Properties

Label 338.4.c.j
Level $338$
Weight $4$
Character orbit 338.c
Analytic conductor $19.943$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,4,Mod(191,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.191"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,3,-8,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{217})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 55x^{2} + 54x + 2916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta_{2} q^{2} + (\beta_{2} + \beta_1) q^{3} + (4 \beta_{2} - 4) q^{4} + (\beta_{3} + 3) q^{5} + (2 \beta_{3} + 2 \beta_{2} + 2 \beta_1 - 4) q^{6} + ( - \beta_{3} + 23 \beta_{2} + \cdots - 22) q^{7}+ \cdots + (214 \beta_{3} - 1320) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 3 q^{3} - 8 q^{4} + 14 q^{5} - 6 q^{6} - 45 q^{7} - 32 q^{8} - 59 q^{9} + 14 q^{10} + 5 q^{11} - 24 q^{12} - 180 q^{14} - 98 q^{15} - 32 q^{16} + 130 q^{17} - 236 q^{18} + 3 q^{19} - 28 q^{20}+ \cdots - 4852 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 55x^{2} + 54x + 2916 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 55\nu^{2} - 55\nu + 2916 ) / 2970 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 109 ) / 55 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 54\beta_{2} + \beta _1 - 55 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 55\beta_{3} - 109 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(-1 + \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
191.1
−3.43273 + 5.94566i
3.93273 6.81169i
−3.43273 5.94566i
3.93273 + 6.81169i
1.00000 1.73205i −2.93273 + 5.07964i −2.00000 3.46410i 10.8655 5.86546 + 10.1593i −14.9327 25.8642i −8.00000 −3.70181 6.41172i 10.8655 18.8195i
191.2 1.00000 1.73205i 4.43273 7.67771i −2.00000 3.46410i −3.86546 −8.86546 15.3554i −7.56727 13.1069i −8.00000 −25.7982 44.6838i −3.86546 + 6.69517i
315.1 1.00000 + 1.73205i −2.93273 5.07964i −2.00000 + 3.46410i 10.8655 5.86546 10.1593i −14.9327 + 25.8642i −8.00000 −3.70181 + 6.41172i 10.8655 + 18.8195i
315.2 1.00000 + 1.73205i 4.43273 + 7.67771i −2.00000 + 3.46410i −3.86546 −8.86546 + 15.3554i −7.56727 + 13.1069i −8.00000 −25.7982 + 44.6838i −3.86546 6.69517i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.4.c.j 4
13.b even 2 1 26.4.c.b 4
13.c even 3 1 338.4.a.g 2
13.c even 3 1 inner 338.4.c.j 4
13.d odd 4 2 338.4.e.f 8
13.e even 6 1 26.4.c.b 4
13.e even 6 1 338.4.a.h 2
13.f odd 12 2 338.4.b.e 4
13.f odd 12 2 338.4.e.f 8
39.d odd 2 1 234.4.h.h 4
39.h odd 6 1 234.4.h.h 4
52.b odd 2 1 208.4.i.d 4
52.i odd 6 1 208.4.i.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.4.c.b 4 13.b even 2 1
26.4.c.b 4 13.e even 6 1
208.4.i.d 4 52.b odd 2 1
208.4.i.d 4 52.i odd 6 1
234.4.h.h 4 39.d odd 2 1
234.4.h.h 4 39.h odd 6 1
338.4.a.g 2 13.c even 3 1
338.4.a.h 2 13.e even 6 1
338.4.b.e 4 13.f odd 12 2
338.4.c.j 4 1.a even 1 1 trivial
338.4.c.j 4 13.c even 3 1 inner
338.4.e.f 8 13.d odd 4 2
338.4.e.f 8 13.f odd 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(338, [\chi])\):

\( T_{3}^{4} - 3T_{3}^{3} + 61T_{3}^{2} + 156T_{3} + 2704 \) Copy content Toggle raw display
\( T_{5}^{2} - 7T_{5} - 42 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} - 3 T^{3} + \cdots + 2704 \) Copy content Toggle raw display
$5$ \( (T^{2} - 7 T - 42)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 45 T^{3} + \cdots + 204304 \) Copy content Toggle raw display
$11$ \( T^{4} - 5 T^{3} + \cdots + 7033104 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 130 T^{3} + \cdots + 567009 \) Copy content Toggle raw display
$19$ \( T^{4} - 3 T^{3} + \cdots + 2704 \) Copy content Toggle raw display
$23$ \( T^{4} + 33 T^{3} + \cdots + 46656 \) Copy content Toggle raw display
$29$ \( T^{4} - 198 T^{3} + \cdots + 3956121 \) Copy content Toggle raw display
$31$ \( (T^{2} + 280 T - 11648)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 14965362889 \) Copy content Toggle raw display
$41$ \( T^{4} - 242 T^{3} + \cdots + 49829481 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 1007681536 \) Copy content Toggle raw display
$47$ \( (T^{2} + 224 T - 157584)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 535 T + 71502)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 1237069584 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 2639596129 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 45137551936 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 3764558736 \) Copy content Toggle raw display
$73$ \( (T^{2} - 623 T + 84826)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 760 T + 19408)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 1764 T + 707616)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 18913400676 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 10397065156 \) Copy content Toggle raw display
show more
show less