371i) q^{24} -6.94178 q^{25} -114.942 q^{27} +(-59.7309 - 103.457i) q^{28} +(5.30724 + 9.19241i) q^{29} +(63.7309 - 110.385i) q^{30} -316.771 q^{31} +(16.0000 - 27.7128i) q^{32} +(-143.875 + 249.198i) q^{33} +12.1526 q^{34} +(-162.251 + 281.027i) q^{35} +(-14.8072 - 25.6469i) q^{36} +(-190.231 - 329.490i) q^{37} -11.7309 q^{38} -86.9237 q^{40} +(134.155 + 232.363i) q^{41} +(175.175 + 303.411i) q^{42} +(115.318 - 199.737i) q^{43} +196.233 q^{44} +(-40.2219 + 69.6663i) q^{45} +(-5.59638 + 9.69321i) q^{46} -524.466 q^{47} +(-46.9237 + 81.2742i) q^{48} +(-274.473 - 475.401i) q^{49} +(-6.94178 - 12.0235i) q^{50} -35.6404 q^{51} -274.865 q^{53} +(-114.942 - 199.085i) q^{54} +(-266.520 - 461.626i) q^{55} +(119.462 - 206.914i) q^{56} +34.4036 q^{57} +(-10.6145 + 18.3848i) q^{58} +(-71.4709 + 123.791i) q^{59} +254.924 q^{60} +(-281.347 + 487.308i) q^{61} +(-316.771 - 548.664i) q^{62} +(-110.556 - 191.489i) q^{63} +64.0000 q^{64} -575.498 q^{66} +(-258.762 - 448.189i) q^{67} +(12.1526 + 21.0490i) q^{68} +(16.4127 - 28.4276i) q^{69} -649.004 q^{70} +(-72.2781 + 125.189i) q^{71} +(29.6145 - 51.2938i) q^{72} +201.018 q^{73} +(380.462 - 658.979i) q^{74} +(20.3584 + 35.2617i) q^{75} +(-11.7309 - 20.3185i) q^{76} +1465.15 q^{77} +26.4579 q^{79} +(-86.9237 - 150.556i) q^{80} +(437.042 + 756.979i) q^{81} +(-268.309 + 464.725i) q^{82} +1147.16 q^{83} +(-350.349 + 606.823i) q^{84} +(33.0110 - 57.1767i) q^{85} +461.273 q^{86} +(31.1294 - 53.9177i) q^{87} +(196.233 + 339.885i) q^{88} +(-331.915 - 574.893i) q^{89} -160.887 q^{90} -22.3855 q^{92} +(929.004 + 1609.08i) q^{93} +(-524.466 - 908.401i) q^{94} +(-31.8655 + 55.1926i) q^{95} -187.695 q^{96} +(-68.7581 + 119.092i) q^{97} +(548.946 - 950.802i) q^{98} +363.208 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 3 q^{3} - 8 q^{4} + 14 q^{5} - 6 q^{6} - 45 q^{7} - 32 q^{8} - 59 q^{9} + 14 q^{10} + 5 q^{11} - 24 q^{12} - 180 q^{14} - 98 q^{15} - 32 q^{16} + 130 q^{17} - 236 q^{18} + 3 q^{19} - 28 q^{20}+ \cdots - 4852 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.73205i 0.353553 + 0.612372i
\(3\) −2.93273 5.07964i −0.564404 0.977577i −0.997105 0.0760390i \(-0.975773\pi\)
0.432701 0.901538i \(-0.357561\pi\)
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) 10.8655 0.971836 0.485918 0.874004i \(-0.338485\pi\)
0.485918 + 0.874004i \(0.338485\pi\)
\(6\) 5.86546 10.1593i 0.399094 0.691251i
\(7\) −14.9327 + 25.8642i −0.806292 + 1.39654i 0.109124 + 0.994028i \(0.465195\pi\)
−0.915416 + 0.402510i \(0.868138\pi\)
\(8\) −8.00000 −0.353553
\(9\) −3.70181 + 6.41172i −0.137104 + 0.237471i
\(10\) 10.8655 + 18.8195i 0.343596 + 0.595126i
\(11\) −24.5291 42.4857i −0.672346 1.16454i −0.977237 0.212150i \(-0.931953\pi\)
0.304891 0.952387i \(-0.401380\pi\)
\(12\) 23.4618 0.564404
\(13\) 0 0
\(14\) −59.7309 −1.14027
\(15\) −31.8655 55.1926i −0.548508 0.950044i
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) 3.03816 5.26225i 0.0433448 0.0750754i −0.843539 0.537068i \(-0.819532\pi\)
0.886884 + 0.461992i \(0.152865\pi\)
\(18\) −14.8072 −0.193894
\(19\) −2.93273 + 5.07964i −0.0354113 + 0.0613341i −0.883188 0.469019i \(-0.844607\pi\)
0.847777 + 0.530353i \(0.177941\pi\)
\(20\) −21.7309 + 37.6391i −0.242959 + 0.420817i
\(21\) 175.175 1.82030
\(22\) 49.0582 84.9713i 0.475420 0.823452i
\(23\) 2.79819 + 4.84661i 0.0253680 + 0.0439386i 0.878431 0.477870i \(-0.158591\pi\)
−0.853063 + 0.521808i \(0.825258\pi\)
\(24\) 23.4618 + 40.6371i 0.199547 + 0.345626i
\(25\) −6.94178 −0.0555342
\(26\) 0 0
\(27\) −114.942 −0.819280
\(28\) −59.7309 103.457i −0.403146 0.698269i
\(29\) 5.30724 + 9.19241i 0.0339838 + 0.0588616i 0.882517 0.470280i \(-0.155847\pi\)
−0.848533 + 0.529142i \(0.822514\pi\)
\(30\) 63.7309 110.385i 0.387854 0.671783i
\(31\) −316.771 −1.83528 −0.917641 0.397410i \(-0.869909\pi\)
−0.917641 + 0.397410i \(0.869909\pi\)
\(32\) 16.0000 27.7128i 0.0883883 0.153093i
\(33\) −143.875 + 249.198i −0.758950 + 1.31454i
\(34\) 12.1526 0.0612988
\(35\) −162.251 + 281.027i −0.783583 + 1.35721i
\(36\) −14.8072 25.6469i −0.0685520 0.118736i
\(37\) −190.231 329.490i −0.845237 1.46399i −0.885415 0.464801i \(-0.846126\pi\)
0.0401781 0.999193i \(-0.487207\pi\)
\(38\) −11.7309 −0.0500791
\(39\) 0 0
\(40\) −86.9237 −0.343596
\(41\) 134.155 + 232.363i 0.511010 + 0.885096i 0.999919 + 0.0127608i \(0.00406199\pi\)
−0.488908 + 0.872335i \(0.662605\pi\)
\(42\) 175.175 + 303.411i 0.643572 + 1.11470i
\(43\) 115.318 199.737i 0.408974 0.708363i −0.585801 0.810455i \(-0.699220\pi\)
0.994775 + 0.102091i \(0.0325534\pi\)
\(44\) 196.233 0.672346
\(45\) −40.2219 + 69.6663i −0.133243 + 0.230783i
\(46\) −5.59638 + 9.69321i −0.0179379 + 0.0310693i
\(47\) −524.466 −1.62768 −0.813842 0.581086i \(-0.802628\pi\)
−0.813842 + 0.581086i \(0.802628\pi\)
\(48\) −46.9237 + 81.2742i −0.141101 + 0.244394i
\(49\) −274.473 475.401i −0.800212 1.38601i
\(50\) −6.94178 12.0235i −0.0196343 0.0340076i
\(51\) −35.6404 −0.0978560
\(52\) 0 0
\(53\) −274.865 −0.712371 −0.356186 0.934415i \(-0.615923\pi\)
−0.356186 + 0.934415i \(0.615923\pi\)
\(54\) −114.942 199.085i −0.289659 0.501704i
\(55\) −266.520 461.626i −0.653410 1.13174i
\(56\) 119.462 206.914i 0.285067 0.493751i
\(57\) 34.4036 0.0799451
\(58\) −10.6145 + 18.3848i −0.0240302 + 0.0416215i
\(59\) −71.4709 + 123.791i −0.157707 + 0.273157i −0.934041 0.357165i \(-0.883744\pi\)
0.776334 + 0.630321i \(0.217077\pi\)
\(60\) 254.924 0.548508
\(61\) −281.347 + 487.308i −0.590538 + 1.02284i 0.403622 + 0.914926i \(0.367751\pi\)
−0.994160 + 0.107916i \(0.965582\pi\)
\(62\) −316.771 548.664i −0.648870 1.12388i
\(63\) −110.556 191.489i −0.221092 0.382942i
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −575.498 −1.07332
\(67\) −258.762 448.189i −0.471833 0.817239i 0.527648 0.849463i \(-0.323074\pi\)
−0.999481 + 0.0322247i \(0.989741\pi\)
\(68\) 12.1526 + 21.0490i 0.0216724 + 0.0375377i
\(69\) 16.4127 28.4276i 0.0286356 0.0495982i
\(70\) −649.004 −1.10815
\(71\) −72.2781 + 125.189i −0.120815 + 0.209257i −0.920089 0.391709i \(-0.871884\pi\)
0.799275 + 0.600966i \(0.205217\pi\)
\(72\) 29.6145 51.2938i 0.0484736 0.0839588i
\(73\) 201.018 0.322293 0.161147 0.986930i \(-0.448481\pi\)
0.161147 + 0.986930i \(0.448481\pi\)
\(74\) 380.462 658.979i 0.597673 1.03520i
\(75\) 20.3584 + 35.2617i 0.0313438 + 0.0542890i
\(76\) −11.7309 20.3185i −0.0177056 0.0306671i
\(77\) 1465.15 2.16843
\(78\) 0 0
\(79\) 26.4579 0.0376804 0.0188402 0.999823i \(-0.494003\pi\)
0.0188402 + 0.999823i \(0.494003\pi\)
\(80\) −86.9237 150.556i −0.121480 0.210409i
\(81\) 437.042 + 756.979i 0.599509 + 1.03838i
\(82\) −268.309 + 464.725i −0.361339 + 0.625857i
\(83\) 1147.16 1.51707 0.758535 0.651632i \(-0.225916\pi\)
0.758535 + 0.651632i \(0.225916\pi\)
\(84\) −350.349 + 606.823i −0.455074 + 0.788212i
\(85\) 33.0110 57.1767i 0.0421241 0.0729610i
\(86\) 461.273 0.578376
\(87\) 31.1294 53.9177i 0.0383612 0.0664435i
\(88\) 196.233 + 339.885i 0.237710 + 0.411726i
\(89\) −331.915 574.893i −0.395313 0.684703i 0.597828 0.801625i \(-0.296031\pi\)
−0.993141 + 0.116922i \(0.962697\pi\)
\(90\) −160.887 −0.188434
\(91\) 0 0
\(92\) −22.3855 −0.0253680
\(93\) 929.004 + 1609.08i 1.03584 + 1.79413i
\(94\) −524.466 908.401i −0.575474 0.996749i
\(95\) −31.8655 + 55.1926i −0.0344140 + 0.0596067i
\(96\) −187.695 −0.199547
\(97\) −68.7581 + 119.092i −0.0719724 + 0.124660i −0.899766 0.436373i \(-0.856263\pi\)
0.827793 + 0.561033i \(0.189596\pi\)
\(98\) 548.946 950.802i 0.565836 0.980056i
\(99\) 363.208 0.368725
\(100\) 13.8836 24.0470i 0.0138836 0.0240470i
\(101\) 442.347 + 766.168i 0.435794 + 0.754818i 0.997360 0.0726144i \(-0.0231342\pi\)
−0.561566 + 0.827432i \(0.689801\pi\)
\(102\) −35.6404 61.7310i −0.0345973 0.0599243i
\(103\) −416.233 −0.398181 −0.199091 0.979981i \(-0.563799\pi\)
−0.199091 + 0.979981i \(0.563799\pi\)
\(104\) 0 0
\(105\) 1903.35 1.76903
\(106\) −274.865 476.081i −0.251861 0.436236i
\(107\) −211.587 366.480i −0.191167 0.331112i 0.754470 0.656335i \(-0.227894\pi\)
−0.945637 + 0.325223i \(0.894561\pi\)
\(108\) 229.884 398.170i 0.204820 0.354759i
\(109\) 951.630 0.836235 0.418118 0.908393i \(-0.362690\pi\)
0.418118 + 0.908393i \(0.362690\pi\)
\(110\) 533.040 923.253i 0.462031 0.800261i
\(111\) −1115.79 + 1932.61i −0.954111 + 1.65257i
\(112\) 477.847 0.403146
\(113\) 376.391 651.929i 0.313344 0.542729i −0.665740 0.746184i \(-0.731884\pi\)
0.979084 + 0.203456i \(0.0652172\pi\)
\(114\) 34.4036 + 59.5888i 0.0282649 + 0.0489562i
\(115\) 30.4036 + 52.6606i 0.0246535 + 0.0427011i
\(116\) −42.4579 −0.0339838
\(117\) 0 0
\(118\) −285.884 −0.223031
\(119\) 90.7361 + 157.159i 0.0698971 + 0.121065i
\(120\) 254.924 + 441.541i 0.193927 + 0.335891i
\(121\) −537.854 + 931.591i −0.404098 + 0.699918i
\(122\) −1125.39 −0.835147
\(123\) 786.878 1362.91i 0.576833 0.999104i
\(124\) 633.542 1097.33i 0.458821 0.794701i
\(125\) −1433.61 −1.02581
\(126\) 221.113 382.978i 0.156335 0.270781i
\(127\) 665.802 + 1153.20i 0.465200 + 0.805750i 0.999211 0.0397279i \(-0.0126491\pi\)
−0.534011 + 0.845478i \(0.679316\pi\)
\(128\) 64.0000 + 110.851i 0.0441942 + 0.0765466i
\(129\) −1352.79 −0.923306
\(130\) 0 0
\(131\) 260.378 0.173659 0.0868294 0.996223i \(-0.472326\pi\)
0.0868294 + 0.996223i \(0.472326\pi\)
\(132\) −575.498 996.792i −0.379475 0.657270i
\(133\) −87.5873 151.706i −0.0571036 0.0989064i
\(134\) 517.524 896.378i 0.333636 0.577875i
\(135\) −1248.90 −0.796206
\(136\) −24.3053 + 42.0980i −0.0153247 + 0.0265432i
\(137\) 1205.97 2088.81i 0.752068 1.30262i −0.194751 0.980853i \(-0.562390\pi\)
0.946819 0.321767i \(-0.104277\pi\)
\(138\) 65.6507 0.0404968
\(139\) 203.965 353.278i 0.124461 0.215573i −0.797061 0.603899i \(-0.793613\pi\)
0.921522 + 0.388326i \(0.126946\pi\)
\(140\) −649.004 1124.11i −0.391792 0.678603i
\(141\) 1538.12 + 2664.10i 0.918672 + 1.59119i
\(142\) −289.113 −0.170858
\(143\) 0 0
\(144\) 118.458 0.0685520
\(145\) 57.6656 + 99.8798i 0.0330267 + 0.0572039i
\(146\) 201.018 + 348.174i 0.113948 + 0.197363i
\(147\) −1609.91 + 2788.45i −0.903286 + 1.56454i
\(148\) 1521.85 0.845237
\(149\) −147.584 + 255.623i −0.0811447 + 0.140547i −0.903742 0.428078i \(-0.859191\pi\)
0.822597 + 0.568625i \(0.192524\pi\)
\(150\) −40.7167 + 70.5235i −0.0221634 + 0.0383881i
\(151\) −2087.10 −1.12481 −0.562403 0.826863i \(-0.690123\pi\)
−0.562403 + 0.826863i \(0.690123\pi\)
\(152\) 23.4618 40.6371i 0.0125198 0.0216849i
\(153\) 22.4934 + 38.9597i 0.0118855 + 0.0205863i
\(154\) 1465.15 + 2537.71i 0.766655 + 1.32789i
\(155\) −3441.86 −1.78359
\(156\) 0 0
\(157\) 557.512 0.283403 0.141702 0.989909i \(-0.454743\pi\)
0.141702 + 0.989909i \(0.454743\pi\)
\(158\) 26.4579 + 45.8265i 0.0133220 + 0.0230744i
\(159\) 806.106 + 1396.22i 0.402065 + 0.696397i
\(160\) 173.847 301.112i 0.0858990 0.148781i
\(161\) −167.138 −0.0818159
\(162\) −874.084 + 1513.96i −0.423917 + 0.734246i
\(163\) −645.238 + 1117.59i −0.310055 + 0.537031i −0.978374 0.206844i \(-0.933681\pi\)
0.668319 + 0.743875i \(0.267014\pi\)
\(164\) −1073.24 −0.511010
\(165\) −1563.26 + 2707.65i −0.737575 + 1.27752i
\(166\) 1147.16 + 1986.93i 0.536365 + 0.929012i
\(167\) 1256.64 + 2176.56i 0.582284 + 1.00854i 0.995208 + 0.0977795i \(0.0311740\pi\)
−0.412925 + 0.910765i \(0.635493\pi\)
\(168\) −1401.40 −0.643572
\(169\) 0 0
\(170\) 132.044 0.0595724
\(171\) −21.7128 37.6077i −0.00971006 0.0168183i
\(172\) 461.273 + 798.948i 0.204487 + 0.354182i
\(173\) 1700.26 2944.94i 0.747218 1.29422i −0.201934 0.979399i \(-0.564723\pi\)
0.949151 0.314820i \(-0.101944\pi\)
\(174\) 124.518 0.0542509
\(175\) 103.660 179.544i 0.0447768 0.0775557i
\(176\) −392.466 + 679.771i −0.168086 + 0.291134i
\(177\) 838.419 0.356042
\(178\) 663.829 1149.79i 0.279529 0.484158i
\(179\) 785.111 + 1359.85i 0.327832 + 0.567822i 0.982081 0.188457i \(-0.0603486\pi\)
−0.654249 + 0.756279i \(0.727015\pi\)
\(180\) −160.887 278.665i −0.0666214 0.115392i
\(181\) 2921.99 1.19995 0.599973 0.800021i \(-0.295178\pi\)
0.599973 + 0.800021i \(0.295178\pi\)
\(182\) 0 0
\(183\) 3300.46 1.33321
\(184\) −22.3855 38.7729i −0.00896893 0.0155346i
\(185\) −2066.95 3580.06i −0.821432 1.42276i
\(186\) −1858.01 + 3218.16i −0.732450 + 1.26864i
\(187\) −298.093 −0.116571
\(188\) 1048.93 1816.80i 0.406921 0.704808i
\(189\) 1716.39 2972.88i 0.660578 1.14416i
\(190\) −127.462 −0.0486687
\(191\) −1954.35 + 3385.03i −0.740375 + 1.28237i 0.211949 + 0.977281i \(0.432019\pi\)
−0.952325 + 0.305087i \(0.901315\pi\)
\(192\) −187.695 325.097i −0.0705505 0.122197i
\(193\) −1059.66 1835.39i −0.395214 0.684531i 0.597914 0.801560i \(-0.295996\pi\)
−0.993128 + 0.117029i \(0.962663\pi\)
\(194\) −275.032 −0.101784
\(195\) 0 0
\(196\) 2195.78 0.800212
\(197\) 1555.25 + 2693.77i 0.562472 + 0.974230i 0.997280 + 0.0737067i \(0.0234829\pi\)
−0.434808 + 0.900523i \(0.643184\pi\)
\(198\) 363.208 + 629.095i 0.130364 + 0.225797i
\(199\) 245.487 425.195i 0.0874476 0.151464i −0.818984 0.573816i \(-0.805462\pi\)
0.906432 + 0.422353i \(0.138796\pi\)
\(200\) 55.5342 0.0196343
\(201\) −1517.76 + 2628.83i −0.532609 + 0.922506i
\(202\) −884.695 + 1532.34i −0.308153 + 0.533737i
\(203\) −317.006 −0.109603
\(204\) 71.2808 123.462i 0.0244640 0.0423729i
\(205\) 1457.65 + 2524.73i 0.496618 + 0.860168i
\(206\) −416.233 720.936i −0.140778 0.243835i
\(207\) −41.4335 −0.0139122
\(208\) 0 0
\(209\) 287.749 0.0952345
\(210\) 1903.35 + 3296.70i 0.625447 + 1.08331i
\(211\) 301.634 + 522.445i 0.0984139 + 0.170458i 0.911028 0.412344i \(-0.135290\pi\)
−0.812614 + 0.582802i \(0.801956\pi\)
\(212\) 549.731 952.162i 0.178093 0.308466i
\(213\) 847.889 0.272753
\(214\) 423.175 732.960i 0.135176 0.234131i
\(215\) 1252.99 2170.24i 0.397455 0.688413i
\(216\) 919.534 0.289659
\(217\) 4730.26 8193.04i 1.47977 2.56304i
\(218\) 951.630 + 1648.27i 0.295654 + 0.512087i
\(219\) −589.532 1021.10i −0.181904 0.315066i
\(220\) 2132.16 0.653410
\(221\) 0 0
\(222\) −4463.17 −1.34932
\(223\) −1567.57 2715.11i −0.470727 0.815324i 0.528712 0.848801i \(-0.322675\pi\)
−0.999439 + 0.0334775i \(0.989342\pi\)
\(224\) 477.847 + 827.656i 0.142534 + 0.246875i
\(225\) 25.6972 44.5088i 0.00761397 0.0131878i
\(226\) 1505.57 0.443136
\(227\) 806.537 1396.96i 0.235823 0.408457i −0.723689 0.690126i \(-0.757555\pi\)
0.959511 + 0.281670i \(0.0908882\pi\)
\(228\) −68.8072 + 119.178i −0.0199863 + 0.0346172i
\(229\) 6156.40 1.77653 0.888267 0.459327i \(-0.151909\pi\)
0.888267 + 0.459327i \(0.151909\pi\)
\(230\) −60.8072 + 105.321i −0.0174327 + 0.0301942i
\(231\) −4296.88 7442.41i −1.22387 2.11980i
\(232\) −42.4579 73.5393i −0.0120151 0.0208107i
\(233\) −3350.07 −0.941934 −0.470967 0.882151i \(-0.656095\pi\)
−0.470967 + 0.882151i \(0.656095\pi\)
\(234\) 0 0
\(235\) −5698.56 −1.58184
\(236\) −285.884 495.165i −0.0788535 0.136578i
\(237\) −77.5939 134.397i −0.0212670 0.0368354i
\(238\) −181.472 + 314.319i −0.0494247 + 0.0856062i
\(239\) 632.554 0.171199 0.0855994 0.996330i \(-0.472719\pi\)
0.0855994 + 0.996330i \(0.472719\pi\)
\(240\) −509.847 + 883.082i −0.137127 + 0.237511i
\(241\) 752.118 1302.71i 0.201030 0.348194i −0.747831 0.663890i \(-0.768904\pi\)
0.948861 + 0.315696i \(0.102238\pi\)
\(242\) −2151.42 −0.571481
\(243\) 1011.74 1752.38i 0.267091 0.462615i
\(244\) −1125.39 1949.23i −0.295269 0.511421i
\(245\) −2982.27 5165.45i −0.777675 1.34697i
\(246\) 3147.51 0.815765
\(247\) 0 0
\(248\) 2534.17 0.648870
\(249\) −3364.30 5827.14i −0.856240 1.48305i
\(250\) −1433.61 2483.08i −0.362677 0.628176i
\(251\) −518.384 + 897.868i −0.130359 + 0.225789i −0.923815 0.382839i \(-0.874946\pi\)
0.793456 + 0.608628i \(0.208280\pi\)
\(252\) 884.450 0.221092
\(253\) 137.274 237.766i 0.0341121 0.0590839i
\(254\) −1331.60 + 2306.41i −0.328946 + 0.569751i
\(255\) −387.249 −0.0951000
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −252.452 437.260i −0.0612744 0.106130i 0.833761 0.552126i \(-0.186183\pi\)
−0.895035 + 0.445995i \(0.852850\pi\)
\(258\) −1352.79 2343.10i −0.326438 0.565407i
\(259\) 11362.7 2.72603
\(260\) 0 0
\(261\) −78.5856 −0.0186373
\(262\) 260.378 + 450.987i 0.0613977 + 0.106344i
\(263\) 84.6612 + 146.638i 0.0198496 + 0.0343804i 0.875780 0.482711i \(-0.160348\pi\)
−0.855930 + 0.517092i \(0.827015\pi\)
\(264\) 1151.00 1993.58i 0.268329 0.464760i
\(265\) −2986.54 −0.692308
\(266\) 175.175 303.411i 0.0403784 0.0699374i
\(267\) −1946.83 + 3372.01i −0.446233 + 0.772898i
\(268\) 2070.10 0.471833
\(269\) −771.017 + 1335.44i −0.174757 + 0.302689i −0.940077 0.340961i \(-0.889247\pi\)
0.765320 + 0.643650i \(0.222581\pi\)
\(270\) −1248.90 2163.15i −0.281501 0.487575i
\(271\) −589.678 1021.35i −0.132179 0.228940i 0.792338 0.610083i \(-0.208864\pi\)
−0.924516 + 0.381143i \(0.875531\pi\)
\(272\) −97.2211 −0.0216724
\(273\) 0 0
\(274\) 4823.89 1.06358
\(275\) 170.276 + 294.926i 0.0373382 + 0.0646717i
\(276\) 65.6507 + 113.710i 0.0143178 + 0.0247991i
\(277\) −1952.95 + 3382.61i −0.423615 + 0.733723i −0.996290 0.0860599i \(-0.972572\pi\)
0.572675 + 0.819782i \(0.305906\pi\)
\(278\) 815.860 0.176015
\(279\) 1172.63 2031.05i 0.251625 0.435827i
\(280\) 1298.01 2248.22i 0.277039 0.479845i
\(281\) −58.9976 −0.0125249 −0.00626245 0.999980i \(-0.501993\pi\)
−0.00626245 + 0.999980i \(0.501993\pi\)
\(282\) −3076.23 + 5328.19i −0.649599 + 1.12514i
\(283\) −2347.79 4066.49i −0.493151 0.854163i 0.506818 0.862053i \(-0.330822\pi\)
−0.999969 + 0.00789055i \(0.997488\pi\)
\(284\) −289.113 500.758i −0.0604073 0.104629i
\(285\) 373.811 0.0776936
\(286\) 0 0
\(287\) −8013.18 −1.64809
\(288\) 118.458 + 205.175i 0.0242368 + 0.0419794i
\(289\) 2438.04 + 4222.81i 0.496242 + 0.859517i
\(290\) −115.331 + 199.760i −0.0233534 + 0.0404493i
\(291\) 806.595 0.162486
\(292\) −402.036 + 696.347i −0.0805733 + 0.139557i
\(293\) −4059.41 + 7031.11i −0.809397 + 1.40192i 0.103885 + 0.994589i \(0.466873\pi\)
−0.913282 + 0.407327i \(0.866461\pi\)
\(294\) −6439.64 −1.27744
\(295\) −776.564 + 1345.05i −0.153265 + 0.265464i
\(296\) 1521.85 + 2635.92i 0.298836 + 0.517600i
\(297\) 2819.42 + 4883.38i 0.550839 + 0.954082i
\(298\) −590.337 −0.114756
\(299\) 0 0
\(300\) −162.867 −0.0313438
\(301\) 3444.03 + 5965.24i 0.659504 + 1.14229i
\(302\) −2087.10 3614.96i −0.397679 0.688800i
\(303\) 2594.57 4493.93i 0.491928 0.852044i
\(304\) 93.8474 0.0177056
\(305\) −3056.97 + 5294.82i −0.573907 + 0.994035i
\(306\) −44.9868 + 77.9194i −0.00840432 + 0.0145567i
\(307\) 1072.04 0.199298 0.0996492 0.995023i \(-0.468228\pi\)
0.0996492 + 0.995023i \(0.468228\pi\)
\(308\) −2930.29 + 5075.42i −0.542107 + 0.938957i
\(309\) 1220.70 + 2114.31i 0.224735 + 0.389252i
\(310\) −3441.86 5961.48i −0.630596 1.09222i
\(311\) −4528.41 −0.825667 −0.412834 0.910806i \(-0.635461\pi\)
−0.412834 + 0.910806i \(0.635461\pi\)
\(312\) 0 0
\(313\) −5396.13 −0.974464 −0.487232 0.873273i \(-0.661993\pi\)
−0.487232 + 0.873273i \(0.661993\pi\)
\(314\) 557.512 + 965.640i 0.100198 + 0.173548i
\(315\) −1201.24 2080.62i −0.214865 0.372157i
\(316\) −52.9158 + 91.6529i −0.00942009 + 0.0163161i
\(317\) −8222.40 −1.45683 −0.728417 0.685134i \(-0.759743\pi\)
−0.728417 + 0.685134i \(0.759743\pi\)
\(318\) −1612.21 + 2792.43i −0.284303 + 0.492427i
\(319\) 260.364 450.963i 0.0456977 0.0791508i
\(320\) 695.389 0.121480
\(321\) −1241.06 + 2149.57i −0.215791 + 0.373762i
\(322\) −167.138 289.492i −0.0289263 0.0501018i
\(323\) 17.8202 + 30.8655i 0.00306979 + 0.00531704i
\(324\) −3496.34 −0.599509
\(325\) 0 0
\(326\) −2580.95 −0.438484
\(327\) −2790.87 4833.94i −0.471975 0.817484i
\(328\) −1073.24 1858.90i −0.180669 0.312929i
\(329\) 7831.71 13564.9i 1.31239 2.27312i
\(330\) −6253.05 −1.04309
\(331\) −304.177 + 526.851i −0.0505109 + 0.0874874i −0.890175 0.455618i \(-0.849418\pi\)
0.839664 + 0.543105i \(0.182752\pi\)
\(332\) −2294.31 + 3973.87i −0.379267 + 0.656910i
\(333\) 2816.79 0.463542
\(334\) −2513.27 + 4353.11i −0.411737 + 0.713149i
\(335\) −2811.57 4869.78i −0.458544 0.794222i
\(336\) −1401.40 2427.29i −0.227537 0.394106i
\(337\) −8808.73 −1.42386 −0.711932 0.702248i \(-0.752180\pi\)
−0.711932 + 0.702248i \(0.752180\pi\)
\(338\) 0 0
\(339\) −4415.42 −0.707412
\(340\) 132.044 + 228.707i 0.0210620 + 0.0364805i
\(341\) 7770.11 + 13458.2i 1.23394 + 2.13725i
\(342\) 43.4256 75.2154i 0.00686605 0.0118923i
\(343\) 6150.66 0.968235
\(344\) −922.546 + 1597.90i −0.144594 + 0.250444i
\(345\) 178.331 308.879i 0.0278291 0.0482014i
\(346\) 6801.06 1.05673
\(347\) 3583.04 6206.01i 0.554317 0.960105i −0.443640 0.896205i \(-0.646313\pi\)
0.997956 0.0638994i \(-0.0203537\pi\)
\(348\) 124.518 + 215.671i 0.0191806 + 0.0332218i
\(349\) −942.489 1632.44i −0.144557 0.250380i 0.784651 0.619938i \(-0.212842\pi\)
−0.929207 + 0.369559i \(0.879509\pi\)
\(350\) 414.639 0.0633240
\(351\) 0 0
\(352\) −1569.86 −0.237710
\(353\) −5977.01 10352.5i −0.901202 1.56093i −0.825936 0.563764i \(-0.809353\pi\)
−0.0752661 0.997163i \(-0.523981\pi\)
\(354\) 838.419 + 1452.18i 0.125880 + 0.218030i
\(355\) −785.335 + 1360.24i −0.117412 + 0.203364i
\(356\) 2655.32 0.395313
\(357\) 532.209 921.812i 0.0789005 0.136660i
\(358\) −1570.22 + 2719.71i −0.231812 + 0.401511i
\(359\) −9068.77 −1.33324 −0.666618 0.745400i \(-0.732259\pi\)
−0.666618 + 0.745400i \(0.732259\pi\)
\(360\) 321.775 557.331i 0.0471084 0.0815942i
\(361\) 3412.30 + 5910.27i 0.497492 + 0.861682i
\(362\) 2921.99 + 5061.04i 0.424245 + 0.734813i
\(363\) 6309.53 0.912298
\(364\) 0 0
\(365\) 2184.15 0.313216
\(366\) 3300.46 + 5716.57i 0.471361 + 0.816421i
\(367\) −3922.06 6793.21i −0.557847 0.966220i −0.997676 0.0681380i \(-0.978294\pi\)
0.439829 0.898082i \(-0.355039\pi\)
\(368\) 44.7710 77.5457i 0.00634199 0.0109846i
\(369\) −1986.46 −0.280246
\(370\) 4133.89 7160.11i 0.580840 1.00604i
\(371\) 4104.49 7109.19i 0.574379 0.994854i
\(372\) −7432.03 −1.03584
\(373\) −723.844 + 1253.74i −0.100481 + 0.174037i −0.911883 0.410451i \(-0.865371\pi\)
0.811402 + 0.584488i \(0.198705\pi\)
\(374\) −298.093 516.313i −0.0412140 0.0713848i
\(375\) 4204.39 + 7282.21i 0.578969 + 1.00280i
\(376\) 4195.73 0.575474
\(377\) 0 0
\(378\) 6865.58 0.934199
\(379\) −5909.48 10235.5i −0.800922 1.38724i −0.919010 0.394234i \(-0.871010\pi\)
0.118088 0.993003i \(-0.462323\pi\)
\(380\) −127.462 220.770i −0.0172070 0.0298034i
\(381\) 3905.24 6764.07i 0.525121 0.909537i
\(382\) −7817.39 −1.04705
\(383\) 3625.40 6279.38i 0.483680 0.837758i −0.516145 0.856501i \(-0.672633\pi\)
0.999824 + 0.0187436i \(0.00596662\pi\)
\(384\) 375.389 650.194i 0.0498867 0.0864064i
\(385\) 15919.5 2.10736
\(386\) 2119.33 3670.79i 0.279459 0.484036i
\(387\) 853.773 + 1478.78i 0.112144 + 0.194239i
\(388\) −275.032 476.370i −0.0359862 0.0623299i
\(389\) −9331.29 −1.21623 −0.608117 0.793847i \(-0.708075\pi\)
−0.608117 + 0.793847i \(0.708075\pi\)
\(390\) 0 0
\(391\) 34.0054 0.00439828
\(392\) 2195.78 + 3803.21i 0.282918 + 0.490028i
\(393\) −763.617 1322.62i −0.0980138 0.169765i
\(394\) −3110.50 + 5387.54i −0.397728 + 0.688885i
\(395\) 287.478 0.0366191
\(396\) −726.417 + 1258.19i −0.0921814 + 0.159663i
\(397\) −3847.13 + 6663.42i −0.486352 + 0.842386i −0.999877 0.0156884i \(-0.995006\pi\)
0.513525 + 0.858075i \(0.328339\pi\)
\(398\) 981.946 0.123670
\(399\) −513.740 + 889.824i −0.0644591 + 0.111646i
\(400\) 55.5342 + 96.1881i 0.00694178 + 0.0120235i
\(401\) 928.729 + 1608.61i 0.115657 + 0.200324i 0.918042 0.396483i \(-0.129769\pi\)
−0.802385 + 0.596807i \(0.796436\pi\)
\(402\) −6071.03 −0.753223
\(403\) 0 0
\(404\) −3538.78 −0.435794
\(405\) 4748.66 + 8224.93i 0.582625 + 1.00914i
\(406\) −317.006 549.071i −0.0387506 0.0671181i
\(407\) −9332.39 + 16164.2i −1.13658 + 1.96862i
\(408\) 285.123 0.0345973
\(409\) −269.235 + 466.328i −0.0325496 + 0.0563776i −0.881841 0.471546i \(-0.843696\pi\)
0.849292 + 0.527924i \(0.177029\pi\)
\(410\) −2915.30 + 5049.45i −0.351162 + 0.608231i
\(411\) −14147.2 −1.69788
\(412\) 832.466 1441.87i 0.0995453 0.172417i
\(413\) −2134.51 3697.08i −0.254316 0.440488i
\(414\) −41.4335 71.7649i −0.00491871 0.00851945i
\(415\) 12464.4 1.47434
\(416\) 0 0
\(417\) −2392.70 −0.280985
\(418\) 287.749 + 498.396i 0.0336705 + 0.0583190i
\(419\) −2418.69 4189.30i −0.282007 0.488450i 0.689872 0.723931i \(-0.257667\pi\)
−0.971879 + 0.235481i \(0.924333\pi\)
\(420\) −3806.71 + 6593.41i −0.442258 + 0.766013i
\(421\) 1392.34 0.161184 0.0805918 0.996747i \(-0.474319\pi\)
0.0805918 + 0.996747i \(0.474319\pi\)
\(422\) −603.268 + 1044.89i −0.0695891 + 0.120532i
\(423\) 1941.47 3362.73i 0.223162 0.386528i
\(424\) 2198.92 0.251861
\(425\) −21.0902 + 36.5294i −0.00240712 + 0.00416926i
\(426\) 847.889 + 1468.59i 0.0964328 + 0.167026i
\(427\) −8402.57 14553.7i −0.952292 1.64942i
\(428\) 1692.70 0.191167
\(429\) 0 0
\(430\) 5011.94 0.562087
\(431\) 3953.78 + 6848.14i 0.441872 + 0.765344i 0.997828 0.0658670i \(-0.0209813\pi\)
−0.555957 + 0.831211i \(0.687648\pi\)
\(432\) 919.534 + 1592.68i 0.102410 + 0.177379i
\(433\) −4816.28 + 8342.04i −0.534539 + 0.925850i 0.464646 + 0.885497i \(0.346182\pi\)
−0.999185 + 0.0403530i \(0.987152\pi\)
\(434\) 18921.0 2.09271
\(435\) 338.235 585.841i 0.0372808 0.0645722i
\(436\) −1903.26 + 3296.54i −0.209059 + 0.362100i
\(437\) −32.8253 −0.00359325
\(438\) 1179.06 2042.20i 0.128625 0.222785i
\(439\) 323.735 + 560.725i 0.0351959 + 0.0609611i 0.883087 0.469210i \(-0.155461\pi\)
−0.847891 + 0.530171i \(0.822128\pi\)
\(440\) 2132.16 + 3693.01i 0.231015 + 0.400130i
\(441\) 4064.19 0.438850
\(442\) 0 0
\(443\) 16862.3 1.80847 0.904233 0.427039i \(-0.140443\pi\)
0.904233 + 0.427039i \(0.140443\pi\)
\(444\) −4463.17 7730.43i −0.477055 0.826284i
\(445\) −3606.41 6246.48i −0.384180 0.665419i
\(446\) 3135.14 5430.22i 0.332855 0.576521i
\(447\) 1731.30 0.183194
\(448\) −955.695 + 1655.31i −0.100786 + 0.174567i
\(449\) 6240.44 10808.8i 0.655912 1.13607i −0.325752 0.945455i \(-0.605617\pi\)
0.981664 0.190618i \(-0.0610493\pi\)
\(450\) 102.789 0.0107678
\(451\) 6581.39 11399.3i 0.687152 1.19018i
\(452\) 1505.57 + 2607.72i 0.156672 + 0.271364i
\(453\) 6120.90 + 10601.7i 0.634845 + 1.09958i
\(454\) 3226.15 0.333504
\(455\) 0 0
\(456\) −275.229 −0.0282649
\(457\) 6268.52 + 10857.4i 0.641639 + 1.11135i 0.985067 + 0.172172i \(0.0550785\pi\)
−0.343428 + 0.939179i \(0.611588\pi\)
\(458\) 6156.40 + 10663.2i 0.628100 + 1.08790i
\(459\) −349.212 + 604.852i −0.0355115 + 0.0615078i
\(460\) −243.229 −0.0246535
\(461\) 726.957 1259.13i 0.0734442 0.127209i −0.826964 0.562254i \(-0.809934\pi\)
0.900409 + 0.435045i \(0.143268\pi\)
\(462\) 8593.76 14884.8i 0.865406 1.49893i
\(463\) 7154.47 0.718135 0.359068 0.933312i \(-0.383095\pi\)
0.359068 + 0.933312i \(0.383095\pi\)
\(464\) 84.9158 147.079i 0.00849595 0.0147154i
\(465\) 10094.1 + 17483.4i 1.00667 + 1.74360i
\(466\) −3350.07 5802.50i −0.333024 0.576814i
\(467\) −5823.27 −0.577021 −0.288510 0.957477i \(-0.593160\pi\)
−0.288510 + 0.957477i \(0.593160\pi\)
\(468\) 0 0
\(469\) 15456.1 1.52174
\(470\) −5698.56 9870.20i −0.559266 0.968677i
\(471\) −1635.03 2831.96i −0.159954 0.277048i
\(472\) 571.767 990.330i 0.0557579 0.0965755i
\(473\) −11314.6 −1.09989
\(474\) 155.188 268.793i 0.0150380 0.0260466i
\(475\) 20.3584 35.2617i 0.00196654 0.00340615i
\(476\) −725.888 −0.0698971
\(477\) 1017.50 1762.36i 0.0976690 0.169168i
\(478\) 632.554 + 1095.62i 0.0605279 + 0.104837i
\(479\) 1460.09 + 2528.94i 0.139276 + 0.241233i 0.927223 0.374511i \(-0.122189\pi\)
−0.787947 + 0.615743i \(0.788856\pi\)
\(480\) −2039.39 −0.193927
\(481\) 0 0
\(482\) 3008.47 0.284299
\(483\) 490.172 + 849.003i 0.0461772 + 0.0799813i
\(484\) −2151.42 3726.36i −0.202049 0.349959i
\(485\) −747.088 + 1293.99i −0.0699454 + 0.121149i
\(486\) 4046.96 0.377723
\(487\) −1681.12 + 2911.79i −0.156425 + 0.270936i −0.933577 0.358377i \(-0.883330\pi\)
0.777152 + 0.629313i \(0.216664\pi\)
\(488\) 2250.78 3898.46i 0.208787 0.361629i
\(489\) 7569.24 0.699985
\(490\) 5964.55 10330.9i 0.549900 0.952454i
\(491\) −7434.83 12877.5i −0.683359 1.18361i −0.973950 0.226764i \(-0.927185\pi\)
0.290591 0.956847i \(-0.406148\pi\)
\(492\) 3147.51 + 5451.65i 0.288416 + 0.499552i
\(493\) 64.4970 0.00589209
\(494\) 0 0
\(495\) 3946.43 0.358341
\(496\) 2534.17 + 4389.31i 0.229410 + 0.397350i
\(497\) −2158.62 3738.84i −0.194824 0.337444i
\(498\) 6728.60 11654.3i 0.605453 1.04868i
\(499\) 18693.3 1.67701 0.838503 0.544896i \(-0.183431\pi\)
0.838503 + 0.544896i \(0.183431\pi\)
\(500\) 2867.22 4966.16i 0.256452 0.444187i
\(501\) 7370.74 12766.5i 0.657287 1.13845i
\(502\) −2073.54 −0.184356
\(503\) −7359.24 + 12746.6i −0.652350 + 1.12990i 0.330201 + 0.943911i \(0.392884\pi\)
−0.982551 + 0.185993i \(0.940450\pi\)
\(504\) 884.450 + 1531.91i 0.0781677 + 0.135390i
\(505\) 4806.31 + 8324.77i 0.423521 + 0.733559i
\(506\) 549.097 0.0482418
\(507\) 0 0
\(508\) −5326.42 −0.465200
\(509\) 7939.46 + 13751.6i 0.691376 + 1.19750i 0.971387 + 0.237502i \(0.0763286\pi\)
−0.280011 + 0.959997i \(0.590338\pi\)
\(510\) −387.249 670.736i −0.0336229 0.0582366i
\(511\) −3001.75 + 5199.18i −0.259862 + 0.450094i
\(512\) −512.000 −0.0441942
\(513\) 337.093 583.863i 0.0290118 0.0502498i
\(514\) 504.904 874.520i 0.0433276 0.0750455i
\(515\) −4522.56 −0.386967
\(516\) 2705.58 4686.20i 0.230826 0.399803i
\(517\) 12864.7 + 22282.3i 1.09437 + 1.89550i
\(518\) 11362.7 + 19680.7i 0.963797 + 1.66935i
\(519\) −19945.7 −1.68693
\(520\) 0 0
\(521\) −9618.86 −0.808848 −0.404424 0.914572i \(-0.632528\pi\)
−0.404424 + 0.914572i \(0.632528\pi\)
\(522\) −78.5856 136.114i −0.00658927 0.0114129i
\(523\) 5177.94 + 8968.45i 0.432917 + 0.749834i 0.997123 0.0758002i \(-0.0241511\pi\)
−0.564206 + 0.825634i \(0.690818\pi\)
\(524\) −520.755 + 901.975i −0.0434147 + 0.0751965i
\(525\) −1216.02 −0.101089
\(526\) −169.322 + 293.275i −0.0140358 + 0.0243106i
\(527\) −962.401 + 1666.93i −0.0795500 + 0.137785i
\(528\) 4603.98 0.379475
\(529\) 6067.84 10509.8i 0.498713 0.863796i
\(530\) −2986.54 5172.84i −0.244768 0.423950i
\(531\) −529.143 916.503i −0.0432446 0.0749018i
\(532\) 700.699 0.0571036
\(533\) 0 0
\(534\) −7787.33 −0.631069
\(535\) −2298.99 3981.97i −0.185783 0.321786i
\(536\) 2070.10 + 3585.51i 0.166818 + 0.288937i
\(537\) 4605.04 7976.16i 0.370060 0.640962i
\(538\) −3084.07 −0.247144
\(539\) −13465.1 + 23322.3i −1.07604 + 1.86375i
\(540\) 2497.79 4326.30i 0.199051 0.344767i
\(541\) −14130.6 −1.12296 −0.561479 0.827491i \(-0.689768\pi\)
−0.561479 + 0.827491i \(0.689768\pi\)
\(542\) 1179.36 2042.70i 0.0934643 0.161885i
\(543\) −8569.42 14842.7i −0.677254 1.17304i
\(544\) −97.2211 168.392i −0.00766236 0.0132716i
\(545\) 10339.9 0.812684
\(546\) 0 0
\(547\) 6505.59 0.508517 0.254259 0.967136i \(-0.418169\pi\)
0.254259 + 0.967136i \(0.418169\pi\)
\(548\) 4823.89 + 8355.23i 0.376034 + 0.651310i
\(549\) −2082.99 3607.84i −0.161930 0.280472i
\(550\) −340.551 + 589.852i −0.0264021 + 0.0457298i
\(551\) −62.2588 −0.00481364
\(552\) −131.301 + 227.421i −0.0101242 + 0.0175356i
\(553\) −395.089 + 684.314i −0.0303814 + 0.0526221i
\(554\) −7811.80 −0.599082
\(555\) −12123.6 + 20998.7i −0.927239 + 1.60603i
\(556\) 815.860 + 1413.11i 0.0622305 + 0.107786i
\(557\) −9162.49 15869.9i −0.696996 1.20723i −0.969503 0.245079i \(-0.921186\pi\)
0.272507 0.962154i \(-0.412147\pi\)
\(558\) 4690.50 0.355851
\(559\) 0 0
\(560\) 5192.03 0.391792
\(561\) 874.228 + 1514.21i 0.0657931 + 0.113957i
\(562\) −58.9976 102.187i −0.00442822 0.00766991i
\(563\) −12087.1 + 20935.5i −0.904815 + 1.56719i −0.0836495 + 0.996495i \(0.526658\pi\)
−0.821165 + 0.570690i \(0.806676\pi\)
\(564\) −12304.9 −0.918672
\(565\) 4089.67 7083.51i 0.304520 0.527443i
\(566\) 4695.58 8132.99i 0.348710 0.603984i
\(567\) −26104.9 −1.93352
\(568\) 578.225 1001.52i 0.0427144 0.0739835i
\(569\) −4816.74 8342.84i −0.354883 0.614675i 0.632215 0.774793i \(-0.282146\pi\)
−0.987098 + 0.160118i \(0.948813\pi\)
\(570\) 373.811 + 647.460i 0.0274688 + 0.0475774i
\(571\) −8221.17 −0.602531 −0.301266 0.953540i \(-0.597409\pi\)
−0.301266 + 0.953540i \(0.597409\pi\)
\(572\) 0 0
\(573\) 22926.3 1.67148
\(574\) −8013.18 13879.2i −0.582689 1.00925i
\(575\) −19.4244 33.6441i −0.00140879 0.00244010i
\(576\) −236.916 + 410.350i −0.0171380 + 0.0296839i
\(577\) 7986.09 0.576196 0.288098 0.957601i \(-0.406977\pi\)
0.288098 + 0.957601i \(0.406977\pi\)
\(578\) −4876.08 + 8445.62i −0.350896 + 0.607770i
\(579\) −6215.42 + 10765.4i −0.446121 + 0.772704i
\(580\) −461.325 −0.0330267
\(581\) −17130.2 + 29670.3i −1.22320 + 2.11865i
\(582\) 806.595 + 1397.06i 0.0574475 + 0.0995020i
\(583\) 6742.21 + 11677.8i 0.478960 + 0.829583i
\(584\) −1608.14 −0.113948
\(585\) 0 0
\(586\) −16237.6 −1.14466
\(587\) 3722.38 + 6447.35i 0.261736 + 0.453340i 0.966703 0.255900i \(-0.0823717\pi\)
−0.704967 + 0.709240i \(0.749038\pi\)
\(588\) −6439.64 11153.8i −0.451643 0.782269i
\(589\) 929.004 1609.08i 0.0649897 0.112565i
\(590\) −3106.26 −0.216750
\(591\) 9122.26 15800.2i 0.634923 1.09972i
\(592\) −3043.69 + 5271.83i −0.211309 + 0.365998i
\(593\) 6806.49 0.471347 0.235674 0.971832i \(-0.424270\pi\)
0.235674 + 0.971832i \(0.424270\pi\)
\(594\) −5638.84 + 9766.76i −0.389502 + 0.674638i
\(595\) 985.889 + 1707.61i 0.0679286 + 0.117656i
\(596\) −590.337 1022.49i −0.0405724 0.0702734i
\(597\) −2879.78 −0.197423
\(598\) 0 0
\(599\) 22251.5 1.51782 0.758909 0.651196i \(-0.225733\pi\)
0.758909 + 0.651196i \(0.225733\pi\)
\(600\) −162.867 282.094i −0.0110817 0.0191941i
\(601\) 10608.1 + 18373.7i 0.719988 + 1.24706i 0.961004 + 0.276535i \(0.0891862\pi\)
−0.241016 + 0.970521i \(0.577480\pi\)
\(602\) −6888.07 + 11930.5i −0.466340 + 0.807724i
\(603\) 3831.55 0.258761
\(604\) 4174.20 7229.93i 0.281202 0.487055i
\(605\) −5844.04 + 10122.2i −0.392717 + 0.680206i
\(606\) 10378.3 0.695691
\(607\) 8895.83 15408.0i 0.594844 1.03030i −0.398724 0.917071i \(-0.630547\pi\)
0.993569 0.113230i \(-0.0361197\pi\)
\(608\) 93.8474 + 162.548i 0.00625989 + 0.0108424i
\(609\) 929.694 + 1610.28i 0.0618606 + 0.107146i
\(610\) −12227.9 −0.811626
\(611\) 0 0
\(612\) −179.947 −0.0118855
\(613\) −5487.29 9504.27i −0.361549 0.626221i 0.626667 0.779287i \(-0.284419\pi\)
−0.988216 + 0.153066i \(0.951085\pi\)
\(614\) 1072.04 + 1856.83i 0.0704626 + 0.122045i
\(615\) 8549.80 14808.7i 0.560587 0.970965i
\(616\) −11721.2 −0.766655
\(617\) −1530.46 + 2650.84i −0.0998609 + 0.172964i −0.911627 0.411019i \(-0.865173\pi\)
0.811766 + 0.583983i \(0.198506\pi\)
\(618\) −2441.40 + 4228.62i −0.158912 + 0.275243i
\(619\) 8387.51 0.544625 0.272312 0.962209i \(-0.412212\pi\)
0.272312 + 0.962209i \(0.412212\pi\)
\(620\) 6883.73 11923.0i 0.445899 0.772319i
\(621\) −321.629 557.078i −0.0207835 0.0359980i
\(622\) −4528.41 7843.43i −0.291917 0.505616i
\(623\) 19825.6 1.27495
\(624\) 0 0
\(625\) −14709.1 −0.941382
\(626\) −5396.13 9346.37i −0.344525 0.596735i
\(627\) −843.890 1461.66i −0.0537508 0.0930990i
\(628\) −1115.02 + 1931.28i −0.0708508 + 0.122717i
\(629\) −2311.81 −0.146547
\(630\) 2402.49 4161.23i 0.151932 0.263155i
\(631\) −13105.5 + 22699.4i −0.826818 + 1.43209i 0.0737032 + 0.997280i \(0.476518\pi\)
−0.900522 + 0.434811i \(0.856815\pi\)
\(632\) −211.663 −0.0133220
\(633\) 1769.22 3064.38i 0.111090 0.192414i
\(634\) −8222.40 14241.6i −0.515068 0.892125i
\(635\) 7234.25 + 12530.1i 0.452098 + 0.783057i
\(636\) −6448.85 −0.402065
\(637\) 0 0
\(638\) 1041.46 0.0646263
\(639\) −535.120 926.855i −0.0331283 0.0573800i
\(640\) 695.389 + 1204.45i 0.0429495 + 0.0743907i
\(641\) 12229.5 21182.1i 0.753565 1.30521i −0.192520 0.981293i \(-0.561666\pi\)
0.946085 0.323919i \(-0.105001\pi\)
\(642\) −4964.23 −0.305175
\(643\) 14490.9 25099.0i 0.888750 1.53936i 0.0473946 0.998876i \(-0.484908\pi\)
0.841355 0.540483i \(-0.181758\pi\)
\(644\) 334.277 578.985i 0.0204540 0.0354273i
\(645\) −14698.7 −0.897302
\(646\) −35.6404 + 61.7310i −0.00217067 + 0.00375971i
\(647\) 4423.15 + 7661.11i 0.268766 + 0.465517i 0.968544 0.248844i \(-0.0800507\pi\)
−0.699777 + 0.714361i \(0.746717\pi\)
\(648\) −3496.34 6055.83i −0.211958 0.367123i
\(649\) 7012.47 0.424135
\(650\) 0 0
\(651\) −55490.3 −3.34076
\(652\) −2580.95 4470.34i −0.155027 0.268515i
\(653\) −13153.7 22782.9i −0.788275 1.36533i −0.927023 0.375005i \(-0.877641\pi\)
0.138748 0.990328i \(-0.455692\pi\)
\(654\) 5581.75 9667.87i 0.333736 0.578048i
\(655\) 2829.12 0.168768
\(656\) 2146.47 3717.80i 0.127753 0.221274i
\(657\) −744.131 + 1288.87i −0.0441877 + 0.0765353i
\(658\) 31326.8 1.85600
\(659\) 1653.40 2863.78i 0.0977352 0.169282i −0.813012 0.582247i \(-0.802174\pi\)
0.910747 + 0.412965i \(0.135507\pi\)
\(660\) −6253.05 10830.6i −0.368787 0.638758i
\(661\) −11801.3 20440.5i −0.694432 1.20279i −0.970372 0.241616i \(-0.922323\pi\)
0.275940 0.961175i \(-0.411011\pi\)
\(662\) −1216.71 −0.0714332
\(663\) 0 0
\(664\) −9177.25 −0.536365
\(665\) −951.677 1648.35i −0.0554954 0.0961208i
\(666\) 2816.79 + 4878.83i 0.163887 + 0.283860i
\(667\) −29.7013 + 51.4442i −0.00172420 + 0.00298640i
\(668\) −10053.1 −0.582284
\(669\) −9194.51 + 15925.4i −0.531361 + 0.920344i
\(670\) 5623.14 9739.56i 0.324240 0.561600i
\(671\) 27604.8 1.58818
\(672\) 2802.79 4854.58i 0.160893 0.278675i
\(673\) 1887.77 + 3269.72i 0.108125 + 0.187278i 0.915011 0.403429i \(-0.132182\pi\)
−0.806886 + 0.590708i \(0.798849\pi\)
\(674\) −8808.73 15257.2i −0.503412 0.871935i
\(675\) 797.901 0.0454981
\(676\) 0 0
\(677\) −11395.4 −0.646916 −0.323458 0.946242i \(-0.604845\pi\)
−0.323458 + 0.946242i \(0.604845\pi\)
\(678\) −4415.42 7647.73i −0.250108 0.433199i
\(679\) −2053.49 3556.75i −0.116062 0.201024i
\(680\) −264.088 + 457.414i −0.0148931 + 0.0257956i
\(681\) −9461.42 −0.532397
\(682\) −15540.2 + 26916.5i −0.872531 + 1.51127i
\(683\) 118.213 204.751i 0.00662269 0.0114708i −0.862695 0.505724i \(-0.831225\pi\)
0.869318 + 0.494254i \(0.164559\pi\)
\(684\) 173.703 0.00971006
\(685\) 13103.5 22695.9i 0.730887 1.26593i
\(686\) 6150.66 + 10653.3i 0.342323 + 0.592920i
\(687\) −18055.1 31272.3i −1.00268 1.73670i
\(688\) −3690.18 −0.204487
\(689\) 0 0
\(690\) 713.325 0.0393563
\(691\) 4720.82 + 8176.70i 0.259897 + 0.450154i 0.966214 0.257741i \(-0.0829782\pi\)
−0.706317 + 0.707895i \(0.749645\pi\)
\(692\) 6801.06 + 11779.8i 0.373609 + 0.647110i
\(693\) −5423.69 + 9394.11i −0.297300 + 0.514939i
\(694\) 14332.2 0.783922
\(695\) 2216.17 3838.53i 0.120956 0.209502i
\(696\) −249.035 + 431.342i −0.0135627 + 0.0234913i
\(697\) 1630.33 0.0885986
\(698\) 1884.98 3264.88i 0.102217 0.177045i
\(699\) 9824.86 + 17017.2i 0.531631 + 0.920812i
\(700\) 414.639 + 718.176i 0.0223884 + 0.0387778i
\(701\) −145.814 −0.00785638 −0.00392819 0.999992i \(-0.501250\pi\)
−0.00392819 + 0.999992i \(0.501250\pi\)
\(702\) 0 0
\(703\) 2231.58 0.119724
\(704\) −1569.86 2719.08i −0.0840432 0.145567i
\(705\) 16712.3 + 28946.6i 0.892799 + 1.54637i
\(706\) 11954.0 20705.0i 0.637246 1.10374i
\(707\) −26421.8 −1.40551
\(708\) −1676.84 + 2904.37i −0.0890105 + 0.154171i
\(709\) −5445.77 + 9432.35i −0.288463 + 0.499632i −0.973443 0.228929i \(-0.926478\pi\)
0.684980 + 0.728562i \(0.259811\pi\)
\(710\) −3141.34 −0.166046
\(711\) −97.9422 + 169.641i −0.00516613 + 0.00894800i
\(712\) 2655.32 + 4599.14i 0.139764 + 0.242079i
\(713\) −886.386 1535.26i −0.0465574 0.0806397i
\(714\) 2128.83 0.111582
\(715\) 0 0
\(716\) −6280.89 −0.327832
\(717\) −1855.11 3213.14i −0.0966253 0.167360i
\(718\) −9068.77 15707.6i −0.471370 0.816436i
\(719\) 3447.89 5971.91i 0.178838 0.309756i −0.762645 0.646817i \(-0.776100\pi\)
0.941483 + 0.337061i \(0.109433\pi\)
\(720\) 1287.10 0.0666214
\(721\) 6215.49 10765.5i 0.321050 0.556075i
\(722\) −6824.60 + 11820.5i −0.351780 + 0.609301i
\(723\) −8823.04 −0.453848
\(724\) −5843.99 + 10122.1i −0.299986 + 0.519592i
\(725\) −36.8417 63.8117i −0.00188726 0.00326884i
\(726\) 6309.53 + 10928.4i 0.322546 + 0.558666i
\(727\) 12841.0 0.655086 0.327543 0.944836i \(-0.393779\pi\)
0.327543 + 0.944836i \(0.393779\pi\)
\(728\) 0 0
\(729\) 11731.6 0.596029
\(730\) 2184.15 + 3783.07i 0.110739 + 0.191805i
\(731\) −700.711 1213.67i −0.0354538 0.0614078i
\(732\) −6600.93 + 11433.1i −0.333302 + 0.577296i
\(733\) 26005.8 1.31043 0.655216 0.755441i \(-0.272577\pi\)
0.655216 + 0.755441i \(0.272577\pi\)
\(734\) 7844.12 13586.4i 0.394458 0.683220i
\(735\) −17492.4 + 30297.7i −0.877846 + 1.52047i
\(736\) 179.084 0.00896893
\(737\) −12694.4 + 21987.3i −0.634470 + 1.09893i
\(738\) −1986.46 3440.65i −0.0990821 0.171615i
\(739\) −8885.01 15389.3i −0.442274 0.766041i 0.555584 0.831460i \(-0.312495\pi\)
−0.997858 + 0.0654195i \(0.979161\pi\)
\(740\) 16535.6 0.821432
\(741\) 0 0
\(742\) 16418.0 0.812295
\(743\) −14420.9 24977.7i −0.712046 1.23330i −0.964088 0.265583i \(-0.914436\pi\)
0.252043 0.967716i \(-0.418898\pi\)
\(744\) −7432.03 12872.7i −0.366225 0.634321i
\(745\) −1603.57 + 2777.46i −0.0788594 + 0.136588i
\(746\) −2895.38 −0.142101
\(747\) −4246.56 + 7355.25i −0.207996 + 0.360260i
\(748\) 596.187 1032.63i 0.0291427 0.0504767i
\(749\) 12638.3 0.616547
\(750\) −8408.77 + 14564.4i −0.409393 + 0.709090i
\(751\) 4216.12 + 7302.54i 0.204858 + 0.354825i 0.950088 0.311983i \(-0.100993\pi\)
−0.745229 + 0.666808i \(0.767660\pi\)
\(752\) 4195.73 + 7267.21i 0.203461 + 0.352404i
\(753\) 6081.12 0.294301
\(754\) 0 0
\(755\) −22677.3 −1.09313
\(756\) 6865.58 + 11891.5i 0.330289 + 0.572078i
\(757\) −19480.8 33741.7i −0.935325 1.62003i −0.774053 0.633121i \(-0.781774\pi\)
−0.161272 0.986910i \(-0.551560\pi\)
\(758\) 11819.0 20471.0i 0.566337 0.980925i
\(759\) −1610.35 −0.0770120
\(760\) 254.924 441.541i 0.0121672 0.0210742i
\(761\) 4012.86 6950.47i 0.191151 0.331083i −0.754481 0.656322i \(-0.772111\pi\)
0.945632 + 0.325239i \(0.105445\pi\)
\(762\) 15620.9 0.742634
\(763\) −14210.4 + 24613.2i −0.674249 + 1.16783i
\(764\) −7817.39 13540.1i −0.370188 0.641184i
\(765\) 244.401 + 423.315i 0.0115508 + 0.0200065i
\(766\) 14501.6 0.684026
\(767\) 0 0
\(768\) 1501.56 0.0705505
\(769\) 11295.1 + 19563.8i 0.529666 + 0.917408i 0.999401 + 0.0346010i \(0.0110161\pi\)
−0.469735 + 0.882807i \(0.655651\pi\)
\(770\) 15919.5 + 27573.4i 0.745063 + 1.29049i
\(771\) −1480.75 + 2564.73i −0.0691671 + 0.119801i
\(772\) 8477.32 0.395214
\(773\) −20460.0 + 35437.7i −0.951997 + 1.64891i −0.210901 + 0.977508i \(0.567640\pi\)
−0.741096 + 0.671399i \(0.765694\pi\)
\(774\) −1707.55 + 2957.55i −0.0792977 + 0.137348i
\(775\) 2198.96 0.101921
\(776\) 550.065 952.740i 0.0254461 0.0440739i
\(777\) −33323.6 57718.2i −1.53858 2.66490i
\(778\) −9331.29 16162.3i −0.430004 0.744788i
\(779\) −1573.76 −0.0723821
\(780\) 0 0
\(781\) 7091.67 0.324917
\(782\) 34.0054 + 58.8991i 0.00155503 + 0.00269338i
\(783\) −610.024 1056.59i −0.0278422 0.0482242i
\(784\) −4391.57 + 7606.41i −0.200053 + 0.346502i
\(785\) 6057.63 0.275422
\(786\) 1527.23 2645.25i 0.0693062 0.120042i
\(787\) 7807.21 13522.5i 0.353618 0.612484i −0.633263 0.773937i \(-0.718285\pi\)
0.986880 + 0.161453i \(0.0516181\pi\)
\(788\) −12442.0 −0.562472
\(789\) 496.577 860.097i 0.0224063 0.0388089i
\(790\) 287.478 + 497.926i 0.0129468 + 0.0224246i
\(791\) 11241.1 + 19470.2i 0.505294 + 0.875195i
\(792\) −2905.67 −0.130364
\(793\) 0 0
\(794\) −15388.5 −0.687806
\(795\) 8758.71 + 15170.5i 0.390742 + 0.676784i
\(796\) 981.946 + 1700.78i 0.0437238 + 0.0757319i
\(797\) −8934.79 + 15475.5i −0.397097 + 0.687793i −0.993366 0.114992i \(-0.963316\pi\)
0.596269 + 0.802785i \(0.296649\pi\)
\(798\) −2054.96 −0.0911589
\(799\) −1593.41 + 2759.87i −0.0705517 + 0.122199i
\(800\) −111.068 + 192.376i −0.00490858 + 0.00850191i
\(801\) 4914.74 0.216796
\(802\) −1857.46 + 3217.21i −0.0817819 + 0.141650i
\(803\) −4930.80 8540.39i −0.216692 0.375322i
\(804\) −6071.03 10515.3i −0.266304 0.461253i
\(805\) −1816.04 −0.0795116
\(806\) 0 0
\(807\) 9044.74 0.394535
\(808\) −3538.78 6129.34i −0.154076 0.266868i
\(809\) 4056.59 + 7026.23i 0.176294 + 0.305351i 0.940608 0.339493i \(-0.110256\pi\)
−0.764314 + 0.644844i \(0.776922\pi\)
\(810\) −9497.33 + 16449.9i −0.411978 + 0.713567i
\(811\) −22750.9 −0.985073 −0.492536 0.870292i \(-0.663930\pi\)
−0.492536 + 0.870292i \(0.663930\pi\)
\(812\) 634.013 1098.14i 0.0274008 0.0474597i
\(813\) −3458.73 + 5990.70i −0.149204 + 0.258429i
\(814\) −37329.6 −1.60737
\(815\) −7010.81 + 12143.1i −0.301323 + 0.521906i
\(816\) 285.123 + 493.848i 0.0122320 + 0.0211864i
\(817\) 676.395 + 1171.55i 0.0289646 + 0.0501681i
\(818\) −1076.94 −0.0460322
\(819\) 0 0
\(820\) −11661.2 −0.496618
\(821\) −2997.11 5191.15i −0.127406 0.220673i 0.795265 0.606262i \(-0.207332\pi\)
−0.922671 + 0.385589i \(0.873998\pi\)
\(822\) −14147.2 24503.6i −0.600291 1.03974i
\(823\) 17094.1 29607.9i 0.724015 1.25403i −0.235363 0.971907i \(-0.575628\pi\)
0.959378 0.282123i \(-0.0910387\pi\)
\(824\) 3329.86 0.140778
\(825\) 998.745 1729.88i 0.0421477 0.0730019i
\(826\) 4269.02 7394.16i 0.179828 0.311472i
\(827\) −39546.0 −1.66282 −0.831409 0.555661i \(-0.812465\pi\)
−0.831409 + 0.555661i \(0.812465\pi\)
\(828\) 82.8669 143.530i 0.00347805 0.00602416i
\(829\) −12104.0 20964.7i −0.507104 0.878329i −0.999966 0.00822196i \(-0.997383\pi\)
0.492863 0.870107i \(-0.335950\pi\)
\(830\) 12464.4 + 21588.9i 0.521259 + 0.902847i
\(831\) 22909.9 0.956360
\(832\) 0 0
\(833\) −3335.57 −0.138740
\(834\) −2392.70 4144.27i −0.0993433 0.172068i
\(835\) 13653.9 + 23649.3i 0.565884 + 0.980140i
\(836\) −575.498 + 996.792i −0.0238086 + 0.0412378i
\(837\) 36410.2 1.50361
\(838\) 4837.38 8378.59i 0.199409 0.345386i
\(839\) 17071.8 29569.1i 0.702482 1.21673i −0.265111 0.964218i \(-0.585408\pi\)
0.967593 0.252516i \(-0.0812582\pi\)
\(840\) −15226.8 −0.625447
\(841\) 12138.2 21023.9i 0.497690 0.862025i
\(842\) 1392.34 + 2411.60i 0.0569870 + 0.0987043i
\(843\) 173.024 + 299.686i 0.00706911 + 0.0122441i
\(844\) −2413.07 −0.0984139
\(845\) 0 0
\(846\) 7765.89 0.315599
\(847\) −16063.3 27822.4i −0.651642 1.12868i
\(848\) 2198.92 + 3808.65i 0.0890464 + 0.154233i
\(849\) −13770.9 + 23851.9i −0.556673 + 0.964186i
\(850\) −84.3610 −0.00340419
\(851\) 1064.60 1843.95i 0.0428839 0.0742770i
\(852\) −1695.78 + 2937.17i −0.0681883 + 0.118106i
\(853\) −13008.1 −0.522145 −0.261072 0.965319i \(-0.584076\pi\)
−0.261072 + 0.965319i \(0.584076\pi\)
\(854\) 16805.1 29107.4i 0.673372 1.16632i
\(855\) −235.920 408.625i −0.00943659 0.0163447i
\(856\) 1692.70 + 2931.84i 0.0675879 + 0.117066i
\(857\) −35075.0 −1.39806 −0.699031 0.715091i \(-0.746385\pi\)
−0.699031 + 0.715091i \(0.746385\pi\)
\(858\) 0 0
\(859\) −2869.77 −0.113988 −0.0569939 0.998375i \(-0.518152\pi\)
−0.0569939 + 0.998375i \(0.518152\pi\)
\(860\) 5011.94 + 8680.94i 0.198728 + 0.344207i
\(861\) 23500.5 + 40704.0i 0.930191 + 1.61114i
\(862\) −7907.55 + 13696.3i −0.312450 + 0.541180i
\(863\) −29617.3 −1.16823 −0.584117 0.811670i \(-0.698559\pi\)
−0.584117 + 0.811670i \(0.698559\pi\)
\(864\) −1839.07 + 3185.36i −0.0724148 + 0.125426i
\(865\) 18474.1 31998.2i 0.726173 1.25777i
\(866\) −19265.1 −0.755953
\(867\) 14300.2 24768.7i 0.560163 0.970230i
\(868\) 18921.0 + 32772.2i 0.739886 + 1.28152i
\(869\) −648.989 1124.08i −0.0253342 0.0438802i
\(870\) 1352.94 0.0527230
\(871\) 0 0
\(872\) −7613.04 −0.295654
\(873\) −509.059 881.715i −0.0197354 0.0341828i
\(874\) −32.8253 56.8552i −0.00127040 0.00220041i
\(875\) 21407.7 37079.2i 0.827099 1.43258i
\(876\) 4716.25 0.181904
\(877\) −7675.09 + 13293.6i −0.295518 + 0.511852i −0.975105 0.221743i \(-0.928826\pi\)
0.679587 + 0.733595i \(0.262159\pi\)
\(878\) −647.469 + 1121.45i −0.0248873 + 0.0431060i
\(879\) 47620.6 1.82731
\(880\) −4264.32 + 7386.02i −0.163353 + 0.282935i
\(881\) −3181.94 5511.28i −0.121682 0.210760i 0.798749 0.601665i \(-0.205496\pi\)
−0.920431 + 0.390904i \(0.872162\pi\)
\(882\) 4064.19 + 7039.38i 0.155157 + 0.268739i
\(883\) −32249.9 −1.22910 −0.614550 0.788878i \(-0.710662\pi\)
−0.614550 + 0.788878i \(0.710662\pi\)
\(884\) 0 0
\(885\) 9109.81 0.346015
\(886\) 16862.3 + 29206.3i 0.639390 + 1.10746i
\(887\) −14244.7 24672.5i −0.539221 0.933959i −0.998946 0.0458972i \(-0.985385\pi\)
0.459725 0.888061i \(-0.347948\pi\)
\(888\) 8926.33 15460.9i 0.337329 0.584271i
\(889\) −39769.0 −1.50035
\(890\) 7212.81 12493.0i 0.271656 0.470522i
\(891\) 21440.5 37136.0i 0.806155 1.39630i
\(892\) 12540.6 0.470727
\(893\) 1538.12 2664.10i 0.0576384 0.0998327i
\(894\) 1731.30 + 2998.70i 0.0647688 + 0.112183i
\(895\) 8530.60 + 14775.4i 0.318599 + 0.551830i
\(896\) −3822.78 −0.142534
\(897\) 0 0
\(898\) 24961.8 0.927600
\(899\) −1681.18 2911.89i −0.0623698 0.108028i
\(900\) 102.789 + 178.035i 0.00380699 + 0.00659389i
\(901\) −835.085 + 1446.41i −0.0308776 + 0.0534816i
\(902\) 26325.5 0.971779
\(903\) 20200.8 34988.9i 0.744454 1.28943i
\(904\) −3011.13 + 5215.43i −0.110784 + 0.191884i
\(905\) 31748.8 1.16615
\(906\) −12241.8 + 21203.4i −0.448904 + 0.777524i
\(907\) −3592.78 6222.88i −0.131529 0.227814i 0.792737 0.609563i \(-0.208655\pi\)
−0.924266 + 0.381749i \(0.875322\pi\)
\(908\) 3226.15 + 5587.85i 0.117911 + 0.204228i
\(909\) −6549.94 −0.238997
\(910\) 0 0
\(911\) 27000.2 0.981949 0.490975 0.871174i \(-0.336641\pi\)
0.490975 + 0.871174i \(0.336641\pi\)
\(912\) −275.229 476.711i −0.00999314 0.0173086i
\(913\) −28138.7 48737.7i −1.02000 1.76668i
\(914\) −12537.0 + 21714.8i −0.453707 + 0.785844i
\(915\) 35861.1 1.29566
\(916\) −12312.8 + 21326.4i −0.444134 + 0.769262i
\(917\) −3888.15 + 6734.47i −0.140020 + 0.242521i
\(918\) −1396.85 −0.0502209
\(919\) −10592.5 + 18346.8i −0.380213 + 0.658548i −0.991092 0.133175i \(-0.957483\pi\)
0.610879 + 0.791724i \(0.290816\pi\)
\(920\) −243.229 421.285i −0.00871633 0.0150971i
\(921\) −3144.01 5445.58i −0.112485 0.194829i
\(922\) 2907.83 0.103866
\(923\) 0 0
\(924\) 34375.0 1.22387
\(925\) 1320.54 + 2287.24i 0.0469396 + 0.0813018i
\(926\) 7154.47 + 12391.9i 0.253899 + 0.439766i
\(927\) 1540.82 2668.77i 0.0545922 0.0945565i
\(928\) 339.663 0.0120151
\(929\) 12021.9 20822.5i 0.424570 0.735377i −0.571810 0.820386i \(-0.693759\pi\)
0.996380 + 0.0850093i \(0.0270920\pi\)
\(930\) −20188.1 + 34966.8i −0.711822 + 1.23291i
\(931\) 3219.82 0.113346
\(932\) 6700.14 11605.0i 0.235483 0.407869i
\(933\) 13280.6 + 23002.7i 0.466010 + 0.807153i
\(934\) −5823.27 10086.2i −0.204008 0.353352i
\(935\) −3238.92 −0.113288
\(936\) 0 0
\(937\) 6308.48 0.219946 0.109973 0.993935i \(-0.464924\pi\)
0.109973 + 0.993935i \(0.464924\pi\)
\(938\) 15456.1 + 26770.7i 0.538016 + 0.931872i
\(939\) 15825.4 + 27410.4i 0.549991 + 0.952613i
\(940\) 11397.1 19740.4i 0.395461 0.684958i
\(941\) −1549.84 −0.0536912 −0.0268456 0.999640i \(-0.508546\pi\)
−0.0268456 + 0.999640i \(0.508546\pi\)
\(942\) 3270.07 5663.92i 0.113105 0.195903i
\(943\) −750.780 + 1300.39i −0.0259266 + 0.0449062i
\(944\) 2287.07 0.0788535
\(945\) 18649.4 32301.7i 0.641974 1.11193i
\(946\) −11314.6 19597.5i −0.388869 0.673541i
\(947\) 6586.00 + 11407.3i 0.225994 + 0.391433i 0.956617 0.291348i \(-0.0941037\pi\)
−0.730623 + 0.682781i \(0.760770\pi\)
\(948\) 620.752 0.0212670
\(949\) 0 0
\(950\) 81.4335 0.00278111
\(951\) 24114.1 + 41766.8i 0.822243 + 1.42417i
\(952\) −725.888 1257.28i −0.0247124 0.0428031i
\(953\) −14012.7 + 24270.7i −0.476303 + 0.824980i −0.999631 0.0271505i \(-0.991357\pi\)
0.523329 + 0.852131i \(0.324690\pi\)
\(954\) 4070.00 0.138125
\(955\) −21234.9 + 36779.9i −0.719523 + 1.24625i
\(956\) −1265.11 + 2191.23i −0.0427997 + 0.0741312i
\(957\) −3054.31 −0.103168
\(958\) −2920.17 + 5057.89i −0.0984828 + 0.170577i
\(959\) 36017.0 + 62383.2i 1.21277 + 2.10058i
\(960\) −2039.39 3532.33i −0.0685636 0.118756i
\(961\) 70552.9 2.36826
\(962\) 0 0
\(963\) 3133.02 0.104839
\(964\) 3008.47 + 5210.83i 0.100515 + 0.174097i
\(965\) −11513.7 19942.4i −0.384083 0.665252i
\(966\) −980.344 + 1698.01i −0.0326522 + 0.0565553i
\(967\) 4250.06 0.141337 0.0706684 0.997500i \(-0.477487\pi\)
0.0706684 + 0.997500i \(0.477487\pi\)
\(968\) 4302.84 7452.73i 0.142870 0.247458i
\(969\) 104.524 181.040i 0.00346521 0.00600191i
\(970\) −2988.35 −0.0989177
\(971\) 2356.03 4080.76i 0.0778667 0.134869i −0.824463 0.565916i \(-0.808522\pi\)
0.902329 + 0.431047i \(0.141856\pi\)
\(972\) 4046.96 + 7009.53i 0.133545 + 0.231307i
\(973\) 6091.51 + 10550.8i 0.200704 + 0.347629i
\(974\) −6724.50 −0.221218
\(975\) 0 0
\(976\) 9003.12 0.295269
\(977\) −26478.0 45861.2i −0.867047 1.50177i −0.865000 0.501771i \(-0.832682\pi\)
−0.00204652 0.999998i \(-0.500651\pi\)
\(978\) 7569.24 + 13110.3i 0.247482 + 0.428652i
\(979\) −16283.1 + 28203.2i −0.531574 + 0.920714i
\(980\) 23858.2 0.777675
\(981\) −3522.75 + 6101.59i −0.114651 + 0.198582i
\(982\) 14869.7 25755.0i 0.483207 0.836940i
\(983\) 10772.6 0.349534 0.174767 0.984610i \(-0.444083\pi\)
0.174767 + 0.984610i \(0.444083\pi\)
\(984\) −6295.03 + 10903.3i −0.203941 + 0.353237i
\(985\) 16898.5 + 29269.1i 0.546631 + 0.946792i
\(986\) 64.4970 + 111.712i 0.00208317 + 0.00360815i
\(987\) −91873.1 −2.96287
\(988\) 0 0
\(989\) 1290.73 0.0414993
\(990\) 3946.43 + 6835.41i 0.126693 + 0.219438i
\(991\) −7696.24 13330.3i −0.246700 0.427296i 0.715909 0.698194i \(-0.246013\pi\)
−0.962608 + 0.270898i \(0.912679\pi\)
\(992\) −5068.34 + 8778.62i −0.162218 + 0.280969i
\(993\) 3568.28 0.114034
\(994\) 4317.24 7477.68i 0.137761 0.238609i
\(995\) 2667.32 4619.94i 0.0849848 0.147198i
\(996\) 26914.4 0.856240
\(997\) −860.917 + 1491.15i −0.0273475 + 0.0473673i −0.879375 0.476129i \(-0.842039\pi\)
0.852028 + 0.523497i \(0.175373\pi\)
\(998\) 18693.3 + 32377.7i 0.592911 + 1.02695i
\(999\) 21865.5 + 37872.1i 0.692486 + 1.19942i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.c.j.315.1 4
13.2 odd 12 338.4.b.e.337.4 4
13.3 even 3 338.4.a.g.1.2 2
13.4 even 6 26.4.c.b.9.1 yes 4
13.5 odd 4 338.4.e.f.23.3 8
13.6 odd 12 338.4.e.f.147.1 8
13.7 odd 12 338.4.e.f.147.3 8
13.8 odd 4 338.4.e.f.23.1 8
13.9 even 3 inner 338.4.c.j.191.1 4
13.10 even 6 338.4.a.h.1.2 2
13.11 odd 12 338.4.b.e.337.2 4
13.12 even 2 26.4.c.b.3.1 4
39.17 odd 6 234.4.h.h.217.2 4
39.38 odd 2 234.4.h.h.55.2 4
52.43 odd 6 208.4.i.d.113.2 4
52.51 odd 2 208.4.i.d.81.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.4.c.b.3.1 4 13.12 even 2
26.4.c.b.9.1 yes 4 13.4 even 6
208.4.i.d.81.2 4 52.51 odd 2
208.4.i.d.113.2 4 52.43 odd 6
234.4.h.h.55.2 4 39.38 odd 2
234.4.h.h.217.2 4 39.17 odd 6
338.4.a.g.1.2 2 13.3 even 3
338.4.a.h.1.2 2 13.10 even 6
338.4.b.e.337.2 4 13.11 odd 12
338.4.b.e.337.4 4 13.2 odd 12
338.4.c.j.191.1 4 13.9 even 3 inner
338.4.c.j.315.1 4 1.1 even 1 trivial
338.4.e.f.23.1 8 13.8 odd 4
338.4.e.f.23.3 8 13.5 odd 4
338.4.e.f.147.1 8 13.6 odd 12
338.4.e.f.147.3 8 13.7 odd 12