Properties

Label 26.4.c.b.9.1
Level $26$
Weight $4$
Character 26.9
Analytic conductor $1.534$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [26,4,Mod(3,26)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(26, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("26.3"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 26.c (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.53404966015\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{217})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 55x^{2} + 54x + 2916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 9.1
Root \(-3.43273 + 5.94566i\) of defining polynomial
Character \(\chi\) \(=\) 26.9
Dual form 26.4.c.b.3.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{2} +(-2.93273 + 5.07964i) q^{3} +(-2.00000 - 3.46410i) q^{4} -10.8655 q^{5} +(-5.86546 - 10.1593i) q^{6} +(14.9327 + 25.8642i) q^{7} +8.00000 q^{8} +(-3.70181 - 6.41172i) q^{9} +(10.8655 - 18.8195i) q^{10} +(24.5291 - 42.4857i) q^{11} +23.4618 q^{12} +(2.29819 + 46.8158i) q^{13} -59.7309 q^{14} +(31.8655 - 55.1926i) q^{15} +(-8.00000 + 13.8564i) q^{16} +(3.03816 + 5.26225i) q^{17} +14.8072 q^{18} +(2.93273 + 5.07964i) q^{19} +(21.7309 + 37.6391i) q^{20} -175.175 q^{21} +(49.0582 + 84.9713i) q^{22} +(2.79819 - 4.84661i) q^{23} +(-23.4618 + 40.6371i) q^{24} -6.94178 q^{25} +(-83.3855 - 42.8352i) q^{26} -114.942 q^{27} +(59.7309 - 103.457i) q^{28} +(5.30724 - 9.19241i) q^{29} +(63.7309 + 110.385i) q^{30} +316.771 q^{31} +(-16.0000 - 27.7128i) q^{32} +(143.875 + 249.198i) q^{33} -12.1526 q^{34} +(-162.251 - 281.027i) q^{35} +(-14.8072 + 25.6469i) q^{36} +(190.231 - 329.490i) q^{37} -11.7309 q^{38} +(-244.547 - 125.624i) q^{39} -86.9237 q^{40} +(-134.155 + 232.363i) q^{41} +(175.175 - 303.411i) q^{42} +(115.318 + 199.737i) q^{43} -196.233 q^{44} +(40.2219 + 69.6663i) q^{45} +(5.59638 + 9.69321i) q^{46} +524.466 q^{47} +(-46.9237 - 81.2742i) q^{48} +(-274.473 + 475.401i) q^{49} +(6.94178 - 12.0235i) q^{50} -35.6404 q^{51} +(157.578 - 101.593i) q^{52} -274.865 q^{53} +(114.942 - 199.085i) q^{54} +(-266.520 + 461.626i) q^{55} +(119.462 + 206.914i) q^{56} -34.4036 q^{57} +(10.6145 + 18.3848i) q^{58} +(71.4709 + 123.791i) q^{59} -254.924 q^{60} +(-281.347 - 487.308i) q^{61} +(-316.771 + 548.664i) q^{62} +(110.556 - 191.489i) q^{63} +64.0000 q^{64} +(-24.9709 - 508.675i) q^{65} -575.498 q^{66} +(258.762 - 448.189i) q^{67} +(12.1526 - 21.0490i) q^{68} +(16.4127 + 28.4276i) q^{69} +649.004 q^{70} +(72.2781 + 125.189i) q^{71} +(-29.6145 - 51.2938i) q^{72} -201.018 q^{73} +(380.462 + 658.979i) q^{74} +(20.3584 - 35.2617i) q^{75} +(11.7309 - 20.3185i) q^{76} +1465.15 q^{77} +(462.135 - 297.944i) q^{78} +26.4579 q^{79} +(86.9237 - 150.556i) q^{80} +(437.042 - 756.979i) q^{81} +(-268.309 - 464.725i) q^{82} -1147.16 q^{83} +(350.349 + 606.823i) q^{84} +(-33.0110 - 57.1767i) q^{85} -461.273 q^{86} +(31.1294 + 53.9177i) q^{87} +(196.233 - 339.885i) q^{88} +(331.915 - 574.893i) q^{89} -160.887 q^{90} +(-1176.54 + 758.529i) q^{91} -22.3855 q^{92} +(-929.004 + 1609.08i) q^{93} +(-524.466 + 908.401i) q^{94} +(-31.8655 - 55.1926i) q^{95} +187.695 q^{96} +(68.7581 + 119.092i) q^{97} +(-548.946 - 950.802i) q^{98} -363.208 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 3 q^{3} - 8 q^{4} - 14 q^{5} + 6 q^{6} + 45 q^{7} + 32 q^{8} - 59 q^{9} + 14 q^{10} - 5 q^{11} - 24 q^{12} - 35 q^{13} - 180 q^{14} + 98 q^{15} - 32 q^{16} + 130 q^{17} + 236 q^{18} - 3 q^{19}+ \cdots + 4852 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/26\mathbb{Z}\right)^\times\).

\(n\) \(15\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.73205i −0.353553 + 0.612372i
\(3\) −2.93273 + 5.07964i −0.564404 + 0.977577i 0.432701 + 0.901538i \(0.357561\pi\)
−0.997105 + 0.0760390i \(0.975773\pi\)
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) −10.8655 −0.971836 −0.485918 0.874004i \(-0.661515\pi\)
−0.485918 + 0.874004i \(0.661515\pi\)
\(6\) −5.86546 10.1593i −0.399094 0.691251i
\(7\) 14.9327 + 25.8642i 0.806292 + 1.39654i 0.915416 + 0.402510i \(0.131862\pi\)
−0.109124 + 0.994028i \(0.534805\pi\)
\(8\) 8.00000 0.353553
\(9\) −3.70181 6.41172i −0.137104 0.237471i
\(10\) 10.8655 18.8195i 0.343596 0.595126i
\(11\) 24.5291 42.4857i 0.672346 1.16454i −0.304891 0.952387i \(-0.598620\pi\)
0.977237 0.212150i \(-0.0680466\pi\)
\(12\) 23.4618 0.564404
\(13\) 2.29819 + 46.8158i 0.0490310 + 0.998797i
\(14\) −59.7309 −1.14027
\(15\) 31.8655 55.1926i 0.548508 0.950044i
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) 3.03816 + 5.26225i 0.0433448 + 0.0750754i 0.886884 0.461992i \(-0.152865\pi\)
−0.843539 + 0.537068i \(0.819532\pi\)
\(18\) 14.8072 0.193894
\(19\) 2.93273 + 5.07964i 0.0354113 + 0.0613341i 0.883188 0.469019i \(-0.155393\pi\)
−0.847777 + 0.530353i \(0.822059\pi\)
\(20\) 21.7309 + 37.6391i 0.242959 + 0.420817i
\(21\) −175.175 −1.82030
\(22\) 49.0582 + 84.9713i 0.475420 + 0.823452i
\(23\) 2.79819 4.84661i 0.0253680 0.0439386i −0.853063 0.521808i \(-0.825258\pi\)
0.878431 + 0.477870i \(0.158591\pi\)
\(24\) −23.4618 + 40.6371i −0.199547 + 0.345626i
\(25\) −6.94178 −0.0555342
\(26\) −83.3855 42.8352i −0.628971 0.323103i
\(27\) −114.942 −0.819280
\(28\) 59.7309 103.457i 0.403146 0.698269i
\(29\) 5.30724 9.19241i 0.0339838 0.0588616i −0.848533 0.529142i \(-0.822514\pi\)
0.882517 + 0.470280i \(0.155847\pi\)
\(30\) 63.7309 + 110.385i 0.387854 + 0.671783i
\(31\) 316.771 1.83528 0.917641 0.397410i \(-0.130091\pi\)
0.917641 + 0.397410i \(0.130091\pi\)
\(32\) −16.0000 27.7128i −0.0883883 0.153093i
\(33\) 143.875 + 249.198i 0.758950 + 1.31454i
\(34\) −12.1526 −0.0612988
\(35\) −162.251 281.027i −0.783583 1.35721i
\(36\) −14.8072 + 25.6469i −0.0685520 + 0.118736i
\(37\) 190.231 329.490i 0.845237 1.46399i −0.0401781 0.999193i \(-0.512793\pi\)
0.885415 0.464801i \(-0.153874\pi\)
\(38\) −11.7309 −0.0500791
\(39\) −244.547 125.624i −1.00407 0.515794i
\(40\) −86.9237 −0.343596
\(41\) −134.155 + 232.363i −0.511010 + 0.885096i 0.488908 + 0.872335i \(0.337395\pi\)
−0.999919 + 0.0127608i \(0.995938\pi\)
\(42\) 175.175 303.411i 0.643572 1.11470i
\(43\) 115.318 + 199.737i 0.408974 + 0.708363i 0.994775 0.102091i \(-0.0325534\pi\)
−0.585801 + 0.810455i \(0.699220\pi\)
\(44\) −196.233 −0.672346
\(45\) 40.2219 + 69.6663i 0.133243 + 0.230783i
\(46\) 5.59638 + 9.69321i 0.0179379 + 0.0310693i
\(47\) 524.466 1.62768 0.813842 0.581086i \(-0.197372\pi\)
0.813842 + 0.581086i \(0.197372\pi\)
\(48\) −46.9237 81.2742i −0.141101 0.244394i
\(49\) −274.473 + 475.401i −0.800212 + 1.38601i
\(50\) 6.94178 12.0235i 0.0196343 0.0340076i
\(51\) −35.6404 −0.0978560
\(52\) 157.578 101.593i 0.420234 0.270930i
\(53\) −274.865 −0.712371 −0.356186 0.934415i \(-0.615923\pi\)
−0.356186 + 0.934415i \(0.615923\pi\)
\(54\) 114.942 199.085i 0.289659 0.501704i
\(55\) −266.520 + 461.626i −0.653410 + 1.13174i
\(56\) 119.462 + 206.914i 0.285067 + 0.493751i
\(57\) −34.4036 −0.0799451
\(58\) 10.6145 + 18.3848i 0.0240302 + 0.0416215i
\(59\) 71.4709 + 123.791i 0.157707 + 0.273157i 0.934041 0.357165i \(-0.116256\pi\)
−0.776334 + 0.630321i \(0.782923\pi\)
\(60\) −254.924 −0.548508
\(61\) −281.347 487.308i −0.590538 1.02284i −0.994160 0.107916i \(-0.965582\pi\)
0.403622 0.914926i \(-0.367751\pi\)
\(62\) −316.771 + 548.664i −0.648870 + 1.12388i
\(63\) 110.556 191.489i 0.221092 0.382942i
\(64\) 64.0000 0.125000
\(65\) −24.9709 508.675i −0.0476501 0.970667i
\(66\) −575.498 −1.07332
\(67\) 258.762 448.189i 0.471833 0.817239i −0.527648 0.849463i \(-0.676926\pi\)
0.999481 + 0.0322247i \(0.0102592\pi\)
\(68\) 12.1526 21.0490i 0.0216724 0.0375377i
\(69\) 16.4127 + 28.4276i 0.0286356 + 0.0495982i
\(70\) 649.004 1.10815
\(71\) 72.2781 + 125.189i 0.120815 + 0.209257i 0.920089 0.391709i \(-0.128116\pi\)
−0.799275 + 0.600966i \(0.794783\pi\)
\(72\) −29.6145 51.2938i −0.0484736 0.0839588i
\(73\) −201.018 −0.322293 −0.161147 0.986930i \(-0.551519\pi\)
−0.161147 + 0.986930i \(0.551519\pi\)
\(74\) 380.462 + 658.979i 0.597673 + 1.03520i
\(75\) 20.3584 35.2617i 0.0313438 0.0542890i
\(76\) 11.7309 20.3185i 0.0177056 0.0306671i
\(77\) 1465.15 2.16843
\(78\) 462.135 297.944i 0.670852 0.432507i
\(79\) 26.4579 0.0376804 0.0188402 0.999823i \(-0.494003\pi\)
0.0188402 + 0.999823i \(0.494003\pi\)
\(80\) 86.9237 150.556i 0.121480 0.210409i
\(81\) 437.042 756.979i 0.599509 1.03838i
\(82\) −268.309 464.725i −0.361339 0.625857i
\(83\) −1147.16 −1.51707 −0.758535 0.651632i \(-0.774084\pi\)
−0.758535 + 0.651632i \(0.774084\pi\)
\(84\) 350.349 + 606.823i 0.455074 + 0.788212i
\(85\) −33.0110 57.1767i −0.0421241 0.0729610i
\(86\) −461.273 −0.578376
\(87\) 31.1294 + 53.9177i 0.0383612 + 0.0664435i
\(88\) 196.233 339.885i 0.237710 0.411726i
\(89\) 331.915 574.893i 0.395313 0.684703i −0.597828 0.801625i \(-0.703969\pi\)
0.993141 + 0.116922i \(0.0373027\pi\)
\(90\) −160.887 −0.188434
\(91\) −1176.54 + 758.529i −1.35533 + 0.873796i
\(92\) −22.3855 −0.0253680
\(93\) −929.004 + 1609.08i −1.03584 + 1.79413i
\(94\) −524.466 + 908.401i −0.575474 + 0.996749i
\(95\) −31.8655 55.1926i −0.0344140 0.0596067i
\(96\) 187.695 0.199547
\(97\) 68.7581 + 119.092i 0.0719724 + 0.124660i 0.899766 0.436373i \(-0.143737\pi\)
−0.827793 + 0.561033i \(0.810404\pi\)
\(98\) −548.946 950.802i −0.565836 0.980056i
\(99\) −363.208 −0.368725
\(100\) 13.8836 + 24.0470i 0.0138836 + 0.0240470i
\(101\) 442.347 766.168i 0.435794 0.754818i −0.561566 0.827432i \(-0.689801\pi\)
0.997360 + 0.0726144i \(0.0231342\pi\)
\(102\) 35.6404 61.7310i 0.0345973 0.0599243i
\(103\) −416.233 −0.398181 −0.199091 0.979981i \(-0.563799\pi\)
−0.199091 + 0.979981i \(0.563799\pi\)
\(104\) 18.3855 + 374.526i 0.0173351 + 0.353128i
\(105\) 1903.35 1.76903
\(106\) 274.865 476.081i 0.251861 0.436236i
\(107\) −211.587 + 366.480i −0.191167 + 0.331112i −0.945637 0.325223i \(-0.894561\pi\)
0.754470 + 0.656335i \(0.227894\pi\)
\(108\) 229.884 + 398.170i 0.204820 + 0.354759i
\(109\) −951.630 −0.836235 −0.418118 0.908393i \(-0.637310\pi\)
−0.418118 + 0.908393i \(0.637310\pi\)
\(110\) −533.040 923.253i −0.462031 0.800261i
\(111\) 1115.79 + 1932.61i 0.954111 + 1.65257i
\(112\) −477.847 −0.403146
\(113\) 376.391 + 651.929i 0.313344 + 0.542729i 0.979084 0.203456i \(-0.0652172\pi\)
−0.665740 + 0.746184i \(0.731884\pi\)
\(114\) 34.4036 59.5888i 0.0282649 0.0489562i
\(115\) −30.4036 + 52.6606i −0.0246535 + 0.0427011i
\(116\) −42.4579 −0.0339838
\(117\) 291.662 188.039i 0.230463 0.148583i
\(118\) −285.884 −0.223031
\(119\) −90.7361 + 157.159i −0.0698971 + 0.121065i
\(120\) 254.924 441.541i 0.193927 0.335891i
\(121\) −537.854 931.591i −0.404098 0.699918i
\(122\) 1125.39 0.835147
\(123\) −786.878 1362.91i −0.576833 0.999104i
\(124\) −633.542 1097.33i −0.458821 0.794701i
\(125\) 1433.61 1.02581
\(126\) 221.113 + 382.978i 0.156335 + 0.270781i
\(127\) 665.802 1153.20i 0.465200 0.805750i −0.534011 0.845478i \(-0.679316\pi\)
0.999211 + 0.0397279i \(0.0126491\pi\)
\(128\) −64.0000 + 110.851i −0.0441942 + 0.0765466i
\(129\) −1352.79 −0.923306
\(130\) 906.022 + 465.424i 0.611257 + 0.314003i
\(131\) 260.378 0.173659 0.0868294 0.996223i \(-0.472326\pi\)
0.0868294 + 0.996223i \(0.472326\pi\)
\(132\) 575.498 996.792i 0.379475 0.657270i
\(133\) −87.5873 + 151.706i −0.0571036 + 0.0989064i
\(134\) 517.524 + 896.378i 0.333636 + 0.577875i
\(135\) 1248.90 0.796206
\(136\) 24.3053 + 42.0980i 0.0153247 + 0.0265432i
\(137\) −1205.97 2088.81i −0.752068 1.30262i −0.946819 0.321767i \(-0.895723\pi\)
0.194751 0.980853i \(-0.437610\pi\)
\(138\) −65.6507 −0.0404968
\(139\) 203.965 + 353.278i 0.124461 + 0.215573i 0.921522 0.388326i \(-0.126946\pi\)
−0.797061 + 0.603899i \(0.793613\pi\)
\(140\) −649.004 + 1124.11i −0.391792 + 0.678603i
\(141\) −1538.12 + 2664.10i −0.918672 + 1.59119i
\(142\) −289.113 −0.170858
\(143\) 2045.37 + 1050.71i 1.19610 + 0.614439i
\(144\) 118.458 0.0685520
\(145\) −57.6656 + 99.8798i −0.0330267 + 0.0572039i
\(146\) 201.018 348.174i 0.113948 0.197363i
\(147\) −1609.91 2788.45i −0.903286 1.56454i
\(148\) −1521.85 −0.845237
\(149\) 147.584 + 255.623i 0.0811447 + 0.140547i 0.903742 0.428078i \(-0.140809\pi\)
−0.822597 + 0.568625i \(0.807476\pi\)
\(150\) 40.7167 + 70.5235i 0.0221634 + 0.0383881i
\(151\) 2087.10 1.12481 0.562403 0.826863i \(-0.309877\pi\)
0.562403 + 0.826863i \(0.309877\pi\)
\(152\) 23.4618 + 40.6371i 0.0125198 + 0.0216849i
\(153\) 22.4934 38.9597i 0.0118855 0.0205863i
\(154\) −1465.15 + 2537.71i −0.766655 + 1.32789i
\(155\) −3441.86 −1.78359
\(156\) 53.9198 + 1098.38i 0.0276733 + 0.563725i
\(157\) 557.512 0.283403 0.141702 0.989909i \(-0.454743\pi\)
0.141702 + 0.989909i \(0.454743\pi\)
\(158\) −26.4579 + 45.8265i −0.0133220 + 0.0230744i
\(159\) 806.106 1396.22i 0.402065 0.696397i
\(160\) 173.847 + 301.112i 0.0858990 + 0.148781i
\(161\) 167.138 0.0818159
\(162\) 874.084 + 1513.96i 0.423917 + 0.734246i
\(163\) 645.238 + 1117.59i 0.310055 + 0.537031i 0.978374 0.206844i \(-0.0663192\pi\)
−0.668319 + 0.743875i \(0.732986\pi\)
\(164\) 1073.24 0.511010
\(165\) −1563.26 2707.65i −0.737575 1.27752i
\(166\) 1147.16 1986.93i 0.536365 0.929012i
\(167\) −1256.64 + 2176.56i −0.582284 + 1.00854i 0.412925 + 0.910765i \(0.364507\pi\)
−0.995208 + 0.0977795i \(0.968826\pi\)
\(168\) −1401.40 −0.643572
\(169\) −2186.44 + 215.183i −0.995192 + 0.0979441i
\(170\) 132.044 0.0595724
\(171\) 21.7128 37.6077i 0.00971006 0.0168183i
\(172\) 461.273 798.948i 0.204487 0.354182i
\(173\) 1700.26 + 2944.94i 0.747218 + 1.29422i 0.949151 + 0.314820i \(0.101944\pi\)
−0.201934 + 0.979399i \(0.564723\pi\)
\(174\) −124.518 −0.0542509
\(175\) −103.660 179.544i −0.0447768 0.0775557i
\(176\) 392.466 + 679.771i 0.168086 + 0.291134i
\(177\) −838.419 −0.356042
\(178\) 663.829 + 1149.79i 0.279529 + 0.484158i
\(179\) 785.111 1359.85i 0.327832 0.567822i −0.654249 0.756279i \(-0.727015\pi\)
0.982081 + 0.188457i \(0.0603486\pi\)
\(180\) 160.887 278.665i 0.0666214 0.115392i
\(181\) 2921.99 1.19995 0.599973 0.800021i \(-0.295178\pi\)
0.599973 + 0.800021i \(0.295178\pi\)
\(182\) −137.273 2796.35i −0.0559085 1.13890i
\(183\) 3300.46 1.33321
\(184\) 22.3855 38.7729i 0.00896893 0.0155346i
\(185\) −2066.95 + 3580.06i −0.821432 + 1.42276i
\(186\) −1858.01 3218.16i −0.732450 1.26864i
\(187\) 298.093 0.116571
\(188\) −1048.93 1816.80i −0.406921 0.704808i
\(189\) −1716.39 2972.88i −0.660578 1.14416i
\(190\) 127.462 0.0486687
\(191\) −1954.35 3385.03i −0.740375 1.28237i −0.952325 0.305087i \(-0.901315\pi\)
0.211949 0.977281i \(-0.432019\pi\)
\(192\) −187.695 + 325.097i −0.0705505 + 0.122197i
\(193\) 1059.66 1835.39i 0.395214 0.684531i −0.597914 0.801560i \(-0.704004\pi\)
0.993128 + 0.117029i \(0.0373371\pi\)
\(194\) −275.032 −0.101784
\(195\) 2657.12 + 1364.96i 0.975796 + 0.501267i
\(196\) 2195.78 0.800212
\(197\) −1555.25 + 2693.77i −0.562472 + 0.974230i 0.434808 + 0.900523i \(0.356816\pi\)
−0.997280 + 0.0737067i \(0.976517\pi\)
\(198\) 363.208 629.095i 0.130364 0.225797i
\(199\) 245.487 + 425.195i 0.0874476 + 0.151464i 0.906432 0.422353i \(-0.138796\pi\)
−0.818984 + 0.573816i \(0.805462\pi\)
\(200\) −55.5342 −0.0196343
\(201\) 1517.76 + 2628.83i 0.532609 + 0.922506i
\(202\) 884.695 + 1532.34i 0.308153 + 0.533737i
\(203\) 317.006 0.109603
\(204\) 71.2808 + 123.462i 0.0244640 + 0.0423729i
\(205\) 1457.65 2524.73i 0.496618 0.860168i
\(206\) 416.233 720.936i 0.140778 0.243835i
\(207\) −41.4335 −0.0139122
\(208\) −667.084 342.682i −0.222375 0.114234i
\(209\) 287.749 0.0952345
\(210\) −1903.35 + 3296.70i −0.625447 + 1.08331i
\(211\) 301.634 522.445i 0.0984139 0.170458i −0.812614 0.582802i \(-0.801956\pi\)
0.911028 + 0.412344i \(0.135290\pi\)
\(212\) 549.731 + 952.162i 0.178093 + 0.308466i
\(213\) −847.889 −0.272753
\(214\) −423.175 732.960i −0.135176 0.234131i
\(215\) −1252.99 2170.24i −0.397455 0.688413i
\(216\) −919.534 −0.289659
\(217\) 4730.26 + 8193.04i 1.47977 + 2.56304i
\(218\) 951.630 1648.27i 0.295654 0.512087i
\(219\) 589.532 1021.10i 0.181904 0.315066i
\(220\) 2132.16 0.653410
\(221\) −239.374 + 154.328i −0.0728599 + 0.0469737i
\(222\) −4463.17 −1.34932
\(223\) 1567.57 2715.11i 0.470727 0.815324i −0.528712 0.848801i \(-0.677325\pi\)
0.999439 + 0.0334775i \(0.0106582\pi\)
\(224\) 477.847 827.656i 0.142534 0.246875i
\(225\) 25.6972 + 44.5088i 0.00761397 + 0.0131878i
\(226\) −1505.57 −0.443136
\(227\) −806.537 1396.96i −0.235823 0.408457i 0.723689 0.690126i \(-0.242445\pi\)
−0.959511 + 0.281670i \(0.909112\pi\)
\(228\) 68.8072 + 119.178i 0.0199863 + 0.0346172i
\(229\) −6156.40 −1.77653 −0.888267 0.459327i \(-0.848091\pi\)
−0.888267 + 0.459327i \(0.848091\pi\)
\(230\) −60.8072 105.321i −0.0174327 0.0301942i
\(231\) −4296.88 + 7442.41i −1.22387 + 2.11980i
\(232\) 42.4579 73.5393i 0.0120151 0.0208107i
\(233\) −3350.07 −0.941934 −0.470967 0.882151i \(-0.656095\pi\)
−0.470967 + 0.882151i \(0.656095\pi\)
\(234\) 34.0299 + 693.213i 0.00950684 + 0.193661i
\(235\) −5698.56 −1.58184
\(236\) 285.884 495.165i 0.0788535 0.136578i
\(237\) −77.5939 + 134.397i −0.0212670 + 0.0368354i
\(238\) −181.472 314.319i −0.0494247 0.0856062i
\(239\) −632.554 −0.171199 −0.0855994 0.996330i \(-0.527281\pi\)
−0.0855994 + 0.996330i \(0.527281\pi\)
\(240\) 509.847 + 883.082i 0.137127 + 0.237511i
\(241\) −752.118 1302.71i −0.201030 0.348194i 0.747831 0.663890i \(-0.231096\pi\)
−0.948861 + 0.315696i \(0.897762\pi\)
\(242\) 2151.42 0.571481
\(243\) 1011.74 + 1752.38i 0.267091 + 0.462615i
\(244\) −1125.39 + 1949.23i −0.295269 + 0.511421i
\(245\) 2982.27 5165.45i 0.777675 1.34697i
\(246\) 3147.51 0.815765
\(247\) −231.067 + 148.972i −0.0595241 + 0.0383760i
\(248\) 2534.17 0.648870
\(249\) 3364.30 5827.14i 0.856240 1.48305i
\(250\) −1433.61 + 2483.08i −0.362677 + 0.628176i
\(251\) −518.384 897.868i −0.130359 0.225789i 0.793456 0.608628i \(-0.208280\pi\)
−0.923815 + 0.382839i \(0.874946\pi\)
\(252\) −884.450 −0.221092
\(253\) −137.274 237.766i −0.0341121 0.0590839i
\(254\) 1331.60 + 2306.41i 0.328946 + 0.569751i
\(255\) 387.249 0.0951000
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) −252.452 + 437.260i −0.0612744 + 0.106130i −0.895035 0.445995i \(-0.852850\pi\)
0.833761 + 0.552126i \(0.186183\pi\)
\(258\) 1352.79 2343.10i 0.326438 0.565407i
\(259\) 11362.7 2.72603
\(260\) −1712.16 + 1103.85i −0.408399 + 0.263300i
\(261\) −78.5856 −0.0186373
\(262\) −260.378 + 450.987i −0.0613977 + 0.106344i
\(263\) 84.6612 146.638i 0.0198496 0.0343804i −0.855930 0.517092i \(-0.827015\pi\)
0.875780 + 0.482711i \(0.160348\pi\)
\(264\) 1151.00 + 1993.58i 0.268329 + 0.464760i
\(265\) 2986.54 0.692308
\(266\) −175.175 303.411i −0.0403784 0.0699374i
\(267\) 1946.83 + 3372.01i 0.446233 + 0.772898i
\(268\) −2070.10 −0.471833
\(269\) −771.017 1335.44i −0.174757 0.302689i 0.765320 0.643650i \(-0.222581\pi\)
−0.940077 + 0.340961i \(0.889247\pi\)
\(270\) −1248.90 + 2163.15i −0.281501 + 0.487575i
\(271\) 589.678 1021.35i 0.132179 0.228940i −0.792338 0.610083i \(-0.791136\pi\)
0.924516 + 0.381143i \(0.124469\pi\)
\(272\) −97.2211 −0.0216724
\(273\) −402.585 8200.94i −0.0892510 1.81811i
\(274\) 4823.89 1.06358
\(275\) −170.276 + 294.926i −0.0373382 + 0.0646717i
\(276\) 65.6507 113.710i 0.0143178 0.0247991i
\(277\) −1952.95 3382.61i −0.423615 0.733723i 0.572675 0.819782i \(-0.305906\pi\)
−0.996290 + 0.0860599i \(0.972572\pi\)
\(278\) −815.860 −0.176015
\(279\) −1172.63 2031.05i −0.251625 0.435827i
\(280\) −1298.01 2248.22i −0.277039 0.479845i
\(281\) 58.9976 0.0125249 0.00626245 0.999980i \(-0.498007\pi\)
0.00626245 + 0.999980i \(0.498007\pi\)
\(282\) −3076.23 5328.19i −0.649599 1.12514i
\(283\) −2347.79 + 4066.49i −0.493151 + 0.854163i −0.999969 0.00789055i \(-0.997488\pi\)
0.506818 + 0.862053i \(0.330822\pi\)
\(284\) 289.113 500.758i 0.0604073 0.104629i
\(285\) 373.811 0.0776936
\(286\) −3865.25 + 2491.98i −0.799151 + 0.515223i
\(287\) −8013.18 −1.64809
\(288\) −118.458 + 205.175i −0.0242368 + 0.0419794i
\(289\) 2438.04 4222.81i 0.496242 0.859517i
\(290\) −115.331 199.760i −0.0233534 0.0404493i
\(291\) −806.595 −0.162486
\(292\) 402.036 + 696.347i 0.0805733 + 0.139557i
\(293\) 4059.41 + 7031.11i 0.809397 + 1.40192i 0.913282 + 0.407327i \(0.133539\pi\)
−0.103885 + 0.994589i \(0.533127\pi\)
\(294\) 6439.64 1.27744
\(295\) −776.564 1345.05i −0.153265 0.265464i
\(296\) 1521.85 2635.92i 0.298836 0.517600i
\(297\) −2819.42 + 4883.38i −0.550839 + 0.954082i
\(298\) −590.337 −0.114756
\(299\) 233.329 + 119.861i 0.0451296 + 0.0231831i
\(300\) −162.867 −0.0313438
\(301\) −3444.03 + 5965.24i −0.659504 + 1.14229i
\(302\) −2087.10 + 3614.96i −0.397679 + 0.688800i
\(303\) 2594.57 + 4493.93i 0.491928 + 0.852044i
\(304\) −93.8474 −0.0177056
\(305\) 3056.97 + 5294.82i 0.573907 + 0.994035i
\(306\) 44.9868 + 77.9194i 0.00840432 + 0.0145567i
\(307\) −1072.04 −0.199298 −0.0996492 0.995023i \(-0.531772\pi\)
−0.0996492 + 0.995023i \(0.531772\pi\)
\(308\) −2930.29 5075.42i −0.542107 0.938957i
\(309\) 1220.70 2114.31i 0.224735 0.389252i
\(310\) 3441.86 5961.48i 0.630596 1.09222i
\(311\) −4528.41 −0.825667 −0.412834 0.910806i \(-0.635461\pi\)
−0.412834 + 0.910806i \(0.635461\pi\)
\(312\) −1956.38 1004.99i −0.354994 0.182361i
\(313\) −5396.13 −0.974464 −0.487232 0.873273i \(-0.661993\pi\)
−0.487232 + 0.873273i \(0.661993\pi\)
\(314\) −557.512 + 965.640i −0.100198 + 0.173548i
\(315\) −1201.24 + 2080.62i −0.214865 + 0.372157i
\(316\) −52.9158 91.6529i −0.00942009 0.0163161i
\(317\) 8222.40 1.45683 0.728417 0.685134i \(-0.240257\pi\)
0.728417 + 0.685134i \(0.240257\pi\)
\(318\) 1612.21 + 2792.43i 0.284303 + 0.492427i
\(319\) −260.364 450.963i −0.0456977 0.0791508i
\(320\) −695.389 −0.121480
\(321\) −1241.06 2149.57i −0.215791 0.373762i
\(322\) −167.138 + 289.492i −0.0289263 + 0.0501018i
\(323\) −17.8202 + 30.8655i −0.00306979 + 0.00531704i
\(324\) −3496.34 −0.599509
\(325\) −15.9535 324.985i −0.00272290 0.0554675i
\(326\) −2580.95 −0.438484
\(327\) 2790.87 4833.94i 0.471975 0.817484i
\(328\) −1073.24 + 1858.90i −0.180669 + 0.312929i
\(329\) 7831.71 + 13564.9i 1.31239 + 2.27312i
\(330\) 6253.05 1.04309
\(331\) 304.177 + 526.851i 0.0505109 + 0.0874874i 0.890175 0.455618i \(-0.150582\pi\)
−0.839664 + 0.543105i \(0.817248\pi\)
\(332\) 2294.31 + 3973.87i 0.379267 + 0.656910i
\(333\) −2816.79 −0.463542
\(334\) −2513.27 4353.11i −0.411737 0.713149i
\(335\) −2811.57 + 4869.78i −0.458544 + 0.794222i
\(336\) 1401.40 2427.29i 0.227537 0.394106i
\(337\) −8808.73 −1.42386 −0.711932 0.702248i \(-0.752180\pi\)
−0.711932 + 0.702248i \(0.752180\pi\)
\(338\) 1813.73 4002.20i 0.291875 0.644057i
\(339\) −4415.42 −0.707412
\(340\) −132.044 + 228.707i −0.0210620 + 0.0364805i
\(341\) 7770.11 13458.2i 1.23394 2.13725i
\(342\) 43.4256 + 75.2154i 0.00686605 + 0.0118923i
\(343\) −6150.66 −0.968235
\(344\) 922.546 + 1597.90i 0.144594 + 0.250444i
\(345\) −178.331 308.879i −0.0278291 0.0482014i
\(346\) −6801.06 −1.05673
\(347\) 3583.04 + 6206.01i 0.554317 + 0.960105i 0.997956 + 0.0638994i \(0.0203537\pi\)
−0.443640 + 0.896205i \(0.646313\pi\)
\(348\) 124.518 215.671i 0.0191806 0.0332218i
\(349\) 942.489 1632.44i 0.144557 0.250380i −0.784651 0.619938i \(-0.787158\pi\)
0.929207 + 0.369559i \(0.120491\pi\)
\(350\) 414.639 0.0633240
\(351\) −264.158 5381.09i −0.0401701 0.818294i
\(352\) −1569.86 −0.237710
\(353\) 5977.01 10352.5i 0.901202 1.56093i 0.0752661 0.997163i \(-0.476019\pi\)
0.825936 0.563764i \(-0.190647\pi\)
\(354\) 838.419 1452.18i 0.125880 0.218030i
\(355\) −785.335 1360.24i −0.117412 0.203364i
\(356\) −2655.32 −0.395313
\(357\) −532.209 921.812i −0.0789005 0.136660i
\(358\) 1570.22 + 2719.71i 0.231812 + 0.401511i
\(359\) 9068.77 1.33324 0.666618 0.745400i \(-0.267741\pi\)
0.666618 + 0.745400i \(0.267741\pi\)
\(360\) 321.775 + 557.331i 0.0471084 + 0.0815942i
\(361\) 3412.30 5910.27i 0.497492 0.861682i
\(362\) −2921.99 + 5061.04i −0.424245 + 0.734813i
\(363\) 6309.53 0.912298
\(364\) 4980.69 + 2558.59i 0.717196 + 0.368424i
\(365\) 2184.15 0.313216
\(366\) −3300.46 + 5716.57i −0.471361 + 0.816421i
\(367\) −3922.06 + 6793.21i −0.557847 + 0.966220i 0.439829 + 0.898082i \(0.355039\pi\)
−0.997676 + 0.0681380i \(0.978294\pi\)
\(368\) 44.7710 + 77.5457i 0.00634199 + 0.0109846i
\(369\) 1986.46 0.280246
\(370\) −4133.89 7160.11i −0.580840 1.00604i
\(371\) −4104.49 7109.19i −0.574379 0.994854i
\(372\) 7432.03 1.03584
\(373\) −723.844 1253.74i −0.100481 0.174037i 0.811402 0.584488i \(-0.198705\pi\)
−0.911883 + 0.410451i \(0.865371\pi\)
\(374\) −298.093 + 516.313i −0.0412140 + 0.0713848i
\(375\) −4204.39 + 7282.21i −0.578969 + 1.00280i
\(376\) 4195.73 0.575474
\(377\) 442.547 + 227.337i 0.0604571 + 0.0310569i
\(378\) 6865.58 0.934199
\(379\) 5909.48 10235.5i 0.800922 1.38724i −0.118088 0.993003i \(-0.537677\pi\)
0.919010 0.394234i \(-0.128990\pi\)
\(380\) −127.462 + 220.770i −0.0172070 + 0.0298034i
\(381\) 3905.24 + 6764.07i 0.525121 + 0.909537i
\(382\) 7817.39 1.04705
\(383\) −3625.40 6279.38i −0.483680 0.837758i 0.516145 0.856501i \(-0.327367\pi\)
−0.999824 + 0.0187436i \(0.994033\pi\)
\(384\) −375.389 650.194i −0.0498867 0.0864064i
\(385\) −15919.5 −2.10736
\(386\) 2119.33 + 3670.79i 0.279459 + 0.484036i
\(387\) 853.773 1478.78i 0.112144 0.194239i
\(388\) 275.032 476.370i 0.0359862 0.0623299i
\(389\) −9331.29 −1.21623 −0.608117 0.793847i \(-0.708075\pi\)
−0.608117 + 0.793847i \(0.708075\pi\)
\(390\) −5021.30 + 3237.30i −0.651958 + 0.420326i
\(391\) 34.0054 0.00439828
\(392\) −2195.78 + 3803.21i −0.282918 + 0.490028i
\(393\) −763.617 + 1322.62i −0.0980138 + 0.169765i
\(394\) −3110.50 5387.54i −0.397728 0.688885i
\(395\) −287.478 −0.0366191
\(396\) 726.417 + 1258.19i 0.0921814 + 0.159663i
\(397\) 3847.13 + 6663.42i 0.486352 + 0.842386i 0.999877 0.0156884i \(-0.00499397\pi\)
−0.513525 + 0.858075i \(0.671661\pi\)
\(398\) −981.946 −0.123670
\(399\) −513.740 889.824i −0.0644591 0.111646i
\(400\) 55.5342 96.1881i 0.00694178 0.0120235i
\(401\) −928.729 + 1608.61i −0.115657 + 0.200324i −0.918042 0.396483i \(-0.870231\pi\)
0.802385 + 0.596807i \(0.203564\pi\)
\(402\) −6071.03 −0.753223
\(403\) 728.000 + 14829.9i 0.0899858 + 1.83308i
\(404\) −3538.78 −0.435794
\(405\) −4748.66 + 8224.93i −0.582625 + 1.00914i
\(406\) −317.006 + 549.071i −0.0387506 + 0.0671181i
\(407\) −9332.39 16164.2i −1.13658 1.96862i
\(408\) −285.123 −0.0345973
\(409\) 269.235 + 466.328i 0.0325496 + 0.0563776i 0.881841 0.471546i \(-0.156304\pi\)
−0.849292 + 0.527924i \(0.822971\pi\)
\(410\) 2915.30 + 5049.45i 0.351162 + 0.608231i
\(411\) 14147.2 1.69788
\(412\) 832.466 + 1441.87i 0.0995453 + 0.172417i
\(413\) −2134.51 + 3697.08i −0.254316 + 0.440488i
\(414\) 41.4335 71.7649i 0.00491871 0.00851945i
\(415\) 12464.4 1.47434
\(416\) 1260.63 812.742i 0.148575 0.0957883i
\(417\) −2392.70 −0.280985
\(418\) −287.749 + 498.396i −0.0336705 + 0.0583190i
\(419\) −2418.69 + 4189.30i −0.282007 + 0.488450i −0.971879 0.235481i \(-0.924333\pi\)
0.689872 + 0.723931i \(0.257667\pi\)
\(420\) −3806.71 6593.41i −0.442258 0.766013i
\(421\) −1392.34 −0.161184 −0.0805918 0.996747i \(-0.525681\pi\)
−0.0805918 + 0.996747i \(0.525681\pi\)
\(422\) 603.268 + 1044.89i 0.0695891 + 0.120532i
\(423\) −1941.47 3362.73i −0.223162 0.386528i
\(424\) −2198.92 −0.251861
\(425\) −21.0902 36.5294i −0.00240712 0.00416926i
\(426\) 847.889 1468.59i 0.0964328 0.167026i
\(427\) 8402.57 14553.7i 0.952292 1.64942i
\(428\) 1692.70 0.191167
\(429\) −11335.7 + 7308.30i −1.27575 + 0.822490i
\(430\) 5011.94 0.562087
\(431\) −3953.78 + 6848.14i −0.441872 + 0.765344i −0.997828 0.0658670i \(-0.979019\pi\)
0.555957 + 0.831211i \(0.312352\pi\)
\(432\) 919.534 1592.68i 0.102410 0.177379i
\(433\) −4816.28 8342.04i −0.534539 0.925850i −0.999185 0.0403530i \(-0.987152\pi\)
0.464646 0.885497i \(-0.346182\pi\)
\(434\) −18921.0 −2.09271
\(435\) −338.235 585.841i −0.0372808 0.0645722i
\(436\) 1903.26 + 3296.54i 0.209059 + 0.362100i
\(437\) 32.8253 0.00359325
\(438\) 1179.06 + 2042.20i 0.128625 + 0.222785i
\(439\) 323.735 560.725i 0.0351959 0.0609611i −0.847891 0.530171i \(-0.822128\pi\)
0.883087 + 0.469210i \(0.155461\pi\)
\(440\) −2132.16 + 3693.01i −0.231015 + 0.400130i
\(441\) 4064.19 0.438850
\(442\) −27.9291 568.936i −0.00300554 0.0612251i
\(443\) 16862.3 1.80847 0.904233 0.427039i \(-0.140443\pi\)
0.904233 + 0.427039i \(0.140443\pi\)
\(444\) 4463.17 7730.43i 0.477055 0.826284i
\(445\) −3606.41 + 6246.48i −0.384180 + 0.665419i
\(446\) 3135.14 + 5430.22i 0.332855 + 0.576521i
\(447\) −1731.30 −0.183194
\(448\) 955.695 + 1655.31i 0.100786 + 0.174567i
\(449\) −6240.44 10808.8i −0.655912 1.13607i −0.981664 0.190618i \(-0.938951\pi\)
0.325752 0.945455i \(-0.394383\pi\)
\(450\) −102.789 −0.0107678
\(451\) 6581.39 + 11399.3i 0.687152 + 1.19018i
\(452\) 1505.57 2607.72i 0.156672 0.271364i
\(453\) −6120.90 + 10601.7i −0.634845 + 1.09958i
\(454\) 3226.15 0.333504
\(455\) 12783.6 8241.76i 1.31715 0.849186i
\(456\) −275.229 −0.0282649
\(457\) −6268.52 + 10857.4i −0.641639 + 1.11135i 0.343428 + 0.939179i \(0.388412\pi\)
−0.985067 + 0.172172i \(0.944921\pi\)
\(458\) 6156.40 10663.2i 0.628100 1.08790i
\(459\) −349.212 604.852i −0.0355115 0.0615078i
\(460\) 243.229 0.0246535
\(461\) −726.957 1259.13i −0.0734442 0.127209i 0.826964 0.562254i \(-0.190066\pi\)
−0.900409 + 0.435045i \(0.856732\pi\)
\(462\) −8593.76 14884.8i −0.865406 1.49893i
\(463\) −7154.47 −0.718135 −0.359068 0.933312i \(-0.616905\pi\)
−0.359068 + 0.933312i \(0.616905\pi\)
\(464\) 84.9158 + 147.079i 0.00849595 + 0.0147154i
\(465\) 10094.1 17483.4i 1.00667 1.74360i
\(466\) 3350.07 5802.50i 0.333024 0.576814i
\(467\) −5823.27 −0.577021 −0.288510 0.957477i \(-0.593160\pi\)
−0.288510 + 0.957477i \(0.593160\pi\)
\(468\) −1234.71 634.271i −0.121954 0.0626479i
\(469\) 15456.1 1.52174
\(470\) 5698.56 9870.20i 0.559266 0.968677i
\(471\) −1635.03 + 2831.96i −0.159954 + 0.277048i
\(472\) 571.767 + 990.330i 0.0557579 + 0.0965755i
\(473\) 11314.6 1.09989
\(474\) −155.188 268.793i −0.0150380 0.0260466i
\(475\) −20.3584 35.2617i −0.00196654 0.00340615i
\(476\) 725.888 0.0698971
\(477\) 1017.50 + 1762.36i 0.0976690 + 0.169168i
\(478\) 632.554 1095.62i 0.0605279 0.104837i
\(479\) −1460.09 + 2528.94i −0.139276 + 0.241233i −0.927223 0.374511i \(-0.877811\pi\)
0.787947 + 0.615743i \(0.211144\pi\)
\(480\) −2039.39 −0.193927
\(481\) 15862.5 + 8148.58i 1.50368 + 0.772439i
\(482\) 3008.47 0.284299
\(483\) −490.172 + 849.003i −0.0461772 + 0.0799813i
\(484\) −2151.42 + 3726.36i −0.202049 + 0.349959i
\(485\) −747.088 1293.99i −0.0699454 0.121149i
\(486\) −4046.96 −0.377723
\(487\) 1681.12 + 2911.79i 0.156425 + 0.270936i 0.933577 0.358377i \(-0.116670\pi\)
−0.777152 + 0.629313i \(0.783336\pi\)
\(488\) −2250.78 3898.46i −0.208787 0.361629i
\(489\) −7569.24 −0.699985
\(490\) 5964.55 + 10330.9i 0.549900 + 0.952454i
\(491\) −7434.83 + 12877.5i −0.683359 + 1.18361i 0.290591 + 0.956847i \(0.406148\pi\)
−0.973950 + 0.226764i \(0.927185\pi\)
\(492\) −3147.51 + 5451.65i −0.288416 + 0.499552i
\(493\) 64.4970 0.00589209
\(494\) −26.9599 549.192i −0.00245543 0.0500189i
\(495\) 3946.43 0.358341
\(496\) −2534.17 + 4389.31i −0.229410 + 0.397350i
\(497\) −2158.62 + 3738.84i −0.194824 + 0.337444i
\(498\) 6728.60 + 11654.3i 0.605453 + 1.04868i
\(499\) −18693.3 −1.67701 −0.838503 0.544896i \(-0.816569\pi\)
−0.838503 + 0.544896i \(0.816569\pi\)
\(500\) −2867.22 4966.16i −0.256452 0.444187i
\(501\) −7370.74 12766.5i −0.657287 1.13845i
\(502\) 2073.54 0.184356
\(503\) −7359.24 12746.6i −0.652350 1.12990i −0.982551 0.185993i \(-0.940450\pi\)
0.330201 0.943911i \(-0.392884\pi\)
\(504\) 884.450 1531.91i 0.0781677 0.135390i
\(505\) −4806.31 + 8324.77i −0.423521 + 0.733559i
\(506\) 549.097 0.0482418
\(507\) 5319.18 11737.4i 0.465943 1.02816i
\(508\) −5326.42 −0.465200
\(509\) −7939.46 + 13751.6i −0.691376 + 1.19750i 0.280011 + 0.959997i \(0.409662\pi\)
−0.971387 + 0.237502i \(0.923671\pi\)
\(510\) −387.249 + 670.736i −0.0336229 + 0.0582366i
\(511\) −3001.75 5199.18i −0.259862 0.450094i
\(512\) 512.000 0.0441942
\(513\) −337.093 583.863i −0.0290118 0.0502498i
\(514\) −504.904 874.520i −0.0433276 0.0750455i
\(515\) 4522.56 0.386967
\(516\) 2705.58 + 4686.20i 0.230826 + 0.399803i
\(517\) 12864.7 22282.3i 1.09437 1.89550i
\(518\) −11362.7 + 19680.7i −0.963797 + 1.66935i
\(519\) −19945.7 −1.68693
\(520\) −199.767 4069.40i −0.0168469 0.343183i
\(521\) −9618.86 −0.808848 −0.404424 0.914572i \(-0.632528\pi\)
−0.404424 + 0.914572i \(0.632528\pi\)
\(522\) 78.5856 136.114i 0.00658927 0.0114129i
\(523\) 5177.94 8968.45i 0.432917 0.749834i −0.564206 0.825634i \(-0.690818\pi\)
0.997123 + 0.0758002i \(0.0241511\pi\)
\(524\) −520.755 901.975i −0.0434147 0.0751965i
\(525\) 1216.02 0.101089
\(526\) 169.322 + 293.275i 0.0140358 + 0.0243106i
\(527\) 962.401 + 1666.93i 0.0795500 + 0.137785i
\(528\) −4603.98 −0.379475
\(529\) 6067.84 + 10509.8i 0.498713 + 0.863796i
\(530\) −2986.54 + 5172.84i −0.244768 + 0.423950i
\(531\) 529.143 916.503i 0.0432446 0.0749018i
\(532\) 700.699 0.0571036
\(533\) −11186.6 5746.54i −0.909087 0.466999i
\(534\) −7787.33 −0.631069
\(535\) 2298.99 3981.97i 0.185783 0.321786i
\(536\) 2070.10 3585.51i 0.166818 0.288937i
\(537\) 4605.04 + 7976.16i 0.370060 + 0.640962i
\(538\) 3084.07 0.247144
\(539\) 13465.1 + 23322.3i 1.07604 + 1.86375i
\(540\) −2497.79 4326.30i −0.199051 0.344767i
\(541\) 14130.6 1.12296 0.561479 0.827491i \(-0.310232\pi\)
0.561479 + 0.827491i \(0.310232\pi\)
\(542\) 1179.36 + 2042.70i 0.0934643 + 0.161885i
\(543\) −8569.42 + 14842.7i −0.677254 + 1.17304i
\(544\) 97.2211 168.392i 0.00766236 0.0132716i
\(545\) 10339.9 0.812684
\(546\) 14607.0 + 7503.64i 1.14491 + 0.588143i
\(547\) 6505.59 0.508517 0.254259 0.967136i \(-0.418169\pi\)
0.254259 + 0.967136i \(0.418169\pi\)
\(548\) −4823.89 + 8355.23i −0.376034 + 0.651310i
\(549\) −2082.99 + 3607.84i −0.161930 + 0.280472i
\(550\) −340.551 589.852i −0.0264021 0.0457298i
\(551\) 62.2588 0.00481364
\(552\) 131.301 + 227.421i 0.0101242 + 0.0175356i
\(553\) 395.089 + 684.314i 0.0303814 + 0.0526221i
\(554\) 7811.80 0.599082
\(555\) −12123.6 20998.7i −0.927239 1.60603i
\(556\) 815.860 1413.11i 0.0622305 0.107786i
\(557\) 9162.49 15869.9i 0.696996 1.20723i −0.272507 0.962154i \(-0.587853\pi\)
0.969503 0.245079i \(-0.0788140\pi\)
\(558\) 4690.50 0.355851
\(559\) −9085.83 + 5857.75i −0.687459 + 0.443214i
\(560\) 5192.03 0.391792
\(561\) −874.228 + 1514.21i −0.0657931 + 0.113957i
\(562\) −58.9976 + 102.187i −0.00442822 + 0.00766991i
\(563\) −12087.1 20935.5i −0.904815 1.56719i −0.821165 0.570690i \(-0.806676\pi\)
−0.0836495 0.996495i \(-0.526658\pi\)
\(564\) 12304.9 0.918672
\(565\) −4089.67 7083.51i −0.304520 0.527443i
\(566\) −4695.58 8132.99i −0.348710 0.603984i
\(567\) 26104.9 1.93352
\(568\) 578.225 + 1001.52i 0.0427144 + 0.0739835i
\(569\) −4816.74 + 8342.84i −0.354883 + 0.614675i −0.987098 0.160118i \(-0.948813\pi\)
0.632215 + 0.774793i \(0.282146\pi\)
\(570\) −373.811 + 647.460i −0.0274688 + 0.0475774i
\(571\) −8221.17 −0.602531 −0.301266 0.953540i \(-0.597409\pi\)
−0.301266 + 0.953540i \(0.597409\pi\)
\(572\) −450.980 9186.80i −0.0329658 0.671537i
\(573\) 22926.3 1.67148
\(574\) 8013.18 13879.2i 0.582689 1.00925i
\(575\) −19.4244 + 33.6441i −0.00140879 + 0.00244010i
\(576\) −236.916 410.350i −0.0171380 0.0296839i
\(577\) −7986.09 −0.576196 −0.288098 0.957601i \(-0.593023\pi\)
−0.288098 + 0.957601i \(0.593023\pi\)
\(578\) 4876.08 + 8445.62i 0.350896 + 0.607770i
\(579\) 6215.42 + 10765.4i 0.446121 + 0.772704i
\(580\) 461.325 0.0330267
\(581\) −17130.2 29670.3i −1.22320 2.11865i
\(582\) 806.595 1397.06i 0.0574475 0.0995020i
\(583\) −6742.21 + 11677.8i −0.478960 + 0.829583i
\(584\) −1608.14 −0.113948
\(585\) −3169.05 + 2043.13i −0.223973 + 0.144398i
\(586\) −16237.6 −1.14466
\(587\) −3722.38 + 6447.35i −0.261736 + 0.453340i −0.966703 0.255900i \(-0.917628\pi\)
0.704967 + 0.709240i \(0.250962\pi\)
\(588\) −6439.64 + 11153.8i −0.451643 + 0.782269i
\(589\) 929.004 + 1609.08i 0.0649897 + 0.112565i
\(590\) 3106.26 0.216750
\(591\) −9122.26 15800.2i −0.634923 1.09972i
\(592\) 3043.69 + 5271.83i 0.211309 + 0.365998i
\(593\) −6806.49 −0.471347 −0.235674 0.971832i \(-0.575730\pi\)
−0.235674 + 0.971832i \(0.575730\pi\)
\(594\) −5638.84 9766.76i −0.389502 0.674638i
\(595\) 985.889 1707.61i 0.0679286 0.117656i
\(596\) 590.337 1022.49i 0.0405724 0.0702734i
\(597\) −2879.78 −0.197423
\(598\) −440.934 + 284.276i −0.0301524 + 0.0194396i
\(599\) 22251.5 1.51782 0.758909 0.651196i \(-0.225733\pi\)
0.758909 + 0.651196i \(0.225733\pi\)
\(600\) 162.867 282.094i 0.0110817 0.0191941i
\(601\) 10608.1 18373.7i 0.719988 1.24706i −0.241016 0.970521i \(-0.577480\pi\)
0.961004 0.276535i \(-0.0891862\pi\)
\(602\) −6888.07 11930.5i −0.466340 0.807724i
\(603\) −3831.55 −0.258761
\(604\) −4174.20 7229.93i −0.281202 0.487055i
\(605\) 5844.04 + 10122.2i 0.392717 + 0.680206i
\(606\) −10378.3 −0.695691
\(607\) 8895.83 + 15408.0i 0.594844 + 1.03030i 0.993569 + 0.113230i \(0.0361197\pi\)
−0.398724 + 0.917071i \(0.630547\pi\)
\(608\) 93.8474 162.548i 0.00625989 0.0108424i
\(609\) −929.694 + 1610.28i −0.0618606 + 0.107146i
\(610\) −12227.9 −0.811626
\(611\) 1205.32 + 24553.3i 0.0798070 + 1.62573i
\(612\) −179.947 −0.0118855
\(613\) 5487.29 9504.27i 0.361549 0.626221i −0.626667 0.779287i \(-0.715581\pi\)
0.988216 + 0.153066i \(0.0489146\pi\)
\(614\) 1072.04 1856.83i 0.0704626 0.122045i
\(615\) 8549.80 + 14808.7i 0.560587 + 0.970965i
\(616\) 11721.2 0.766655
\(617\) 1530.46 + 2650.84i 0.0998609 + 0.172964i 0.911627 0.411019i \(-0.134827\pi\)
−0.811766 + 0.583983i \(0.801494\pi\)
\(618\) 2441.40 + 4228.62i 0.158912 + 0.275243i
\(619\) −8387.51 −0.544625 −0.272312 0.962209i \(-0.587788\pi\)
−0.272312 + 0.962209i \(0.587788\pi\)
\(620\) 6883.73 + 11923.0i 0.445899 + 0.772319i
\(621\) −321.629 + 557.078i −0.0207835 + 0.0359980i
\(622\) 4528.41 7843.43i 0.291917 0.505616i
\(623\) 19825.6 1.27495
\(624\) 3697.08 2383.55i 0.237182 0.152914i
\(625\) −14709.1 −0.941382
\(626\) 5396.13 9346.37i 0.344525 0.596735i
\(627\) −843.890 + 1461.66i −0.0537508 + 0.0930990i
\(628\) −1115.02 1931.28i −0.0708508 0.122717i
\(629\) 2311.81 0.146547
\(630\) −2402.49 4161.23i −0.151932 0.263155i
\(631\) 13105.5 + 22699.4i 0.826818 + 1.43209i 0.900522 + 0.434811i \(0.143185\pi\)
−0.0737032 + 0.997280i \(0.523482\pi\)
\(632\) 211.663 0.0133220
\(633\) 1769.22 + 3064.38i 0.111090 + 0.192414i
\(634\) −8222.40 + 14241.6i −0.515068 + 0.892125i
\(635\) −7234.25 + 12530.1i −0.452098 + 0.783057i
\(636\) −6448.85 −0.402065
\(637\) −22887.1 11757.1i −1.42358 0.731293i
\(638\) 1041.46 0.0646263
\(639\) 535.120 926.855i 0.0331283 0.0573800i
\(640\) 695.389 1204.45i 0.0429495 0.0743907i
\(641\) 12229.5 + 21182.1i 0.753565 + 1.30521i 0.946085 + 0.323919i \(0.105001\pi\)
−0.192520 + 0.981293i \(0.561666\pi\)
\(642\) 4964.23 0.305175
\(643\) −14490.9 25099.0i −0.888750 1.53936i −0.841355 0.540483i \(-0.818242\pi\)
−0.0473946 0.998876i \(-0.515092\pi\)
\(644\) −334.277 578.985i −0.0204540 0.0354273i
\(645\) 14698.7 0.897302
\(646\) −35.6404 61.7310i −0.00217067 0.00375971i
\(647\) 4423.15 7661.11i 0.268766 0.465517i −0.699777 0.714361i \(-0.746717\pi\)
0.968544 + 0.248844i \(0.0800507\pi\)
\(648\) 3496.34 6055.83i 0.211958 0.367123i
\(649\) 7012.47 0.424135
\(650\) 578.844 + 297.353i 0.0349294 + 0.0179433i
\(651\) −55490.3 −3.34076
\(652\) 2580.95 4470.34i 0.155027 0.268515i
\(653\) −13153.7 + 22782.9i −0.788275 + 1.36533i 0.138748 + 0.990328i \(0.455692\pi\)
−0.927023 + 0.375005i \(0.877641\pi\)
\(654\) 5581.75 + 9667.87i 0.333736 + 0.578048i
\(655\) −2829.12 −0.168768
\(656\) −2146.47 3717.80i −0.127753 0.221274i
\(657\) 744.131 + 1288.87i 0.0441877 + 0.0765353i
\(658\) −31326.8 −1.85600
\(659\) 1653.40 + 2863.78i 0.0977352 + 0.169282i 0.910747 0.412965i \(-0.135507\pi\)
−0.813012 + 0.582247i \(0.802174\pi\)
\(660\) −6253.05 + 10830.6i −0.368787 + 0.638758i
\(661\) 11801.3 20440.5i 0.694432 1.20279i −0.275940 0.961175i \(-0.588989\pi\)
0.970372 0.241616i \(-0.0776774\pi\)
\(662\) −1216.71 −0.0714332
\(663\) −81.9084 1668.53i −0.00479798 0.0977383i
\(664\) −9177.25 −0.536365
\(665\) 951.677 1648.35i 0.0554954 0.0961208i
\(666\) 2816.79 4878.83i 0.163887 0.283860i
\(667\) −29.7013 51.4442i −0.00172420 0.00298640i
\(668\) 10053.1 0.582284
\(669\) 9194.51 + 15925.4i 0.531361 + 0.920344i
\(670\) −5623.14 9739.56i −0.324240 0.561600i
\(671\) −27604.8 −1.58818
\(672\) 2802.79 + 4854.58i 0.160893 + 0.278675i
\(673\) 1887.77 3269.72i 0.108125 0.187278i −0.806886 0.590708i \(-0.798849\pi\)
0.915011 + 0.403429i \(0.132182\pi\)
\(674\) 8808.73 15257.2i 0.503412 0.871935i
\(675\) 797.901 0.0454981
\(676\) 5118.29 + 7143.67i 0.291209 + 0.406445i
\(677\) −11395.4 −0.646916 −0.323458 0.946242i \(-0.604845\pi\)
−0.323458 + 0.946242i \(0.604845\pi\)
\(678\) 4415.42 7647.73i 0.250108 0.433199i
\(679\) −2053.49 + 3556.75i −0.116062 + 0.201024i
\(680\) −264.088 457.414i −0.0148931 0.0257956i
\(681\) 9461.42 0.532397
\(682\) 15540.2 + 26916.5i 0.872531 + 1.51127i
\(683\) −118.213 204.751i −0.00662269 0.0114708i 0.862695 0.505724i \(-0.168775\pi\)
−0.869318 + 0.494254i \(0.835441\pi\)
\(684\) −173.703 −0.00971006
\(685\) 13103.5 + 22695.9i 0.730887 + 1.26593i
\(686\) 6150.66 10653.3i 0.342323 0.592920i
\(687\) 18055.1 31272.3i 1.00268 1.73670i
\(688\) −3690.18 −0.204487
\(689\) −631.693 12868.0i −0.0349283 0.711514i
\(690\) 713.325 0.0393563
\(691\) −4720.82 + 8176.70i −0.259897 + 0.450154i −0.966214 0.257741i \(-0.917022\pi\)
0.706317 + 0.707895i \(0.250355\pi\)
\(692\) 6801.06 11779.8i 0.373609 0.647110i
\(693\) −5423.69 9394.11i −0.297300 0.514939i
\(694\) −14332.2 −0.783922
\(695\) −2216.17 3838.53i −0.120956 0.209502i
\(696\) 249.035 + 431.342i 0.0135627 + 0.0234913i
\(697\) −1630.33 −0.0885986
\(698\) 1884.98 + 3264.88i 0.102217 + 0.177045i
\(699\) 9824.86 17017.2i 0.531631 0.920812i
\(700\) −414.639 + 718.176i −0.0223884 + 0.0387778i
\(701\) −145.814 −0.00785638 −0.00392819 0.999992i \(-0.501250\pi\)
−0.00392819 + 0.999992i \(0.501250\pi\)
\(702\) 9584.48 + 4923.56i 0.515303 + 0.264712i
\(703\) 2231.58 0.119724
\(704\) 1569.86 2719.08i 0.0840432 0.145567i
\(705\) 16712.3 28946.6i 0.892799 1.54637i
\(706\) 11954.0 + 20705.0i 0.637246 + 1.10374i
\(707\) 26421.8 1.40551
\(708\) 1676.84 + 2904.37i 0.0890105 + 0.154171i
\(709\) 5445.77 + 9432.35i 0.288463 + 0.499632i 0.973443 0.228929i \(-0.0735225\pi\)
−0.684980 + 0.728562i \(0.740189\pi\)
\(710\) 3141.34 0.166046
\(711\) −97.9422 169.641i −0.00516613 0.00894800i
\(712\) 2655.32 4599.14i 0.139764 0.242079i
\(713\) 886.386 1535.26i 0.0465574 0.0806397i
\(714\) 2128.83 0.111582
\(715\) −22223.9 11416.4i −1.16242 0.597134i
\(716\) −6280.89 −0.327832
\(717\) 1855.11 3213.14i 0.0966253 0.167360i
\(718\) −9068.77 + 15707.6i −0.471370 + 0.816436i
\(719\) 3447.89 + 5971.91i 0.178838 + 0.309756i 0.941483 0.337061i \(-0.109433\pi\)
−0.762645 + 0.646817i \(0.776100\pi\)
\(720\) −1287.10 −0.0666214
\(721\) −6215.49 10765.5i −0.321050 0.556075i
\(722\) 6824.60 + 11820.5i 0.351780 + 0.609301i
\(723\) 8823.04 0.453848
\(724\) −5843.99 10122.1i −0.299986 0.519592i
\(725\) −36.8417 + 63.8117i −0.00188726 + 0.00326884i
\(726\) −6309.53 + 10928.4i −0.322546 + 0.558666i
\(727\) 12841.0 0.655086 0.327543 0.944836i \(-0.393779\pi\)
0.327543 + 0.944836i \(0.393779\pi\)
\(728\) −9412.30 + 6068.23i −0.479180 + 0.308933i
\(729\) 11731.6 0.596029
\(730\) −2184.15 + 3783.07i −0.110739 + 0.191805i
\(731\) −700.711 + 1213.67i −0.0354538 + 0.0614078i
\(732\) −6600.93 11433.1i −0.333302 0.577296i
\(733\) −26005.8 −1.31043 −0.655216 0.755441i \(-0.727423\pi\)
−0.655216 + 0.755441i \(0.727423\pi\)
\(734\) −7844.12 13586.4i −0.394458 0.683220i
\(735\) 17492.4 + 30297.7i 0.877846 + 1.52047i
\(736\) −179.084 −0.00896893
\(737\) −12694.4 21987.3i −0.634470 1.09893i
\(738\) −1986.46 + 3440.65i −0.0990821 + 0.171615i
\(739\) 8885.01 15389.3i 0.442274 0.766041i −0.555584 0.831460i \(-0.687505\pi\)
0.997858 + 0.0654195i \(0.0208386\pi\)
\(740\) 16535.6 0.821432
\(741\) −79.0661 1610.63i −0.00391979 0.0798489i
\(742\) 16418.0 0.812295
\(743\) 14420.9 24977.7i 0.712046 1.23330i −0.252043 0.967716i \(-0.581102\pi\)
0.964088 0.265583i \(-0.0855644\pi\)
\(744\) −7432.03 + 12872.7i −0.366225 + 0.634321i
\(745\) −1603.57 2777.46i −0.0788594 0.136588i
\(746\) 2895.38 0.142101
\(747\) 4246.56 + 7355.25i 0.207996 + 0.360260i
\(748\) −596.187 1032.63i −0.0291427 0.0504767i
\(749\) −12638.3 −0.616547
\(750\) −8408.77 14564.4i −0.409393 0.709090i
\(751\) 4216.12 7302.54i 0.204858 0.354825i −0.745229 0.666808i \(-0.767660\pi\)
0.950088 + 0.311983i \(0.100993\pi\)
\(752\) −4195.73 + 7267.21i −0.203461 + 0.352404i
\(753\) 6081.12 0.294301
\(754\) −836.306 + 539.177i −0.0403932 + 0.0260420i
\(755\) −22677.3 −1.09313
\(756\) −6865.58 + 11891.5i −0.330289 + 0.572078i
\(757\) −19480.8 + 33741.7i −0.935325 + 1.62003i −0.161272 + 0.986910i \(0.551560\pi\)
−0.774053 + 0.633121i \(0.781774\pi\)
\(758\) 11819.0 + 20471.0i 0.566337 + 0.980925i
\(759\) 1610.35 0.0770120
\(760\) −254.924 441.541i −0.0121672 0.0210742i
\(761\) −4012.86 6950.47i −0.191151 0.331083i 0.754481 0.656322i \(-0.227889\pi\)
−0.945632 + 0.325239i \(0.894555\pi\)
\(762\) −15620.9 −0.742634
\(763\) −14210.4 24613.2i −0.674249 1.16783i
\(764\) −7817.39 + 13540.1i −0.370188 + 0.641184i
\(765\) −244.401 + 423.315i −0.0115508 + 0.0200065i
\(766\) 14501.6 0.684026
\(767\) −5631.13 + 3630.46i −0.265096 + 0.170911i
\(768\) 1501.56 0.0705505
\(769\) −11295.1 + 19563.8i −0.529666 + 0.917408i 0.469735 + 0.882807i \(0.344349\pi\)
−0.999401 + 0.0346010i \(0.988984\pi\)
\(770\) 15919.5 27573.4i 0.745063 1.29049i
\(771\) −1480.75 2564.73i −0.0691671 0.119801i
\(772\) −8477.32 −0.395214
\(773\) 20460.0 + 35437.7i 0.951997 + 1.64891i 0.741096 + 0.671399i \(0.234306\pi\)
0.210901 + 0.977508i \(0.432360\pi\)
\(774\) 1707.55 + 2957.55i 0.0792977 + 0.137348i
\(775\) −2198.96 −0.101921
\(776\) 550.065 + 952.740i 0.0254461 + 0.0440739i
\(777\) −33323.6 + 57718.2i −1.53858 + 2.66490i
\(778\) 9331.29 16162.3i 0.430004 0.744788i
\(779\) −1573.76 −0.0723821
\(780\) −585.863 11934.5i −0.0268939 0.547849i
\(781\) 7091.67 0.324917
\(782\) −34.0054 + 58.8991i −0.00155503 + 0.00269338i
\(783\) −610.024 + 1056.59i −0.0278422 + 0.0482242i
\(784\) −4391.57 7606.41i −0.200053 0.346502i
\(785\) −6057.63 −0.275422
\(786\) −1527.23 2645.25i −0.0693062 0.120042i
\(787\) −7807.21 13522.5i −0.353618 0.612484i 0.633263 0.773937i \(-0.281715\pi\)
−0.986880 + 0.161453i \(0.948382\pi\)
\(788\) 12442.0 0.562472
\(789\) 496.577 + 860.097i 0.0224063 + 0.0388089i
\(790\) 287.478 497.926i 0.0129468 0.0224246i
\(791\) −11241.1 + 19470.2i −0.505294 + 0.875195i
\(792\) −2905.67 −0.130364
\(793\) 22167.1 14291.4i 0.992657 0.639979i
\(794\) −15388.5 −0.687806
\(795\) −8758.71 + 15170.5i −0.390742 + 0.676784i
\(796\) 981.946 1700.78i 0.0437238 0.0757319i
\(797\) −8934.79 15475.5i −0.397097 0.687793i 0.596269 0.802785i \(-0.296649\pi\)
−0.993366 + 0.114992i \(0.963316\pi\)
\(798\) 2054.96 0.0911589
\(799\) 1593.41 + 2759.87i 0.0705517 + 0.122199i
\(800\) 111.068 + 192.376i 0.00490858 + 0.00850191i
\(801\) −4914.74 −0.216796
\(802\) −1857.46 3217.21i −0.0817819 0.141650i
\(803\) −4930.80 + 8540.39i −0.216692 + 0.375322i
\(804\) 6071.03 10515.3i 0.266304 0.461253i
\(805\) −1816.04 −0.0795116
\(806\) −26414.1 13569.0i −1.15434 0.592985i
\(807\) 9044.74 0.394535
\(808\) 3538.78 6129.34i 0.154076 0.266868i
\(809\) 4056.59 7026.23i 0.176294 0.305351i −0.764314 0.644844i \(-0.776922\pi\)
0.940608 + 0.339493i \(0.110256\pi\)
\(810\) −9497.33 16449.9i −0.411978 0.713567i
\(811\) 22750.9 0.985073 0.492536 0.870292i \(-0.336070\pi\)
0.492536 + 0.870292i \(0.336070\pi\)
\(812\) −634.013 1098.14i −0.0274008 0.0474597i
\(813\) 3458.73 + 5990.70i 0.149204 + 0.258429i
\(814\) 37329.6 1.60737
\(815\) −7010.81 12143.1i −0.301323 0.521906i
\(816\) 285.123 493.848i 0.0122320 0.0211864i
\(817\) −676.395 + 1171.55i −0.0289646 + 0.0501681i
\(818\) −1076.94 −0.0460322
\(819\) 9218.79 + 4735.70i 0.393322 + 0.202050i
\(820\) −11661.2 −0.496618
\(821\) 2997.11 5191.15i 0.127406 0.220673i −0.795265 0.606262i \(-0.792668\pi\)
0.922671 + 0.385589i \(0.126002\pi\)
\(822\) −14147.2 + 24503.6i −0.600291 + 1.03974i
\(823\) 17094.1 + 29607.9i 0.724015 + 1.25403i 0.959378 + 0.282123i \(0.0910387\pi\)
−0.235363 + 0.971907i \(0.575628\pi\)
\(824\) −3329.86 −0.140778
\(825\) −998.745 1729.88i −0.0421477 0.0730019i
\(826\) −4269.02 7394.16i −0.179828 0.311472i
\(827\) 39546.0 1.66282 0.831409 0.555661i \(-0.187535\pi\)
0.831409 + 0.555661i \(0.187535\pi\)
\(828\) 82.8669 + 143.530i 0.00347805 + 0.00602416i
\(829\) −12104.0 + 20964.7i −0.507104 + 0.878329i 0.492863 + 0.870107i \(0.335950\pi\)
−0.999966 + 0.00822196i \(0.997383\pi\)
\(830\) −12464.4 + 21588.9i −0.521259 + 0.902847i
\(831\) 22909.9 0.956360
\(832\) 147.084 + 2996.21i 0.00612888 + 0.124850i
\(833\) −3335.57 −0.138740
\(834\) 2392.70 4144.27i 0.0993433 0.172068i
\(835\) 13653.9 23649.3i 0.565884 0.980140i
\(836\) −575.498 996.792i −0.0238086 0.0412378i
\(837\) −36410.2 −1.50361
\(838\) −4837.38 8378.59i −0.199409 0.345386i
\(839\) −17071.8 29569.1i −0.702482 1.21673i −0.967593 0.252516i \(-0.918742\pi\)
0.265111 0.964218i \(-0.414592\pi\)
\(840\) 15226.8 0.625447
\(841\) 12138.2 + 21023.9i 0.497690 + 0.862025i
\(842\) 1392.34 2411.60i 0.0569870 0.0987043i
\(843\) −173.024 + 299.686i −0.00706911 + 0.0122441i
\(844\) −2413.07 −0.0984139
\(845\) 23756.6 2338.06i 0.967164 0.0951856i
\(846\) 7765.89 0.315599
\(847\) 16063.3 27822.4i 0.651642 1.12868i
\(848\) 2198.92 3808.65i 0.0890464 0.154233i
\(849\) −13770.9 23851.9i −0.556673 0.964186i
\(850\) 84.3610 0.00340419
\(851\) −1064.60 1843.95i −0.0428839 0.0742770i
\(852\) 1695.78 + 2937.17i 0.0681883 + 0.118106i
\(853\) 13008.1 0.522145 0.261072 0.965319i \(-0.415924\pi\)
0.261072 + 0.965319i \(0.415924\pi\)
\(854\) 16805.1 + 29107.4i 0.673372 + 1.16632i
\(855\) −235.920 + 408.625i −0.00943659 + 0.0163447i
\(856\) −1692.70 + 2931.84i −0.0675879 + 0.117066i
\(857\) −35075.0 −1.39806 −0.699031 0.715091i \(-0.746385\pi\)
−0.699031 + 0.715091i \(0.746385\pi\)
\(858\) −1322.60 26942.4i −0.0526258 1.07203i
\(859\) −2869.77 −0.113988 −0.0569939 0.998375i \(-0.518152\pi\)
−0.0569939 + 0.998375i \(0.518152\pi\)
\(860\) −5011.94 + 8680.94i −0.198728 + 0.344207i
\(861\) 23500.5 40704.0i 0.930191 1.61114i
\(862\) −7907.55 13696.3i −0.312450 0.541180i
\(863\) 29617.3 1.16823 0.584117 0.811670i \(-0.301441\pi\)
0.584117 + 0.811670i \(0.301441\pi\)
\(864\) 1839.07 + 3185.36i 0.0724148 + 0.125426i
\(865\) −18474.1 31998.2i −0.726173 1.25777i
\(866\) 19265.1 0.755953
\(867\) 14300.2 + 24768.7i 0.560163 + 0.970230i
\(868\) 18921.0 32772.2i 0.739886 1.28152i
\(869\) 648.989 1124.08i 0.0253342 0.0438802i
\(870\) 1352.94 0.0527230
\(871\) 21577.0 + 11084.1i 0.839390 + 0.431195i
\(872\) −7613.04 −0.295654
\(873\) 509.059 881.715i 0.0197354 0.0341828i
\(874\) −32.8253 + 56.8552i −0.00127040 + 0.00220041i
\(875\) 21407.7 + 37079.2i 0.827099 + 1.43258i
\(876\) −4716.25 −0.181904
\(877\) 7675.09 + 13293.6i 0.295518 + 0.511852i 0.975105 0.221743i \(-0.0711744\pi\)
−0.679587 + 0.733595i \(0.737841\pi\)
\(878\) 647.469 + 1121.45i 0.0248873 + 0.0431060i
\(879\) −47620.6 −1.82731
\(880\) −4264.32 7386.02i −0.163353 0.282935i
\(881\) −3181.94 + 5511.28i −0.121682 + 0.210760i −0.920431 0.390904i \(-0.872162\pi\)
0.798749 + 0.601665i \(0.205496\pi\)
\(882\) −4064.19 + 7039.38i −0.155157 + 0.268739i
\(883\) −32249.9 −1.22910 −0.614550 0.788878i \(-0.710662\pi\)
−0.614550 + 0.788878i \(0.710662\pi\)
\(884\) 1013.35 + 520.561i 0.0385552 + 0.0198058i
\(885\) 9109.81 0.346015
\(886\) −16862.3 + 29206.3i −0.639390 + 1.10746i
\(887\) −14244.7 + 24672.5i −0.539221 + 0.933959i 0.459725 + 0.888061i \(0.347948\pi\)
−0.998946 + 0.0458972i \(0.985385\pi\)
\(888\) 8926.33 + 15460.9i 0.337329 + 0.584271i
\(889\) 39769.0 1.50035
\(890\) −7212.81 12493.0i −0.271656 0.470522i
\(891\) −21440.5 37136.0i −0.806155 1.39630i
\(892\) −12540.6 −0.470727
\(893\) 1538.12 + 2664.10i 0.0576384 + 0.0998327i
\(894\) 1731.30 2998.70i 0.0647688 0.112183i
\(895\) −8530.60 + 14775.4i −0.318599 + 0.551830i
\(896\) −3822.78 −0.142534
\(897\) −1293.14 + 833.704i −0.0481346 + 0.0310330i
\(898\) 24961.8 0.927600
\(899\) 1681.18 2911.89i 0.0623698 0.108028i
\(900\) 102.789 178.035i 0.00380699 0.00659389i
\(901\) −835.085 1446.41i −0.0308776 0.0534816i
\(902\) −26325.5 −0.971779
\(903\) −20200.8 34988.9i −0.744454 1.28943i
\(904\) 3011.13 + 5215.43i 0.110784 + 0.191884i
\(905\) −31748.8 −1.16615
\(906\) −12241.8 21203.4i −0.448904 0.777524i
\(907\) −3592.78 + 6222.88i −0.131529 + 0.227814i −0.924266 0.381749i \(-0.875322\pi\)
0.792737 + 0.609563i \(0.208655\pi\)
\(908\) −3226.15 + 5587.85i −0.117911 + 0.204228i
\(909\) −6549.94 −0.238997
\(910\) 1491.53 + 30383.6i 0.0543339 + 1.10682i
\(911\) 27000.2 0.981949 0.490975 0.871174i \(-0.336641\pi\)
0.490975 + 0.871174i \(0.336641\pi\)
\(912\) 275.229 476.711i 0.00999314 0.0173086i
\(913\) −28138.7 + 48737.7i −1.02000 + 1.76668i
\(914\) −12537.0 21714.8i −0.453707 0.785844i
\(915\) −35861.1 −1.29566
\(916\) 12312.8 + 21326.4i 0.444134 + 0.769262i
\(917\) 3888.15 + 6734.47i 0.140020 + 0.242521i
\(918\) 1396.85 0.0502209
\(919\) −10592.5 18346.8i −0.380213 0.658548i 0.610879 0.791724i \(-0.290816\pi\)
−0.991092 + 0.133175i \(0.957483\pi\)
\(920\) −243.229 + 421.285i −0.00871633 + 0.0150971i
\(921\) 3144.01 5445.58i 0.112485 0.194829i
\(922\) 2907.83 0.103866
\(923\) −5694.73 + 3671.47i −0.203082 + 0.130929i
\(924\) 34375.0 1.22387
\(925\) −1320.54 + 2287.24i −0.0469396 + 0.0813018i
\(926\) 7154.47 12391.9i 0.253899 0.439766i
\(927\) 1540.82 + 2668.77i 0.0545922 + 0.0945565i
\(928\) −339.663 −0.0120151
\(929\) −12021.9 20822.5i −0.424570 0.735377i 0.571810 0.820386i \(-0.306241\pi\)
−0.996380 + 0.0850093i \(0.972908\pi\)
\(930\) 20188.1 + 34966.8i 0.711822 + 1.23291i
\(931\) −3219.82 −0.113346
\(932\) 6700.14 + 11605.0i 0.235483 + 0.407869i
\(933\) 13280.6 23002.7i 0.466010 0.807153i
\(934\) 5823.27 10086.2i 0.204008 0.353352i
\(935\) −3238.92 −0.113288
\(936\) 2333.30 1504.31i 0.0814811 0.0525319i
\(937\) 6308.48 0.219946 0.109973 0.993935i \(-0.464924\pi\)
0.109973 + 0.993935i \(0.464924\pi\)
\(938\) −15456.1 + 26770.7i −0.538016 + 0.931872i
\(939\) 15825.4 27410.4i 0.549991 0.952613i
\(940\) 11397.1 + 19740.4i 0.395461 + 0.684958i
\(941\) 1549.84 0.0536912 0.0268456 0.999640i \(-0.491454\pi\)
0.0268456 + 0.999640i \(0.491454\pi\)
\(942\) −3270.07 5663.92i −0.113105 0.195903i
\(943\) 750.780 + 1300.39i 0.0259266 + 0.0449062i
\(944\) −2287.07 −0.0788535
\(945\) 18649.4 + 32301.7i 0.641974 + 1.11193i
\(946\) −11314.6 + 19597.5i −0.388869 + 0.673541i
\(947\) −6586.00 + 11407.3i −0.225994 + 0.391433i −0.956617 0.291348i \(-0.905896\pi\)
0.730623 + 0.682781i \(0.239230\pi\)
\(948\) 620.752 0.0212670
\(949\) −461.978 9410.82i −0.0158024 0.321905i
\(950\) 81.4335 0.00278111
\(951\) −24114.1 + 41766.8i −0.822243 + 1.42417i
\(952\) −725.888 + 1257.28i −0.0247124 + 0.0428031i
\(953\) −14012.7 24270.7i −0.476303 0.824980i 0.523329 0.852131i \(-0.324690\pi\)
−0.999631 + 0.0271505i \(0.991357\pi\)
\(954\) −4070.00 −0.138125
\(955\) 21234.9 + 36779.9i 0.719523 + 1.24625i
\(956\) 1265.11 + 2191.23i 0.0427997 + 0.0741312i
\(957\) 3054.31 0.103168
\(958\) −2920.17 5057.89i −0.0984828 0.170577i
\(959\) 36017.0 62383.2i 1.21277 2.10058i
\(960\) 2039.39 3532.33i 0.0685636 0.118756i
\(961\) 70552.9 2.36826
\(962\) −29976.3 + 19326.1i −1.00465 + 0.647711i
\(963\) 3133.02 0.104839
\(964\) −3008.47 + 5210.83i −0.100515 + 0.174097i
\(965\) −11513.7 + 19942.4i −0.384083 + 0.665252i
\(966\) −980.344 1698.01i −0.0326522 0.0565553i
\(967\) −4250.06 −0.141337 −0.0706684 0.997500i \(-0.522513\pi\)
−0.0706684 + 0.997500i \(0.522513\pi\)
\(968\) −4302.84 7452.73i −0.142870 0.247458i
\(969\) −104.524 181.040i −0.00346521 0.00600191i
\(970\) 2988.35 0.0989177
\(971\) 2356.03 + 4080.76i 0.0778667 + 0.134869i 0.902329 0.431047i \(-0.141856\pi\)
−0.824463 + 0.565916i \(0.808522\pi\)
\(972\) 4046.96 7009.53i 0.133545 0.231307i
\(973\) −6091.51 + 10550.8i −0.200704 + 0.347629i
\(974\) −6724.50 −0.221218
\(975\) 1697.59 + 872.055i 0.0557605 + 0.0286442i
\(976\) 9003.12 0.295269
\(977\) 26478.0 45861.2i 0.867047 1.50177i 0.00204652 0.999998i \(-0.499349\pi\)
0.865000 0.501771i \(-0.167318\pi\)
\(978\) 7569.24 13110.3i 0.247482 0.428652i
\(979\) −16283.1 28203.2i −0.531574 0.920714i
\(980\) −23858.2 −0.777675
\(981\) 3522.75 + 6101.59i 0.114651 + 0.198582i
\(982\) −14869.7 25755.0i −0.483207 0.836940i
\(983\) −10772.6 −0.349534 −0.174767 0.984610i \(-0.555917\pi\)
−0.174767 + 0.984610i \(0.555917\pi\)
\(984\) −6295.03 10903.3i −0.203941 0.353237i
\(985\) 16898.5 29269.1i 0.546631 0.946792i
\(986\) −64.4970 + 111.712i −0.00208317 + 0.00360815i
\(987\) −91873.1 −2.96287
\(988\) 978.189 + 502.496i 0.0314983 + 0.0161807i
\(989\) 1290.73 0.0414993
\(990\) −3946.43 + 6835.41i −0.126693 + 0.219438i
\(991\) −7696.24 + 13330.3i −0.246700 + 0.427296i −0.962608 0.270898i \(-0.912679\pi\)
0.715909 + 0.698194i \(0.246013\pi\)
\(992\) −5068.34 8778.62i −0.162218 0.280969i
\(993\) −3568.28 −0.114034
\(994\) −4317.24 7477.68i −0.137761 0.238609i
\(995\) −2667.32 4619.94i −0.0849848 0.147198i
\(996\) −26914.4 −0.856240
\(997\) −860.917 1491.15i −0.0273475 0.0473673i 0.852028 0.523497i \(-0.175373\pi\)
−0.879375 + 0.476129i \(0.842039\pi\)
\(998\) 18693.3 32377.7i 0.592911 1.02695i
\(999\) −21865.5 + 37872.1i −0.692486 + 1.19942i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 26.4.c.b.9.1 yes 4
3.2 odd 2 234.4.h.h.217.2 4
4.3 odd 2 208.4.i.d.113.2 4
13.2 odd 12 338.4.e.f.23.1 8
13.3 even 3 inner 26.4.c.b.3.1 4
13.4 even 6 338.4.a.g.1.2 2
13.5 odd 4 338.4.e.f.147.3 8
13.6 odd 12 338.4.b.e.337.2 4
13.7 odd 12 338.4.b.e.337.4 4
13.8 odd 4 338.4.e.f.147.1 8
13.9 even 3 338.4.a.h.1.2 2
13.10 even 6 338.4.c.j.315.1 4
13.11 odd 12 338.4.e.f.23.3 8
13.12 even 2 338.4.c.j.191.1 4
39.29 odd 6 234.4.h.h.55.2 4
52.3 odd 6 208.4.i.d.81.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.4.c.b.3.1 4 13.3 even 3 inner
26.4.c.b.9.1 yes 4 1.1 even 1 trivial
208.4.i.d.81.2 4 52.3 odd 6
208.4.i.d.113.2 4 4.3 odd 2
234.4.h.h.55.2 4 39.29 odd 6
234.4.h.h.217.2 4 3.2 odd 2
338.4.a.g.1.2 2 13.4 even 6
338.4.a.h.1.2 2 13.9 even 3
338.4.b.e.337.2 4 13.6 odd 12
338.4.b.e.337.4 4 13.7 odd 12
338.4.c.j.191.1 4 13.12 even 2
338.4.c.j.315.1 4 13.10 even 6
338.4.e.f.23.1 8 13.2 odd 12
338.4.e.f.23.3 8 13.11 odd 12
338.4.e.f.147.1 8 13.8 odd 4
338.4.e.f.147.3 8 13.5 odd 4