sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(338, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([2]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(315,338))
         
     
    
  \(\chi_{338}(191,\cdot)\)
  \(\chi_{338}(315,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\(171\) → \(e\left(\frac{1}{3}\right)\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |       
    
    
      | \( \chi_{ 338 }(315, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.gauss_sum(a)
         
     
    
    
        
        pari:znchargauss(g,chi,a)
         
     
    
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.kloosterman_sum(a,b)