L(s) = 1 | + (1 + 1.73i)2-s + (−2.93 − 5.07i)3-s + (−1.99 + 3.46i)4-s + 10.8·5-s + (5.86 − 10.1i)6-s + (−14.9 + 25.8i)7-s − 7.99·8-s + (−3.70 + 6.41i)9-s + (10.8 + 18.8i)10-s + (−24.5 − 42.4i)11-s + 23.4·12-s − 59.7·14-s + (−31.8 − 55.1i)15-s + (−8 − 13.8i)16-s + (3.03 − 5.26i)17-s − 14.8·18-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.564 − 0.977i)3-s + (−0.249 + 0.433i)4-s + 0.971·5-s + (0.399 − 0.691i)6-s + (−0.806 + 1.39i)7-s − 0.353·8-s + (−0.137 + 0.237i)9-s + (0.343 + 0.595i)10-s + (−0.672 − 1.16i)11-s + 0.564·12-s − 1.14·14-s + (−0.548 − 0.950i)15-s + (−0.125 − 0.216i)16-s + (0.0433 − 0.0750i)17-s − 0.193·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.872 + 0.488i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.872 + 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.2380969588\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2380969588\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 - 1.73i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (2.93 + 5.07i)T + (-13.5 + 23.3i)T^{2} \) |
| 5 | \( 1 - 10.8T + 125T^{2} \) |
| 7 | \( 1 + (14.9 - 25.8i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (24.5 + 42.4i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 17 | \( 1 + (-3.03 + 5.26i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (2.93 - 5.07i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-2.79 - 4.84i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-5.30 - 9.19i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + 316.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (190. + 329. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + (-134. - 232. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-115. + 199. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + 524.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 274.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (71.4 - 123. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (281. - 487. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (258. + 448. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + (72.2 - 125. i)T + (-1.78e5 - 3.09e5i)T^{2} \) |
| 73 | \( 1 - 201.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 26.4T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.14e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + (331. + 574. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + (68.7 - 119. i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.91220472585469329144429544251, −9.519380819766701767328654019093, −8.843923490631660202295890088219, −7.64152286519531170867674569401, −6.50873849590743717405456883487, −5.81633801972284012353740012102, −5.45237054727967764258885953150, −3.27713157306936143394590979460, −2.01663497500217691048363983357, −0.07434961302924994174188643875,
1.81684475025820271169101308142, 3.43622758298676762927042929691, 4.48842527074818064723364852967, 5.28511266468266724697675899643, 6.44629408110649901874504304600, 7.54866616895277878277750652037, 9.427355842063341059790103251957, 9.919033881766998275637767289475, 10.45950858151188458253466587560, 11.13918090758007332818980474374