Properties

Label 208.4
Level 208
Weight 4
Dimension 2192
Nonzero newspaces 14
Newform subspaces 45
Sturm bound 10752
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 14 \)
Newform subspaces: \( 45 \)
Sturm bound: \(10752\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(208))\).

Total New Old
Modular forms 4200 2290 1910
Cusp forms 3864 2192 1672
Eisenstein series 336 98 238

Trace form

\( 2192 q - 20 q^{2} - 22 q^{3} - 40 q^{4} - 22 q^{5} + 40 q^{6} + 30 q^{7} + 64 q^{8} + 16 q^{9} + 112 q^{10} - 142 q^{11} - 224 q^{12} - 50 q^{13} - 424 q^{14} + 246 q^{15} - 584 q^{16} - 146 q^{17} - 372 q^{18}+ \cdots - 16934 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(208))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
208.4.a \(\chi_{208}(1, \cdot)\) 208.4.a.a 1 1
208.4.a.b 1
208.4.a.c 1
208.4.a.d 1
208.4.a.e 1
208.4.a.f 1
208.4.a.g 1
208.4.a.h 2
208.4.a.i 2
208.4.a.j 2
208.4.a.k 2
208.4.a.l 3
208.4.b \(\chi_{208}(105, \cdot)\) None 0 1
208.4.e \(\chi_{208}(25, \cdot)\) None 0 1
208.4.f \(\chi_{208}(129, \cdot)\) 208.4.f.a 2 1
208.4.f.b 2
208.4.f.c 2
208.4.f.d 4
208.4.f.e 10
208.4.i \(\chi_{208}(81, \cdot)\) 208.4.i.a 2 2
208.4.i.b 2
208.4.i.c 2
208.4.i.d 4
208.4.i.e 4
208.4.i.f 6
208.4.i.g 8
208.4.i.h 12
208.4.k \(\chi_{208}(31, \cdot)\) 208.4.k.a 2 2
208.4.k.b 12
208.4.k.c 28
208.4.l \(\chi_{208}(83, \cdot)\) 208.4.l.a 164 2
208.4.n \(\chi_{208}(53, \cdot)\) 208.4.n.a 144 2
208.4.p \(\chi_{208}(77, \cdot)\) 208.4.p.a 164 2
208.4.s \(\chi_{208}(99, \cdot)\) 208.4.s.a 164 2
208.4.u \(\chi_{208}(135, \cdot)\) None 0 2
208.4.w \(\chi_{208}(17, \cdot)\) 208.4.w.a 2 2
208.4.w.b 2
208.4.w.c 8
208.4.w.d 8
208.4.w.e 20
208.4.z \(\chi_{208}(9, \cdot)\) None 0 2
208.4.ba \(\chi_{208}(121, \cdot)\) None 0 2
208.4.bc \(\chi_{208}(7, \cdot)\) None 0 4
208.4.bf \(\chi_{208}(11, \cdot)\) 208.4.bf.a 328 4
208.4.bh \(\chi_{208}(69, \cdot)\) 208.4.bh.a 328 4
208.4.bj \(\chi_{208}(29, \cdot)\) 208.4.bj.a 328 4
208.4.bk \(\chi_{208}(115, \cdot)\) 208.4.bk.a 328 4
208.4.bm \(\chi_{208}(15, \cdot)\) 208.4.bm.a 4 4
208.4.bm.b 24
208.4.bm.c 28
208.4.bm.d 28

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(208))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(208)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 2}\)