Defining parameters
Level: | \( N \) | = | \( 208 = 2^{4} \cdot 13 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 14 \) | ||
Newform subspaces: | \( 45 \) | ||
Sturm bound: | \(10752\) | ||
Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(208))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4200 | 2290 | 1910 |
Cusp forms | 3864 | 2192 | 1672 |
Eisenstein series | 336 | 98 | 238 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(208))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(208))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(208)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 2}\)