Properties

Label 208.4.i.d.81.2
Level $208$
Weight $4$
Character 208.81
Analytic conductor $12.272$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,4,Mod(81,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.81"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 208.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2723972812\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{217})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 55x^{2} + 54x + 2916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.2
Root \(-3.43273 + 5.94566i\) of defining polynomial
Character \(\chi\) \(=\) 208.81
Dual form 208.4.i.d.113.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.93273 + 5.07964i) q^{3} -10.8655 q^{5} +(-14.9327 + 25.8642i) q^{7} +(-3.70181 + 6.41172i) q^{9} +(-24.5291 - 42.4857i) q^{11} +(2.29819 - 46.8158i) q^{13} +(-31.8655 - 55.1926i) q^{15} +(3.03816 - 5.26225i) q^{17} +(-2.93273 + 5.07964i) q^{19} -175.175 q^{21} +(-2.79819 - 4.84661i) q^{23} -6.94178 q^{25} +114.942 q^{27} +(5.30724 + 9.19241i) q^{29} -316.771 q^{31} +(143.875 - 249.198i) q^{33} +(162.251 - 281.027i) q^{35} +(190.231 + 329.490i) q^{37} +(244.547 - 125.624i) q^{39} +(-134.155 - 232.363i) q^{41} +(-115.318 + 199.737i) q^{43} +(40.2219 - 69.6663i) q^{45} -524.466 q^{47} +(-274.473 - 475.401i) q^{49} +35.6404 q^{51} -274.865 q^{53} +(266.520 + 461.626i) q^{55} -34.4036 q^{57} +(-71.4709 + 123.791i) q^{59} +(-281.347 + 487.308i) q^{61} +(-110.556 - 191.489i) q^{63} +(-24.9709 + 508.675i) q^{65} +(-258.762 - 448.189i) q^{67} +(16.4127 - 28.4276i) q^{69} +(-72.2781 + 125.189i) q^{71} -201.018 q^{73} +(-20.3584 - 35.2617i) q^{75} +1465.15 q^{77} -26.4579 q^{79} +(437.042 + 756.979i) q^{81} +1147.16 q^{83} +(-33.0110 + 57.1767i) q^{85} +(-31.1294 + 53.9177i) q^{87} +(331.915 + 574.893i) q^{89} +(1176.54 + 758.529i) q^{91} +(-929.004 - 1609.08i) q^{93} +(31.8655 - 55.1926i) q^{95} +(68.7581 - 119.092i) q^{97} +363.208 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{3} - 14 q^{5} - 45 q^{7} - 59 q^{9} + 5 q^{11} - 35 q^{13} - 98 q^{15} + 130 q^{17} + 3 q^{19} - 82 q^{21} + 33 q^{23} - 234 q^{25} + 666 q^{27} + 198 q^{29} - 560 q^{31} + 767 q^{33} + 266 q^{35}+ \cdots - 4852 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.93273 + 5.07964i 0.564404 + 0.977577i 0.997105 + 0.0760390i \(0.0242274\pi\)
−0.432701 + 0.901538i \(0.642439\pi\)
\(4\) 0 0
\(5\) −10.8655 −0.971836 −0.485918 0.874004i \(-0.661515\pi\)
−0.485918 + 0.874004i \(0.661515\pi\)
\(6\) 0 0
\(7\) −14.9327 + 25.8642i −0.806292 + 1.39654i 0.109124 + 0.994028i \(0.465195\pi\)
−0.915416 + 0.402510i \(0.868138\pi\)
\(8\) 0 0
\(9\) −3.70181 + 6.41172i −0.137104 + 0.237471i
\(10\) 0 0
\(11\) −24.5291 42.4857i −0.672346 1.16454i −0.977237 0.212150i \(-0.931953\pi\)
0.304891 0.952387i \(-0.401380\pi\)
\(12\) 0 0
\(13\) 2.29819 46.8158i 0.0490310 0.998797i
\(14\) 0 0
\(15\) −31.8655 55.1926i −0.548508 0.950044i
\(16\) 0 0
\(17\) 3.03816 5.26225i 0.0433448 0.0750754i −0.843539 0.537068i \(-0.819532\pi\)
0.886884 + 0.461992i \(0.152865\pi\)
\(18\) 0 0
\(19\) −2.93273 + 5.07964i −0.0354113 + 0.0613341i −0.883188 0.469019i \(-0.844607\pi\)
0.847777 + 0.530353i \(0.177941\pi\)
\(20\) 0 0
\(21\) −175.175 −1.82030
\(22\) 0 0
\(23\) −2.79819 4.84661i −0.0253680 0.0439386i 0.853063 0.521808i \(-0.174742\pi\)
−0.878431 + 0.477870i \(0.841409\pi\)
\(24\) 0 0
\(25\) −6.94178 −0.0555342
\(26\) 0 0
\(27\) 114.942 0.819280
\(28\) 0 0
\(29\) 5.30724 + 9.19241i 0.0339838 + 0.0588616i 0.882517 0.470280i \(-0.155847\pi\)
−0.848533 + 0.529142i \(0.822514\pi\)
\(30\) 0 0
\(31\) −316.771 −1.83528 −0.917641 0.397410i \(-0.869909\pi\)
−0.917641 + 0.397410i \(0.869909\pi\)
\(32\) 0 0
\(33\) 143.875 249.198i 0.758950 1.31454i
\(34\) 0 0
\(35\) 162.251 281.027i 0.783583 1.35721i
\(36\) 0 0
\(37\) 190.231 + 329.490i 0.845237 + 1.46399i 0.885415 + 0.464801i \(0.153874\pi\)
−0.0401781 + 0.999193i \(0.512793\pi\)
\(38\) 0 0
\(39\) 244.547 125.624i 1.00407 0.515794i
\(40\) 0 0
\(41\) −134.155 232.363i −0.511010 0.885096i −0.999919 0.0127608i \(-0.995938\pi\)
0.488908 0.872335i \(-0.337395\pi\)
\(42\) 0 0
\(43\) −115.318 + 199.737i −0.408974 + 0.708363i −0.994775 0.102091i \(-0.967447\pi\)
0.585801 + 0.810455i \(0.300780\pi\)
\(44\) 0 0
\(45\) 40.2219 69.6663i 0.133243 0.230783i
\(46\) 0 0
\(47\) −524.466 −1.62768 −0.813842 0.581086i \(-0.802628\pi\)
−0.813842 + 0.581086i \(0.802628\pi\)
\(48\) 0 0
\(49\) −274.473 475.401i −0.800212 1.38601i
\(50\) 0 0
\(51\) 35.6404 0.0978560
\(52\) 0 0
\(53\) −274.865 −0.712371 −0.356186 0.934415i \(-0.615923\pi\)
−0.356186 + 0.934415i \(0.615923\pi\)
\(54\) 0 0
\(55\) 266.520 + 461.626i 0.653410 + 1.13174i
\(56\) 0 0
\(57\) −34.4036 −0.0799451
\(58\) 0 0
\(59\) −71.4709 + 123.791i −0.157707 + 0.273157i −0.934041 0.357165i \(-0.883744\pi\)
0.776334 + 0.630321i \(0.217077\pi\)
\(60\) 0 0
\(61\) −281.347 + 487.308i −0.590538 + 1.02284i 0.403622 + 0.914926i \(0.367751\pi\)
−0.994160 + 0.107916i \(0.965582\pi\)
\(62\) 0 0
\(63\) −110.556 191.489i −0.221092 0.382942i
\(64\) 0 0
\(65\) −24.9709 + 508.675i −0.0476501 + 0.970667i
\(66\) 0 0
\(67\) −258.762 448.189i −0.471833 0.817239i 0.527648 0.849463i \(-0.323074\pi\)
−0.999481 + 0.0322247i \(0.989741\pi\)
\(68\) 0 0
\(69\) 16.4127 28.4276i 0.0286356 0.0495982i
\(70\) 0 0
\(71\) −72.2781 + 125.189i −0.120815 + 0.209257i −0.920089 0.391709i \(-0.871884\pi\)
0.799275 + 0.600966i \(0.205217\pi\)
\(72\) 0 0
\(73\) −201.018 −0.322293 −0.161147 0.986930i \(-0.551519\pi\)
−0.161147 + 0.986930i \(0.551519\pi\)
\(74\) 0 0
\(75\) −20.3584 35.2617i −0.0313438 0.0542890i
\(76\) 0 0
\(77\) 1465.15 2.16843
\(78\) 0 0
\(79\) −26.4579 −0.0376804 −0.0188402 0.999823i \(-0.505997\pi\)
−0.0188402 + 0.999823i \(0.505997\pi\)
\(80\) 0 0
\(81\) 437.042 + 756.979i 0.599509 + 1.03838i
\(82\) 0 0
\(83\) 1147.16 1.51707 0.758535 0.651632i \(-0.225916\pi\)
0.758535 + 0.651632i \(0.225916\pi\)
\(84\) 0 0
\(85\) −33.0110 + 57.1767i −0.0421241 + 0.0729610i
\(86\) 0 0
\(87\) −31.1294 + 53.9177i −0.0383612 + 0.0664435i
\(88\) 0 0
\(89\) 331.915 + 574.893i 0.395313 + 0.684703i 0.993141 0.116922i \(-0.0373027\pi\)
−0.597828 + 0.801625i \(0.703969\pi\)
\(90\) 0 0
\(91\) 1176.54 + 758.529i 1.35533 + 0.873796i
\(92\) 0 0
\(93\) −929.004 1609.08i −1.03584 1.79413i
\(94\) 0 0
\(95\) 31.8655 55.1926i 0.0344140 0.0596067i
\(96\) 0 0
\(97\) 68.7581 119.092i 0.0719724 0.124660i −0.827793 0.561033i \(-0.810404\pi\)
0.899766 + 0.436373i \(0.143737\pi\)
\(98\) 0 0
\(99\) 363.208 0.368725
\(100\) 0 0
\(101\) 442.347 + 766.168i 0.435794 + 0.754818i 0.997360 0.0726144i \(-0.0231342\pi\)
−0.561566 + 0.827432i \(0.689801\pi\)
\(102\) 0 0
\(103\) 416.233 0.398181 0.199091 0.979981i \(-0.436201\pi\)
0.199091 + 0.979981i \(0.436201\pi\)
\(104\) 0 0
\(105\) 1903.35 1.76903
\(106\) 0 0
\(107\) 211.587 + 366.480i 0.191167 + 0.331112i 0.945637 0.325223i \(-0.105439\pi\)
−0.754470 + 0.656335i \(0.772106\pi\)
\(108\) 0 0
\(109\) −951.630 −0.836235 −0.418118 0.908393i \(-0.637310\pi\)
−0.418118 + 0.908393i \(0.637310\pi\)
\(110\) 0 0
\(111\) −1115.79 + 1932.61i −0.954111 + 1.65257i
\(112\) 0 0
\(113\) 376.391 651.929i 0.313344 0.542729i −0.665740 0.746184i \(-0.731884\pi\)
0.979084 + 0.203456i \(0.0652172\pi\)
\(114\) 0 0
\(115\) 30.4036 + 52.6606i 0.0246535 + 0.0427011i
\(116\) 0 0
\(117\) 291.662 + 188.039i 0.230463 + 0.148583i
\(118\) 0 0
\(119\) 90.7361 + 157.159i 0.0698971 + 0.121065i
\(120\) 0 0
\(121\) −537.854 + 931.591i −0.404098 + 0.699918i
\(122\) 0 0
\(123\) 786.878 1362.91i 0.576833 0.999104i
\(124\) 0 0
\(125\) 1433.61 1.02581
\(126\) 0 0
\(127\) −665.802 1153.20i −0.465200 0.805750i 0.534011 0.845478i \(-0.320684\pi\)
−0.999211 + 0.0397279i \(0.987351\pi\)
\(128\) 0 0
\(129\) −1352.79 −0.923306
\(130\) 0 0
\(131\) −260.378 −0.173659 −0.0868294 0.996223i \(-0.527674\pi\)
−0.0868294 + 0.996223i \(0.527674\pi\)
\(132\) 0 0
\(133\) −87.5873 151.706i −0.0571036 0.0989064i
\(134\) 0 0
\(135\) −1248.90 −0.796206
\(136\) 0 0
\(137\) −1205.97 + 2088.81i −0.752068 + 1.30262i 0.194751 + 0.980853i \(0.437610\pi\)
−0.946819 + 0.321767i \(0.895723\pi\)
\(138\) 0 0
\(139\) −203.965 + 353.278i −0.124461 + 0.215573i −0.921522 0.388326i \(-0.873054\pi\)
0.797061 + 0.603899i \(0.206387\pi\)
\(140\) 0 0
\(141\) −1538.12 2664.10i −0.918672 1.59119i
\(142\) 0 0
\(143\) −2045.37 + 1050.71i −1.19610 + 0.614439i
\(144\) 0 0
\(145\) −57.6656 99.8798i −0.0330267 0.0572039i
\(146\) 0 0
\(147\) 1609.91 2788.45i 0.903286 1.56454i
\(148\) 0 0
\(149\) 147.584 255.623i 0.0811447 0.140547i −0.822597 0.568625i \(-0.807476\pi\)
0.903742 + 0.428078i \(0.140809\pi\)
\(150\) 0 0
\(151\) −2087.10 −1.12481 −0.562403 0.826863i \(-0.690123\pi\)
−0.562403 + 0.826863i \(0.690123\pi\)
\(152\) 0 0
\(153\) 22.4934 + 38.9597i 0.0118855 + 0.0205863i
\(154\) 0 0
\(155\) 3441.86 1.78359
\(156\) 0 0
\(157\) 557.512 0.283403 0.141702 0.989909i \(-0.454743\pi\)
0.141702 + 0.989909i \(0.454743\pi\)
\(158\) 0 0
\(159\) −806.106 1396.22i −0.402065 0.696397i
\(160\) 0 0
\(161\) 167.138 0.0818159
\(162\) 0 0
\(163\) −645.238 + 1117.59i −0.310055 + 0.537031i −0.978374 0.206844i \(-0.933681\pi\)
0.668319 + 0.743875i \(0.267014\pi\)
\(164\) 0 0
\(165\) −1563.26 + 2707.65i −0.737575 + 1.27752i
\(166\) 0 0
\(167\) 1256.64 + 2176.56i 0.582284 + 1.00854i 0.995208 + 0.0977795i \(0.0311740\pi\)
−0.412925 + 0.910765i \(0.635493\pi\)
\(168\) 0 0
\(169\) −2186.44 215.183i −0.995192 0.0979441i
\(170\) 0 0
\(171\) −21.7128 37.6077i −0.00971006 0.0168183i
\(172\) 0 0
\(173\) 1700.26 2944.94i 0.747218 1.29422i −0.201934 0.979399i \(-0.564723\pi\)
0.949151 0.314820i \(-0.101944\pi\)
\(174\) 0 0
\(175\) 103.660 179.544i 0.0447768 0.0775557i
\(176\) 0 0
\(177\) −838.419 −0.356042
\(178\) 0 0
\(179\) −785.111 1359.85i −0.327832 0.567822i 0.654249 0.756279i \(-0.272985\pi\)
−0.982081 + 0.188457i \(0.939651\pi\)
\(180\) 0 0
\(181\) 2921.99 1.19995 0.599973 0.800021i \(-0.295178\pi\)
0.599973 + 0.800021i \(0.295178\pi\)
\(182\) 0 0
\(183\) −3300.46 −1.33321
\(184\) 0 0
\(185\) −2066.95 3580.06i −0.821432 1.42276i
\(186\) 0 0
\(187\) −298.093 −0.116571
\(188\) 0 0
\(189\) −1716.39 + 2972.88i −0.660578 + 1.14416i
\(190\) 0 0
\(191\) 1954.35 3385.03i 0.740375 1.28237i −0.211949 0.977281i \(-0.567981\pi\)
0.952325 0.305087i \(-0.0986855\pi\)
\(192\) 0 0
\(193\) 1059.66 + 1835.39i 0.395214 + 0.684531i 0.993128 0.117029i \(-0.0373371\pi\)
−0.597914 + 0.801560i \(0.704004\pi\)
\(194\) 0 0
\(195\) −2657.12 + 1364.96i −0.975796 + 0.501267i
\(196\) 0 0
\(197\) −1555.25 2693.77i −0.562472 0.974230i −0.997280 0.0737067i \(-0.976517\pi\)
0.434808 0.900523i \(-0.356816\pi\)
\(198\) 0 0
\(199\) −245.487 + 425.195i −0.0874476 + 0.151464i −0.906432 0.422353i \(-0.861204\pi\)
0.818984 + 0.573816i \(0.194538\pi\)
\(200\) 0 0
\(201\) 1517.76 2628.83i 0.532609 0.922506i
\(202\) 0 0
\(203\) −317.006 −0.109603
\(204\) 0 0
\(205\) 1457.65 + 2524.73i 0.496618 + 0.860168i
\(206\) 0 0
\(207\) 41.4335 0.0139122
\(208\) 0 0
\(209\) 287.749 0.0952345
\(210\) 0 0
\(211\) −301.634 522.445i −0.0984139 0.170458i 0.812614 0.582802i \(-0.198044\pi\)
−0.911028 + 0.412344i \(0.864710\pi\)
\(212\) 0 0
\(213\) −847.889 −0.272753
\(214\) 0 0
\(215\) 1252.99 2170.24i 0.397455 0.688413i
\(216\) 0 0
\(217\) 4730.26 8193.04i 1.47977 2.56304i
\(218\) 0 0
\(219\) −589.532 1021.10i −0.181904 0.315066i
\(220\) 0 0
\(221\) −239.374 154.328i −0.0728599 0.0469737i
\(222\) 0 0
\(223\) −1567.57 2715.11i −0.470727 0.815324i 0.528712 0.848801i \(-0.322675\pi\)
−0.999439 + 0.0334775i \(0.989342\pi\)
\(224\) 0 0
\(225\) 25.6972 44.5088i 0.00761397 0.0131878i
\(226\) 0 0
\(227\) 806.537 1396.96i 0.235823 0.408457i −0.723689 0.690126i \(-0.757555\pi\)
0.959511 + 0.281670i \(0.0908882\pi\)
\(228\) 0 0
\(229\) −6156.40 −1.77653 −0.888267 0.459327i \(-0.848091\pi\)
−0.888267 + 0.459327i \(0.848091\pi\)
\(230\) 0 0
\(231\) 4296.88 + 7442.41i 1.22387 + 2.11980i
\(232\) 0 0
\(233\) −3350.07 −0.941934 −0.470967 0.882151i \(-0.656095\pi\)
−0.470967 + 0.882151i \(0.656095\pi\)
\(234\) 0 0
\(235\) 5698.56 1.58184
\(236\) 0 0
\(237\) −77.5939 134.397i −0.0212670 0.0368354i
\(238\) 0 0
\(239\) 632.554 0.171199 0.0855994 0.996330i \(-0.472719\pi\)
0.0855994 + 0.996330i \(0.472719\pi\)
\(240\) 0 0
\(241\) −752.118 + 1302.71i −0.201030 + 0.348194i −0.948861 0.315696i \(-0.897762\pi\)
0.747831 + 0.663890i \(0.231096\pi\)
\(242\) 0 0
\(243\) −1011.74 + 1752.38i −0.267091 + 0.462615i
\(244\) 0 0
\(245\) 2982.27 + 5165.45i 0.777675 + 1.34697i
\(246\) 0 0
\(247\) 231.067 + 148.972i 0.0595241 + 0.0383760i
\(248\) 0 0
\(249\) 3364.30 + 5827.14i 0.856240 + 1.48305i
\(250\) 0 0
\(251\) 518.384 897.868i 0.130359 0.225789i −0.793456 0.608628i \(-0.791720\pi\)
0.923815 + 0.382839i \(0.125054\pi\)
\(252\) 0 0
\(253\) −137.274 + 237.766i −0.0341121 + 0.0590839i
\(254\) 0 0
\(255\) −387.249 −0.0951000
\(256\) 0 0
\(257\) −252.452 437.260i −0.0612744 0.106130i 0.833761 0.552126i \(-0.186183\pi\)
−0.895035 + 0.445995i \(0.852850\pi\)
\(258\) 0 0
\(259\) −11362.7 −2.72603
\(260\) 0 0
\(261\) −78.5856 −0.0186373
\(262\) 0 0
\(263\) −84.6612 146.638i −0.0198496 0.0343804i 0.855930 0.517092i \(-0.172985\pi\)
−0.875780 + 0.482711i \(0.839652\pi\)
\(264\) 0 0
\(265\) 2986.54 0.692308
\(266\) 0 0
\(267\) −1946.83 + 3372.01i −0.446233 + 0.772898i
\(268\) 0 0
\(269\) −771.017 + 1335.44i −0.174757 + 0.302689i −0.940077 0.340961i \(-0.889247\pi\)
0.765320 + 0.643650i \(0.222581\pi\)
\(270\) 0 0
\(271\) −589.678 1021.35i −0.132179 0.228940i 0.792338 0.610083i \(-0.208864\pi\)
−0.924516 + 0.381143i \(0.875531\pi\)
\(272\) 0 0
\(273\) −402.585 + 8200.94i −0.0892510 + 1.81811i
\(274\) 0 0
\(275\) 170.276 + 294.926i 0.0373382 + 0.0646717i
\(276\) 0 0
\(277\) −1952.95 + 3382.61i −0.423615 + 0.733723i −0.996290 0.0860599i \(-0.972572\pi\)
0.572675 + 0.819782i \(0.305906\pi\)
\(278\) 0 0
\(279\) 1172.63 2031.05i 0.251625 0.435827i
\(280\) 0 0
\(281\) 58.9976 0.0125249 0.00626245 0.999980i \(-0.498007\pi\)
0.00626245 + 0.999980i \(0.498007\pi\)
\(282\) 0 0
\(283\) 2347.79 + 4066.49i 0.493151 + 0.854163i 0.999969 0.00789055i \(-0.00251167\pi\)
−0.506818 + 0.862053i \(0.669178\pi\)
\(284\) 0 0
\(285\) 373.811 0.0776936
\(286\) 0 0
\(287\) 8013.18 1.64809
\(288\) 0 0
\(289\) 2438.04 + 4222.81i 0.496242 + 0.859517i
\(290\) 0 0
\(291\) 806.595 0.162486
\(292\) 0 0
\(293\) 4059.41 7031.11i 0.809397 1.40192i −0.103885 0.994589i \(-0.533127\pi\)
0.913282 0.407327i \(-0.133539\pi\)
\(294\) 0 0
\(295\) 776.564 1345.05i 0.153265 0.265464i
\(296\) 0 0
\(297\) −2819.42 4883.38i −0.550839 0.954082i
\(298\) 0 0
\(299\) −233.329 + 119.861i −0.0451296 + 0.0231831i
\(300\) 0 0
\(301\) −3444.03 5965.24i −0.659504 1.14229i
\(302\) 0 0
\(303\) −2594.57 + 4493.93i −0.491928 + 0.852044i
\(304\) 0 0
\(305\) 3056.97 5294.82i 0.573907 0.994035i
\(306\) 0 0
\(307\) 1072.04 0.199298 0.0996492 0.995023i \(-0.468228\pi\)
0.0996492 + 0.995023i \(0.468228\pi\)
\(308\) 0 0
\(309\) 1220.70 + 2114.31i 0.224735 + 0.389252i
\(310\) 0 0
\(311\) 4528.41 0.825667 0.412834 0.910806i \(-0.364539\pi\)
0.412834 + 0.910806i \(0.364539\pi\)
\(312\) 0 0
\(313\) −5396.13 −0.974464 −0.487232 0.873273i \(-0.661993\pi\)
−0.487232 + 0.873273i \(0.661993\pi\)
\(314\) 0 0
\(315\) 1201.24 + 2080.62i 0.214865 + 0.372157i
\(316\) 0 0
\(317\) 8222.40 1.45683 0.728417 0.685134i \(-0.240257\pi\)
0.728417 + 0.685134i \(0.240257\pi\)
\(318\) 0 0
\(319\) 260.364 450.963i 0.0456977 0.0791508i
\(320\) 0 0
\(321\) −1241.06 + 2149.57i −0.215791 + 0.373762i
\(322\) 0 0
\(323\) 17.8202 + 30.8655i 0.00306979 + 0.00531704i
\(324\) 0 0
\(325\) −15.9535 + 324.985i −0.00272290 + 0.0554675i
\(326\) 0 0
\(327\) −2790.87 4833.94i −0.471975 0.817484i
\(328\) 0 0
\(329\) 7831.71 13564.9i 1.31239 2.27312i
\(330\) 0 0
\(331\) −304.177 + 526.851i −0.0505109 + 0.0874874i −0.890175 0.455618i \(-0.849418\pi\)
0.839664 + 0.543105i \(0.182752\pi\)
\(332\) 0 0
\(333\) −2816.79 −0.463542
\(334\) 0 0
\(335\) 2811.57 + 4869.78i 0.458544 + 0.794222i
\(336\) 0 0
\(337\) −8808.73 −1.42386 −0.711932 0.702248i \(-0.752180\pi\)
−0.711932 + 0.702248i \(0.752180\pi\)
\(338\) 0 0
\(339\) 4415.42 0.707412
\(340\) 0 0
\(341\) 7770.11 + 13458.2i 1.23394 + 2.13725i
\(342\) 0 0
\(343\) 6150.66 0.968235
\(344\) 0 0
\(345\) −178.331 + 308.879i −0.0278291 + 0.0482014i
\(346\) 0 0
\(347\) −3583.04 + 6206.01i −0.554317 + 0.960105i 0.443640 + 0.896205i \(0.353687\pi\)
−0.997956 + 0.0638994i \(0.979646\pi\)
\(348\) 0 0
\(349\) 942.489 + 1632.44i 0.144557 + 0.250380i 0.929207 0.369559i \(-0.120491\pi\)
−0.784651 + 0.619938i \(0.787158\pi\)
\(350\) 0 0
\(351\) 264.158 5381.09i 0.0401701 0.818294i
\(352\) 0 0
\(353\) 5977.01 + 10352.5i 0.901202 + 1.56093i 0.825936 + 0.563764i \(0.190647\pi\)
0.0752661 + 0.997163i \(0.476019\pi\)
\(354\) 0 0
\(355\) 785.335 1360.24i 0.117412 0.203364i
\(356\) 0 0
\(357\) −532.209 + 921.812i −0.0789005 + 0.136660i
\(358\) 0 0
\(359\) −9068.77 −1.33324 −0.666618 0.745400i \(-0.732259\pi\)
−0.666618 + 0.745400i \(0.732259\pi\)
\(360\) 0 0
\(361\) 3412.30 + 5910.27i 0.497492 + 0.861682i
\(362\) 0 0
\(363\) −6309.53 −0.912298
\(364\) 0 0
\(365\) 2184.15 0.313216
\(366\) 0 0
\(367\) 3922.06 + 6793.21i 0.557847 + 0.966220i 0.997676 + 0.0681380i \(0.0217058\pi\)
−0.439829 + 0.898082i \(0.644961\pi\)
\(368\) 0 0
\(369\) 1986.46 0.280246
\(370\) 0 0
\(371\) 4104.49 7109.19i 0.574379 0.994854i
\(372\) 0 0
\(373\) −723.844 + 1253.74i −0.100481 + 0.174037i −0.911883 0.410451i \(-0.865371\pi\)
0.811402 + 0.584488i \(0.198705\pi\)
\(374\) 0 0
\(375\) 4204.39 + 7282.21i 0.578969 + 1.00280i
\(376\) 0 0
\(377\) 442.547 227.337i 0.0604571 0.0310569i
\(378\) 0 0
\(379\) −5909.48 10235.5i −0.800922 1.38724i −0.919010 0.394234i \(-0.871010\pi\)
0.118088 0.993003i \(-0.462323\pi\)
\(380\) 0 0
\(381\) 3905.24 6764.07i 0.525121 0.909537i
\(382\) 0 0
\(383\) 3625.40 6279.38i 0.483680 0.837758i −0.516145 0.856501i \(-0.672633\pi\)
0.999824 + 0.0187436i \(0.00596662\pi\)
\(384\) 0 0
\(385\) −15919.5 −2.10736
\(386\) 0 0
\(387\) −853.773 1478.78i −0.112144 0.194239i
\(388\) 0 0
\(389\) −9331.29 −1.21623 −0.608117 0.793847i \(-0.708075\pi\)
−0.608117 + 0.793847i \(0.708075\pi\)
\(390\) 0 0
\(391\) −34.0054 −0.00439828
\(392\) 0 0
\(393\) −763.617 1322.62i −0.0980138 0.169765i
\(394\) 0 0
\(395\) 287.478 0.0366191
\(396\) 0 0
\(397\) 3847.13 6663.42i 0.486352 0.842386i −0.513525 0.858075i \(-0.671661\pi\)
0.999877 + 0.0156884i \(0.00499397\pi\)
\(398\) 0 0
\(399\) 513.740 889.824i 0.0644591 0.111646i
\(400\) 0 0
\(401\) −928.729 1608.61i −0.115657 0.200324i 0.802385 0.596807i \(-0.203564\pi\)
−0.918042 + 0.396483i \(0.870231\pi\)
\(402\) 0 0
\(403\) −728.000 + 14829.9i −0.0899858 + 1.83308i
\(404\) 0 0
\(405\) −4748.66 8224.93i −0.582625 1.00914i
\(406\) 0 0
\(407\) 9332.39 16164.2i 1.13658 1.96862i
\(408\) 0 0
\(409\) 269.235 466.328i 0.0325496 0.0563776i −0.849292 0.527924i \(-0.822971\pi\)
0.881841 + 0.471546i \(0.156304\pi\)
\(410\) 0 0
\(411\) −14147.2 −1.69788
\(412\) 0 0
\(413\) −2134.51 3697.08i −0.254316 0.440488i
\(414\) 0 0
\(415\) −12464.4 −1.47434
\(416\) 0 0
\(417\) −2392.70 −0.280985
\(418\) 0 0
\(419\) 2418.69 + 4189.30i 0.282007 + 0.488450i 0.971879 0.235481i \(-0.0756666\pi\)
−0.689872 + 0.723931i \(0.742333\pi\)
\(420\) 0 0
\(421\) −1392.34 −0.161184 −0.0805918 0.996747i \(-0.525681\pi\)
−0.0805918 + 0.996747i \(0.525681\pi\)
\(422\) 0 0
\(423\) 1941.47 3362.73i 0.223162 0.386528i
\(424\) 0 0
\(425\) −21.0902 + 36.5294i −0.00240712 + 0.00416926i
\(426\) 0 0
\(427\) −8402.57 14553.7i −0.952292 1.64942i
\(428\) 0 0
\(429\) −11335.7 7308.30i −1.27575 0.822490i
\(430\) 0 0
\(431\) 3953.78 + 6848.14i 0.441872 + 0.765344i 0.997828 0.0658670i \(-0.0209813\pi\)
−0.555957 + 0.831211i \(0.687648\pi\)
\(432\) 0 0
\(433\) −4816.28 + 8342.04i −0.534539 + 0.925850i 0.464646 + 0.885497i \(0.346182\pi\)
−0.999185 + 0.0403530i \(0.987152\pi\)
\(434\) 0 0
\(435\) 338.235 585.841i 0.0372808 0.0645722i
\(436\) 0 0
\(437\) 32.8253 0.00359325
\(438\) 0 0
\(439\) −323.735 560.725i −0.0351959 0.0609611i 0.847891 0.530171i \(-0.177872\pi\)
−0.883087 + 0.469210i \(0.844539\pi\)
\(440\) 0 0
\(441\) 4064.19 0.438850
\(442\) 0 0
\(443\) −16862.3 −1.80847 −0.904233 0.427039i \(-0.859557\pi\)
−0.904233 + 0.427039i \(0.859557\pi\)
\(444\) 0 0
\(445\) −3606.41 6246.48i −0.384180 0.665419i
\(446\) 0 0
\(447\) 1731.30 0.183194
\(448\) 0 0
\(449\) −6240.44 + 10808.8i −0.655912 + 1.13607i 0.325752 + 0.945455i \(0.394383\pi\)
−0.981664 + 0.190618i \(0.938951\pi\)
\(450\) 0 0
\(451\) −6581.39 + 11399.3i −0.687152 + 1.19018i
\(452\) 0 0
\(453\) −6120.90 10601.7i −0.634845 1.09958i
\(454\) 0 0
\(455\) −12783.6 8241.76i −1.31715 0.849186i
\(456\) 0 0
\(457\) −6268.52 10857.4i −0.641639 1.11135i −0.985067 0.172172i \(-0.944921\pi\)
0.343428 0.939179i \(-0.388412\pi\)
\(458\) 0 0
\(459\) 349.212 604.852i 0.0355115 0.0615078i
\(460\) 0 0
\(461\) −726.957 + 1259.13i −0.0734442 + 0.127209i −0.900409 0.435045i \(-0.856732\pi\)
0.826964 + 0.562254i \(0.190066\pi\)
\(462\) 0 0
\(463\) 7154.47 0.718135 0.359068 0.933312i \(-0.383095\pi\)
0.359068 + 0.933312i \(0.383095\pi\)
\(464\) 0 0
\(465\) 10094.1 + 17483.4i 1.00667 + 1.74360i
\(466\) 0 0
\(467\) 5823.27 0.577021 0.288510 0.957477i \(-0.406840\pi\)
0.288510 + 0.957477i \(0.406840\pi\)
\(468\) 0 0
\(469\) 15456.1 1.52174
\(470\) 0 0
\(471\) 1635.03 + 2831.96i 0.159954 + 0.277048i
\(472\) 0 0
\(473\) 11314.6 1.09989
\(474\) 0 0
\(475\) 20.3584 35.2617i 0.00196654 0.00340615i
\(476\) 0 0
\(477\) 1017.50 1762.36i 0.0976690 0.169168i
\(478\) 0 0
\(479\) 1460.09 + 2528.94i 0.139276 + 0.241233i 0.927223 0.374511i \(-0.122189\pi\)
−0.787947 + 0.615743i \(0.788856\pi\)
\(480\) 0 0
\(481\) 15862.5 8148.58i 1.50368 0.772439i
\(482\) 0 0
\(483\) 490.172 + 849.003i 0.0461772 + 0.0799813i
\(484\) 0 0
\(485\) −747.088 + 1293.99i −0.0699454 + 0.121149i
\(486\) 0 0
\(487\) −1681.12 + 2911.79i −0.156425 + 0.270936i −0.933577 0.358377i \(-0.883330\pi\)
0.777152 + 0.629313i \(0.216664\pi\)
\(488\) 0 0
\(489\) −7569.24 −0.699985
\(490\) 0 0
\(491\) 7434.83 + 12877.5i 0.683359 + 1.18361i 0.973950 + 0.226764i \(0.0728147\pi\)
−0.290591 + 0.956847i \(0.593852\pi\)
\(492\) 0 0
\(493\) 64.4970 0.00589209
\(494\) 0 0
\(495\) −3946.43 −0.358341
\(496\) 0 0
\(497\) −2158.62 3738.84i −0.194824 0.337444i
\(498\) 0 0
\(499\) 18693.3 1.67701 0.838503 0.544896i \(-0.183431\pi\)
0.838503 + 0.544896i \(0.183431\pi\)
\(500\) 0 0
\(501\) −7370.74 + 12766.5i −0.657287 + 1.13845i
\(502\) 0 0
\(503\) 7359.24 12746.6i 0.652350 1.12990i −0.330201 0.943911i \(-0.607116\pi\)
0.982551 0.185993i \(-0.0595502\pi\)
\(504\) 0 0
\(505\) −4806.31 8324.77i −0.423521 0.733559i
\(506\) 0 0
\(507\) −5319.18 11737.4i −0.465943 1.02816i
\(508\) 0 0
\(509\) −7939.46 13751.6i −0.691376 1.19750i −0.971387 0.237502i \(-0.923671\pi\)
0.280011 0.959997i \(-0.409662\pi\)
\(510\) 0 0
\(511\) 3001.75 5199.18i 0.259862 0.450094i
\(512\) 0 0
\(513\) −337.093 + 583.863i −0.0290118 + 0.0502498i
\(514\) 0 0
\(515\) −4522.56 −0.386967
\(516\) 0 0
\(517\) 12864.7 + 22282.3i 1.09437 + 1.89550i
\(518\) 0 0
\(519\) 19945.7 1.68693
\(520\) 0 0
\(521\) −9618.86 −0.808848 −0.404424 0.914572i \(-0.632528\pi\)
−0.404424 + 0.914572i \(0.632528\pi\)
\(522\) 0 0
\(523\) −5177.94 8968.45i −0.432917 0.749834i 0.564206 0.825634i \(-0.309182\pi\)
−0.997123 + 0.0758002i \(0.975849\pi\)
\(524\) 0 0
\(525\) 1216.02 0.101089
\(526\) 0 0
\(527\) −962.401 + 1666.93i −0.0795500 + 0.137785i
\(528\) 0 0
\(529\) 6067.84 10509.8i 0.498713 0.863796i
\(530\) 0 0
\(531\) −529.143 916.503i −0.0432446 0.0749018i
\(532\) 0 0
\(533\) −11186.6 + 5746.54i −0.909087 + 0.466999i
\(534\) 0 0
\(535\) −2298.99 3981.97i −0.185783 0.321786i
\(536\) 0 0
\(537\) 4605.04 7976.16i 0.370060 0.640962i
\(538\) 0 0
\(539\) −13465.1 + 23322.3i −1.07604 + 1.86375i
\(540\) 0 0
\(541\) 14130.6 1.12296 0.561479 0.827491i \(-0.310232\pi\)
0.561479 + 0.827491i \(0.310232\pi\)
\(542\) 0 0
\(543\) 8569.42 + 14842.7i 0.677254 + 1.17304i
\(544\) 0 0
\(545\) 10339.9 0.812684
\(546\) 0 0
\(547\) −6505.59 −0.508517 −0.254259 0.967136i \(-0.581831\pi\)
−0.254259 + 0.967136i \(0.581831\pi\)
\(548\) 0 0
\(549\) −2082.99 3607.84i −0.161930 0.280472i
\(550\) 0 0
\(551\) −62.2588 −0.00481364
\(552\) 0 0
\(553\) 395.089 684.314i 0.0303814 0.0526221i
\(554\) 0 0
\(555\) 12123.6 20998.7i 0.927239 1.60603i
\(556\) 0 0
\(557\) 9162.49 + 15869.9i 0.696996 + 1.20723i 0.969503 + 0.245079i \(0.0788140\pi\)
−0.272507 + 0.962154i \(0.587853\pi\)
\(558\) 0 0
\(559\) 9085.83 + 5857.75i 0.687459 + 0.443214i
\(560\) 0 0
\(561\) −874.228 1514.21i −0.0657931 0.113957i
\(562\) 0 0
\(563\) 12087.1 20935.5i 0.904815 1.56719i 0.0836495 0.996495i \(-0.473342\pi\)
0.821165 0.570690i \(-0.193324\pi\)
\(564\) 0 0
\(565\) −4089.67 + 7083.51i −0.304520 + 0.527443i
\(566\) 0 0
\(567\) −26104.9 −1.93352
\(568\) 0 0
\(569\) −4816.74 8342.84i −0.354883 0.614675i 0.632215 0.774793i \(-0.282146\pi\)
−0.987098 + 0.160118i \(0.948813\pi\)
\(570\) 0 0
\(571\) 8221.17 0.602531 0.301266 0.953540i \(-0.402591\pi\)
0.301266 + 0.953540i \(0.402591\pi\)
\(572\) 0 0
\(573\) 22926.3 1.67148
\(574\) 0 0
\(575\) 19.4244 + 33.6441i 0.00140879 + 0.00244010i
\(576\) 0 0
\(577\) −7986.09 −0.576196 −0.288098 0.957601i \(-0.593023\pi\)
−0.288098 + 0.957601i \(0.593023\pi\)
\(578\) 0 0
\(579\) −6215.42 + 10765.4i −0.446121 + 0.772704i
\(580\) 0 0
\(581\) −17130.2 + 29670.3i −1.22320 + 2.11865i
\(582\) 0 0
\(583\) 6742.21 + 11677.8i 0.478960 + 0.829583i
\(584\) 0 0
\(585\) −3169.05 2043.13i −0.223973 0.144398i
\(586\) 0 0
\(587\) 3722.38 + 6447.35i 0.261736 + 0.453340i 0.966703 0.255900i \(-0.0823717\pi\)
−0.704967 + 0.709240i \(0.749038\pi\)
\(588\) 0 0
\(589\) 929.004 1609.08i 0.0649897 0.112565i
\(590\) 0 0
\(591\) 9122.26 15800.2i 0.634923 1.09972i
\(592\) 0 0
\(593\) −6806.49 −0.471347 −0.235674 0.971832i \(-0.575730\pi\)
−0.235674 + 0.971832i \(0.575730\pi\)
\(594\) 0 0
\(595\) −985.889 1707.61i −0.0679286 0.117656i
\(596\) 0 0
\(597\) −2879.78 −0.197423
\(598\) 0 0
\(599\) −22251.5 −1.51782 −0.758909 0.651196i \(-0.774267\pi\)
−0.758909 + 0.651196i \(0.774267\pi\)
\(600\) 0 0
\(601\) 10608.1 + 18373.7i 0.719988 + 1.24706i 0.961004 + 0.276535i \(0.0891862\pi\)
−0.241016 + 0.970521i \(0.577480\pi\)
\(602\) 0 0
\(603\) 3831.55 0.258761
\(604\) 0 0
\(605\) 5844.04 10122.2i 0.392717 0.680206i
\(606\) 0 0
\(607\) −8895.83 + 15408.0i −0.594844 + 1.03030i 0.398724 + 0.917071i \(0.369453\pi\)
−0.993569 + 0.113230i \(0.963880\pi\)
\(608\) 0 0
\(609\) −929.694 1610.28i −0.0618606 0.107146i
\(610\) 0 0
\(611\) −1205.32 + 24553.3i −0.0798070 + 1.62573i
\(612\) 0 0
\(613\) 5487.29 + 9504.27i 0.361549 + 0.626221i 0.988216 0.153066i \(-0.0489146\pi\)
−0.626667 + 0.779287i \(0.715581\pi\)
\(614\) 0 0
\(615\) −8549.80 + 14808.7i −0.560587 + 0.970965i
\(616\) 0 0
\(617\) 1530.46 2650.84i 0.0998609 0.172964i −0.811766 0.583983i \(-0.801494\pi\)
0.911627 + 0.411019i \(0.134827\pi\)
\(618\) 0 0
\(619\) 8387.51 0.544625 0.272312 0.962209i \(-0.412212\pi\)
0.272312 + 0.962209i \(0.412212\pi\)
\(620\) 0 0
\(621\) −321.629 557.078i −0.0207835 0.0359980i
\(622\) 0 0
\(623\) −19825.6 −1.27495
\(624\) 0 0
\(625\) −14709.1 −0.941382
\(626\) 0 0
\(627\) 843.890 + 1461.66i 0.0537508 + 0.0930990i
\(628\) 0 0
\(629\) 2311.81 0.146547
\(630\) 0 0
\(631\) −13105.5 + 22699.4i −0.826818 + 1.43209i 0.0737032 + 0.997280i \(0.476518\pi\)
−0.900522 + 0.434811i \(0.856815\pi\)
\(632\) 0 0
\(633\) 1769.22 3064.38i 0.111090 0.192414i
\(634\) 0 0
\(635\) 7234.25 + 12530.1i 0.452098 + 0.783057i
\(636\) 0 0
\(637\) −22887.1 + 11757.1i −1.42358 + 0.731293i
\(638\) 0 0
\(639\) −535.120 926.855i −0.0331283 0.0573800i
\(640\) 0 0
\(641\) 12229.5 21182.1i 0.753565 1.30521i −0.192520 0.981293i \(-0.561666\pi\)
0.946085 0.323919i \(-0.105001\pi\)
\(642\) 0 0
\(643\) 14490.9 25099.0i 0.888750 1.53936i 0.0473946 0.998876i \(-0.484908\pi\)
0.841355 0.540483i \(-0.181758\pi\)
\(644\) 0 0
\(645\) 14698.7 0.897302
\(646\) 0 0
\(647\) −4423.15 7661.11i −0.268766 0.465517i 0.699777 0.714361i \(-0.253283\pi\)
−0.968544 + 0.248844i \(0.919949\pi\)
\(648\) 0 0
\(649\) 7012.47 0.424135
\(650\) 0 0
\(651\) 55490.3 3.34076
\(652\) 0 0
\(653\) −13153.7 22782.9i −0.788275 1.36533i −0.927023 0.375005i \(-0.877641\pi\)
0.138748 0.990328i \(-0.455692\pi\)
\(654\) 0 0
\(655\) 2829.12 0.168768
\(656\) 0 0
\(657\) 744.131 1288.87i 0.0441877 0.0765353i
\(658\) 0 0
\(659\) −1653.40 + 2863.78i −0.0977352 + 0.169282i −0.910747 0.412965i \(-0.864493\pi\)
0.813012 + 0.582247i \(0.197826\pi\)
\(660\) 0 0
\(661\) 11801.3 + 20440.5i 0.694432 + 1.20279i 0.970372 + 0.241616i \(0.0776774\pi\)
−0.275940 + 0.961175i \(0.588989\pi\)
\(662\) 0 0
\(663\) 81.9084 1668.53i 0.00479798 0.0977383i
\(664\) 0 0
\(665\) 951.677 + 1648.35i 0.0554954 + 0.0961208i
\(666\) 0 0
\(667\) 29.7013 51.4442i 0.00172420 0.00298640i
\(668\) 0 0
\(669\) 9194.51 15925.4i 0.531361 0.920344i
\(670\) 0 0
\(671\) 27604.8 1.58818
\(672\) 0 0
\(673\) 1887.77 + 3269.72i 0.108125 + 0.187278i 0.915011 0.403429i \(-0.132182\pi\)
−0.806886 + 0.590708i \(0.798849\pi\)
\(674\) 0 0
\(675\) −797.901 −0.0454981
\(676\) 0 0
\(677\) −11395.4 −0.646916 −0.323458 0.946242i \(-0.604845\pi\)
−0.323458 + 0.946242i \(0.604845\pi\)
\(678\) 0 0
\(679\) 2053.49 + 3556.75i 0.116062 + 0.201024i
\(680\) 0 0
\(681\) 9461.42 0.532397
\(682\) 0 0
\(683\) 118.213 204.751i 0.00662269 0.0114708i −0.862695 0.505724i \(-0.831225\pi\)
0.869318 + 0.494254i \(0.164559\pi\)
\(684\) 0 0
\(685\) 13103.5 22695.9i 0.730887 1.26593i
\(686\) 0 0
\(687\) −18055.1 31272.3i −1.00268 1.73670i
\(688\) 0 0
\(689\) −631.693 + 12868.0i −0.0349283 + 0.711514i
\(690\) 0 0
\(691\) 4720.82 + 8176.70i 0.259897 + 0.450154i 0.966214 0.257741i \(-0.0829782\pi\)
−0.706317 + 0.707895i \(0.749645\pi\)
\(692\) 0 0
\(693\) −5423.69 + 9394.11i −0.297300 + 0.514939i
\(694\) 0 0
\(695\) 2216.17 3838.53i 0.120956 0.209502i
\(696\) 0 0
\(697\) −1630.33 −0.0885986
\(698\) 0 0
\(699\) −9824.86 17017.2i −0.531631 0.920812i
\(700\) 0 0
\(701\) −145.814 −0.00785638 −0.00392819 0.999992i \(-0.501250\pi\)
−0.00392819 + 0.999992i \(0.501250\pi\)
\(702\) 0 0
\(703\) −2231.58 −0.119724
\(704\) 0 0
\(705\) 16712.3 + 28946.6i 0.892799 + 1.54637i
\(706\) 0 0
\(707\) −26421.8 −1.40551
\(708\) 0 0
\(709\) 5445.77 9432.35i 0.288463 0.499632i −0.684980 0.728562i \(-0.740189\pi\)
0.973443 + 0.228929i \(0.0735225\pi\)
\(710\) 0 0
\(711\) 97.9422 169.641i 0.00516613 0.00894800i
\(712\) 0 0
\(713\) 886.386 + 1535.26i 0.0465574 + 0.0806397i
\(714\) 0 0
\(715\) 22223.9 11416.4i 1.16242 0.597134i
\(716\) 0 0
\(717\) 1855.11 + 3213.14i 0.0966253 + 0.167360i
\(718\) 0 0
\(719\) −3447.89 + 5971.91i −0.178838 + 0.309756i −0.941483 0.337061i \(-0.890567\pi\)
0.762645 + 0.646817i \(0.223900\pi\)
\(720\) 0 0
\(721\) −6215.49 + 10765.5i −0.321050 + 0.556075i
\(722\) 0 0
\(723\) −8823.04 −0.453848
\(724\) 0 0
\(725\) −36.8417 63.8117i −0.00188726 0.00326884i
\(726\) 0 0
\(727\) −12841.0 −0.655086 −0.327543 0.944836i \(-0.606221\pi\)
−0.327543 + 0.944836i \(0.606221\pi\)
\(728\) 0 0
\(729\) 11731.6 0.596029
\(730\) 0 0
\(731\) 700.711 + 1213.67i 0.0354538 + 0.0614078i
\(732\) 0 0
\(733\) −26005.8 −1.31043 −0.655216 0.755441i \(-0.727423\pi\)
−0.655216 + 0.755441i \(0.727423\pi\)
\(734\) 0 0
\(735\) −17492.4 + 30297.7i −0.877846 + 1.52047i
\(736\) 0 0
\(737\) −12694.4 + 21987.3i −0.634470 + 1.09893i
\(738\) 0 0
\(739\) −8885.01 15389.3i −0.442274 0.766041i 0.555584 0.831460i \(-0.312495\pi\)
−0.997858 + 0.0654195i \(0.979161\pi\)
\(740\) 0 0
\(741\) −79.0661 + 1610.63i −0.00391979 + 0.0798489i
\(742\) 0 0
\(743\) −14420.9 24977.7i −0.712046 1.23330i −0.964088 0.265583i \(-0.914436\pi\)
0.252043 0.967716i \(-0.418898\pi\)
\(744\) 0 0
\(745\) −1603.57 + 2777.46i −0.0788594 + 0.136588i
\(746\) 0 0
\(747\) −4246.56 + 7355.25i −0.207996 + 0.360260i
\(748\) 0 0
\(749\) −12638.3 −0.616547
\(750\) 0 0
\(751\) −4216.12 7302.54i −0.204858 0.354825i 0.745229 0.666808i \(-0.232340\pi\)
−0.950088 + 0.311983i \(0.899007\pi\)
\(752\) 0 0
\(753\) 6081.12 0.294301
\(754\) 0 0
\(755\) 22677.3 1.09313
\(756\) 0 0
\(757\) −19480.8 33741.7i −0.935325 1.62003i −0.774053 0.633121i \(-0.781774\pi\)
−0.161272 0.986910i \(-0.551560\pi\)
\(758\) 0 0
\(759\) −1610.35 −0.0770120
\(760\) 0 0
\(761\) −4012.86 + 6950.47i −0.191151 + 0.331083i −0.945632 0.325239i \(-0.894555\pi\)
0.754481 + 0.656322i \(0.227889\pi\)
\(762\) 0 0
\(763\) 14210.4 24613.2i 0.674249 1.16783i
\(764\) 0 0
\(765\) −244.401 423.315i −0.0115508 0.0200065i
\(766\) 0 0
\(767\) 5631.13 + 3630.46i 0.265096 + 0.170911i
\(768\) 0 0
\(769\) −11295.1 19563.8i −0.529666 0.917408i −0.999401 0.0346010i \(-0.988984\pi\)
0.469735 0.882807i \(-0.344349\pi\)
\(770\) 0 0
\(771\) 1480.75 2564.73i 0.0691671 0.119801i
\(772\) 0 0
\(773\) 20460.0 35437.7i 0.951997 1.64891i 0.210901 0.977508i \(-0.432360\pi\)
0.741096 0.671399i \(-0.234306\pi\)
\(774\) 0 0
\(775\) 2198.96 0.101921
\(776\) 0 0
\(777\) −33323.6 57718.2i −1.53858 2.66490i
\(778\) 0 0
\(779\) 1573.76 0.0723821
\(780\) 0 0
\(781\) 7091.67 0.324917
\(782\) 0 0
\(783\) 610.024 + 1056.59i 0.0278422 + 0.0482242i
\(784\) 0 0
\(785\) −6057.63 −0.275422
\(786\) 0 0
\(787\) 7807.21 13522.5i 0.353618 0.612484i −0.633263 0.773937i \(-0.718285\pi\)
0.986880 + 0.161453i \(0.0516181\pi\)
\(788\) 0 0
\(789\) 496.577 860.097i 0.0224063 0.0388089i
\(790\) 0 0
\(791\) 11241.1 + 19470.2i 0.505294 + 0.875195i
\(792\) 0 0
\(793\) 22167.1 + 14291.4i 0.992657 + 0.639979i
\(794\) 0 0
\(795\) 8758.71 + 15170.5i 0.390742 + 0.676784i
\(796\) 0 0
\(797\) −8934.79 + 15475.5i −0.397097 + 0.687793i −0.993366 0.114992i \(-0.963316\pi\)
0.596269 + 0.802785i \(0.296649\pi\)
\(798\) 0 0
\(799\) −1593.41 + 2759.87i −0.0705517 + 0.122199i
\(800\) 0 0
\(801\) −4914.74 −0.216796
\(802\) 0 0
\(803\) 4930.80 + 8540.39i 0.216692 + 0.375322i
\(804\) 0 0
\(805\) −1816.04 −0.0795116
\(806\) 0 0
\(807\) −9044.74 −0.394535
\(808\) 0 0
\(809\) 4056.59 + 7026.23i 0.176294 + 0.305351i 0.940608 0.339493i \(-0.110256\pi\)
−0.764314 + 0.644844i \(0.776922\pi\)
\(810\) 0 0
\(811\) −22750.9 −0.985073 −0.492536 0.870292i \(-0.663930\pi\)
−0.492536 + 0.870292i \(0.663930\pi\)
\(812\) 0 0
\(813\) 3458.73 5990.70i 0.149204 0.258429i
\(814\) 0 0
\(815\) 7010.81 12143.1i 0.301323 0.521906i
\(816\) 0 0
\(817\) −676.395 1171.55i −0.0289646 0.0501681i
\(818\) 0 0
\(819\) −9218.79 + 4735.70i −0.393322 + 0.202050i
\(820\) 0 0
\(821\) 2997.11 + 5191.15i 0.127406 + 0.220673i 0.922671 0.385589i \(-0.126002\pi\)
−0.795265 + 0.606262i \(0.792668\pi\)
\(822\) 0 0
\(823\) −17094.1 + 29607.9i −0.724015 + 1.25403i 0.235363 + 0.971907i \(0.424372\pi\)
−0.959378 + 0.282123i \(0.908961\pi\)
\(824\) 0 0
\(825\) −998.745 + 1729.88i −0.0421477 + 0.0730019i
\(826\) 0 0
\(827\) −39546.0 −1.66282 −0.831409 0.555661i \(-0.812465\pi\)
−0.831409 + 0.555661i \(0.812465\pi\)
\(828\) 0 0
\(829\) −12104.0 20964.7i −0.507104 0.878329i −0.999966 0.00822196i \(-0.997383\pi\)
0.492863 0.870107i \(-0.335950\pi\)
\(830\) 0 0
\(831\) −22909.9 −0.956360
\(832\) 0 0
\(833\) −3335.57 −0.138740
\(834\) 0 0
\(835\) −13653.9 23649.3i −0.565884 0.980140i
\(836\) 0 0
\(837\) −36410.2 −1.50361
\(838\) 0 0
\(839\) 17071.8 29569.1i 0.702482 1.21673i −0.265111 0.964218i \(-0.585408\pi\)
0.967593 0.252516i \(-0.0812582\pi\)
\(840\) 0 0
\(841\) 12138.2 21023.9i 0.497690 0.862025i
\(842\) 0 0
\(843\) 173.024 + 299.686i 0.00706911 + 0.0122441i
\(844\) 0 0
\(845\) 23756.6 + 2338.06i 0.967164 + 0.0951856i
\(846\) 0 0
\(847\) −16063.3 27822.4i −0.651642 1.12868i
\(848\) 0 0
\(849\) −13770.9 + 23851.9i −0.556673 + 0.964186i
\(850\) 0 0
\(851\) 1064.60 1843.95i 0.0428839 0.0742770i
\(852\) 0 0
\(853\) 13008.1 0.522145 0.261072 0.965319i \(-0.415924\pi\)
0.261072 + 0.965319i \(0.415924\pi\)
\(854\) 0 0
\(855\) 235.920 + 408.625i 0.00943659 + 0.0163447i
\(856\) 0 0
\(857\) −35075.0 −1.39806 −0.699031 0.715091i \(-0.746385\pi\)
−0.699031 + 0.715091i \(0.746385\pi\)
\(858\) 0 0
\(859\) 2869.77 0.113988 0.0569939 0.998375i \(-0.481848\pi\)
0.0569939 + 0.998375i \(0.481848\pi\)
\(860\) 0 0
\(861\) 23500.5 + 40704.0i 0.930191 + 1.61114i
\(862\) 0 0
\(863\) −29617.3 −1.16823 −0.584117 0.811670i \(-0.698559\pi\)
−0.584117 + 0.811670i \(0.698559\pi\)
\(864\) 0 0
\(865\) −18474.1 + 31998.2i −0.726173 + 1.25777i
\(866\) 0 0
\(867\) −14300.2 + 24768.7i −0.560163 + 0.970230i
\(868\) 0 0
\(869\) 648.989 + 1124.08i 0.0253342 + 0.0438802i
\(870\) 0 0
\(871\) −21577.0 + 11084.1i −0.839390 + 0.431195i
\(872\) 0 0
\(873\) 509.059 + 881.715i 0.0197354 + 0.0341828i
\(874\) 0 0
\(875\) −21407.7 + 37079.2i −0.827099 + 1.43258i
\(876\) 0 0
\(877\) 7675.09 13293.6i 0.295518 0.511852i −0.679587 0.733595i \(-0.737841\pi\)
0.975105 + 0.221743i \(0.0711744\pi\)
\(878\) 0 0
\(879\) 47620.6 1.82731
\(880\) 0 0
\(881\) −3181.94 5511.28i −0.121682 0.210760i 0.798749 0.601665i \(-0.205496\pi\)
−0.920431 + 0.390904i \(0.872162\pi\)
\(882\) 0 0
\(883\) 32249.9 1.22910 0.614550 0.788878i \(-0.289338\pi\)
0.614550 + 0.788878i \(0.289338\pi\)
\(884\) 0 0
\(885\) 9109.81 0.346015
\(886\) 0 0
\(887\) 14244.7 + 24672.5i 0.539221 + 0.933959i 0.998946 + 0.0458972i \(0.0146147\pi\)
−0.459725 + 0.888061i \(0.652052\pi\)
\(888\) 0 0
\(889\) 39769.0 1.50035
\(890\) 0 0
\(891\) 21440.5 37136.0i 0.806155 1.39630i
\(892\) 0 0
\(893\) 1538.12 2664.10i 0.0576384 0.0998327i
\(894\) 0 0
\(895\) 8530.60 + 14775.4i 0.318599 + 0.551830i
\(896\) 0 0
\(897\) −1293.14 833.704i −0.0481346 0.0310330i
\(898\) 0 0
\(899\) −1681.18 2911.89i −0.0623698 0.108028i
\(900\) 0 0
\(901\) −835.085 + 1446.41i −0.0308776 + 0.0534816i
\(902\) 0 0
\(903\) 20200.8 34988.9i 0.744454 1.28943i
\(904\) 0 0
\(905\) −31748.8 −1.16615
\(906\) 0 0
\(907\) 3592.78 + 6222.88i 0.131529 + 0.227814i 0.924266 0.381749i \(-0.124678\pi\)
−0.792737 + 0.609563i \(0.791345\pi\)
\(908\) 0 0
\(909\) −6549.94 −0.238997
\(910\) 0 0
\(911\) −27000.2 −0.981949 −0.490975 0.871174i \(-0.663359\pi\)
−0.490975 + 0.871174i \(0.663359\pi\)
\(912\) 0 0
\(913\) −28138.7 48737.7i −1.02000 1.76668i
\(914\) 0 0
\(915\) 35861.1 1.29566
\(916\) 0 0
\(917\) 3888.15 6734.47i 0.140020 0.242521i
\(918\) 0 0
\(919\) 10592.5 18346.8i 0.380213 0.658548i −0.610879 0.791724i \(-0.709184\pi\)
0.991092 + 0.133175i \(0.0425173\pi\)
\(920\) 0 0
\(921\) 3144.01 + 5445.58i 0.112485 + 0.194829i
\(922\) 0 0
\(923\) 5694.73 + 3671.47i 0.203082 + 0.130929i
\(924\) 0 0
\(925\) −1320.54 2287.24i −0.0469396 0.0813018i
\(926\) 0 0
\(927\) −1540.82 + 2668.77i −0.0545922 + 0.0945565i
\(928\) 0 0
\(929\) −12021.9 + 20822.5i −0.424570 + 0.735377i −0.996380 0.0850093i \(-0.972908\pi\)
0.571810 + 0.820386i \(0.306241\pi\)
\(930\) 0 0
\(931\) 3219.82 0.113346
\(932\) 0 0
\(933\) 13280.6 + 23002.7i 0.466010 + 0.807153i
\(934\) 0 0
\(935\) 3238.92 0.113288
\(936\) 0 0
\(937\) 6308.48 0.219946 0.109973 0.993935i \(-0.464924\pi\)
0.109973 + 0.993935i \(0.464924\pi\)
\(938\) 0 0
\(939\) −15825.4 27410.4i −0.549991 0.952613i
\(940\) 0 0
\(941\) 1549.84 0.0536912 0.0268456 0.999640i \(-0.491454\pi\)
0.0268456 + 0.999640i \(0.491454\pi\)
\(942\) 0 0
\(943\) −750.780 + 1300.39i −0.0259266 + 0.0449062i
\(944\) 0 0
\(945\) 18649.4 32301.7i 0.641974 1.11193i
\(946\) 0 0
\(947\) 6586.00 + 11407.3i 0.225994 + 0.391433i 0.956617 0.291348i \(-0.0941037\pi\)
−0.730623 + 0.682781i \(0.760770\pi\)
\(948\) 0 0
\(949\) −461.978 + 9410.82i −0.0158024 + 0.321905i
\(950\) 0 0
\(951\) 24114.1 + 41766.8i 0.822243 + 1.42417i
\(952\) 0 0
\(953\) −14012.7 + 24270.7i −0.476303 + 0.824980i −0.999631 0.0271505i \(-0.991357\pi\)
0.523329 + 0.852131i \(0.324690\pi\)
\(954\) 0 0
\(955\) −21234.9 + 36779.9i −0.719523 + 1.24625i
\(956\) 0 0
\(957\) 3054.31 0.103168
\(958\) 0 0
\(959\) −36017.0 62383.2i −1.21277 2.10058i
\(960\) 0 0
\(961\) 70552.9 2.36826
\(962\) 0 0
\(963\) −3133.02 −0.104839
\(964\) 0 0
\(965\) −11513.7 19942.4i −0.384083 0.665252i
\(966\) 0 0
\(967\) 4250.06 0.141337 0.0706684 0.997500i \(-0.477487\pi\)
0.0706684 + 0.997500i \(0.477487\pi\)
\(968\) 0 0
\(969\) −104.524 + 181.040i −0.00346521 + 0.00600191i
\(970\) 0 0
\(971\) −2356.03 + 4080.76i −0.0778667 + 0.134869i −0.902329 0.431047i \(-0.858144\pi\)
0.824463 + 0.565916i \(0.191478\pi\)
\(972\) 0 0
\(973\) −6091.51 10550.8i −0.200704 0.347629i
\(974\) 0 0
\(975\) −1697.59 + 872.055i −0.0557605 + 0.0286442i
\(976\) 0 0
\(977\) 26478.0 + 45861.2i 0.867047 + 1.50177i 0.865000 + 0.501771i \(0.167318\pi\)
0.00204652 + 0.999998i \(0.499349\pi\)
\(978\) 0 0
\(979\) 16283.1 28203.2i 0.531574 0.920714i
\(980\) 0 0
\(981\) 3522.75 6101.59i 0.114651 0.198582i
\(982\) 0 0
\(983\) 10772.6 0.349534 0.174767 0.984610i \(-0.444083\pi\)
0.174767 + 0.984610i \(0.444083\pi\)
\(984\) 0 0
\(985\) 16898.5 + 29269.1i 0.546631 + 0.946792i
\(986\) 0 0
\(987\) 91873.1 2.96287
\(988\) 0 0
\(989\) 1290.73 0.0414993
\(990\) 0 0
\(991\) 7696.24 + 13330.3i 0.246700 + 0.427296i 0.962608 0.270898i \(-0.0873206\pi\)
−0.715909 + 0.698194i \(0.753987\pi\)
\(992\) 0 0
\(993\) −3568.28 −0.114034
\(994\) 0 0
\(995\) 2667.32 4619.94i 0.0849848 0.147198i
\(996\) 0 0
\(997\) −860.917 + 1491.15i −0.0273475 + 0.0473673i −0.879375 0.476129i \(-0.842039\pi\)
0.852028 + 0.523497i \(0.175373\pi\)
\(998\) 0 0
\(999\) 21865.5 + 37872.1i 0.692486 + 1.19942i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.4.i.d.81.2 4
4.3 odd 2 26.4.c.b.3.1 4
12.11 even 2 234.4.h.h.55.2 4
13.9 even 3 inner 208.4.i.d.113.2 4
52.3 odd 6 338.4.a.h.1.2 2
52.7 even 12 338.4.e.f.147.1 8
52.11 even 12 338.4.b.e.337.4 4
52.15 even 12 338.4.b.e.337.2 4
52.19 even 12 338.4.e.f.147.3 8
52.23 odd 6 338.4.a.g.1.2 2
52.31 even 4 338.4.e.f.23.1 8
52.35 odd 6 26.4.c.b.9.1 yes 4
52.43 odd 6 338.4.c.j.191.1 4
52.47 even 4 338.4.e.f.23.3 8
52.51 odd 2 338.4.c.j.315.1 4
156.35 even 6 234.4.h.h.217.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.4.c.b.3.1 4 4.3 odd 2
26.4.c.b.9.1 yes 4 52.35 odd 6
208.4.i.d.81.2 4 1.1 even 1 trivial
208.4.i.d.113.2 4 13.9 even 3 inner
234.4.h.h.55.2 4 12.11 even 2
234.4.h.h.217.2 4 156.35 even 6
338.4.a.g.1.2 2 52.23 odd 6
338.4.a.h.1.2 2 52.3 odd 6
338.4.b.e.337.2 4 52.15 even 12
338.4.b.e.337.4 4 52.11 even 12
338.4.c.j.191.1 4 52.43 odd 6
338.4.c.j.315.1 4 52.51 odd 2
338.4.e.f.23.1 8 52.31 even 4
338.4.e.f.23.3 8 52.47 even 4
338.4.e.f.147.1 8 52.7 even 12
338.4.e.f.147.3 8 52.19 even 12