Properties

Label 336.4.k.b.209.4
Level $336$
Weight $4$
Character 336.209
Analytic conductor $19.825$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(209,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.209"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 336.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8246417619\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-6}, \sqrt{-17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 46x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.4
Root \(-6.57260i\) of defining polynomial
Character \(\chi\) \(=\) 336.209
Dual form 336.4.k.b.209.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.04975 + 1.22474i) q^{3} +10.0995 q^{5} +(-7.00000 + 17.1464i) q^{7} +(24.0000 + 12.3693i) q^{9} -32.9848i q^{11} +56.3383i q^{13} +(51.0000 + 12.3693i) q^{15} +60.5970 q^{17} +36.7423i q^{19} +(-56.3483 + 78.0120i) q^{21} +90.7083i q^{23} -23.0000 q^{25} +(106.045 + 91.8559i) q^{27} +57.7235i q^{29} -254.747i q^{31} +(40.3980 - 166.565i) q^{33} +(-70.6965 + 173.170i) q^{35} +230.000 q^{37} +(-69.0000 + 284.494i) q^{39} -141.393 q^{41} -44.0000 q^{43} +(242.388 + 124.924i) q^{45} +343.383 q^{47} +(-245.000 - 240.050i) q^{49} +(306.000 + 74.2159i) q^{51} +206.155i q^{53} -333.131i q^{55} +(-45.0000 + 185.540i) q^{57} -131.294 q^{59} -71.0352i q^{61} +(-380.090 + 324.929i) q^{63} +568.989i q^{65} +64.0000 q^{67} +(-111.095 + 458.055i) q^{69} +461.788i q^{71} -88.1816i q^{73} +(-116.144 - 28.1691i) q^{75} +(565.572 + 230.894i) q^{77} +442.000 q^{79} +(423.000 + 593.727i) q^{81} +494.876 q^{83} +612.000 q^{85} +(-70.6965 + 291.489i) q^{87} -484.776 q^{89} +(-966.000 - 394.368i) q^{91} +(312.000 - 1286.41i) q^{93} +371.080i q^{95} -1092.47i q^{97} +(408.000 - 791.636i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 28 q^{7} + 96 q^{9} + 204 q^{15} - 84 q^{21} - 92 q^{25} + 920 q^{37} - 276 q^{39} - 176 q^{43} - 980 q^{49} + 1224 q^{51} - 180 q^{57} - 672 q^{63} + 256 q^{67} + 1768 q^{79} + 1692 q^{81} + 2448 q^{85}+ \cdots + 1632 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.04975 + 1.22474i 0.971825 + 0.235702i
\(4\) 0 0
\(5\) 10.0995 0.903327 0.451664 0.892188i \(-0.350831\pi\)
0.451664 + 0.892188i \(0.350831\pi\)
\(6\) 0 0
\(7\) −7.00000 + 17.1464i −0.377964 + 0.925820i
\(8\) 0 0
\(9\) 24.0000 + 12.3693i 0.888889 + 0.458123i
\(10\) 0 0
\(11\) 32.9848i 0.904119i −0.891988 0.452059i \(-0.850690\pi\)
0.891988 0.452059i \(-0.149310\pi\)
\(12\) 0 0
\(13\) 56.3383i 1.20196i 0.799266 + 0.600978i \(0.205222\pi\)
−0.799266 + 0.600978i \(0.794778\pi\)
\(14\) 0 0
\(15\) 51.0000 + 12.3693i 0.877876 + 0.212916i
\(16\) 0 0
\(17\) 60.5970 0.864526 0.432263 0.901748i \(-0.357715\pi\)
0.432263 + 0.901748i \(0.357715\pi\)
\(18\) 0 0
\(19\) 36.7423i 0.443646i 0.975087 + 0.221823i \(0.0712007\pi\)
−0.975087 + 0.221823i \(0.928799\pi\)
\(20\) 0 0
\(21\) −56.3483 + 78.0120i −0.585533 + 0.810648i
\(22\) 0 0
\(23\) 90.7083i 0.822348i 0.911557 + 0.411174i \(0.134881\pi\)
−0.911557 + 0.411174i \(0.865119\pi\)
\(24\) 0 0
\(25\) −23.0000 −0.184000
\(26\) 0 0
\(27\) 106.045 + 91.8559i 0.755864 + 0.654729i
\(28\) 0 0
\(29\) 57.7235i 0.369620i 0.982774 + 0.184810i \(0.0591670\pi\)
−0.982774 + 0.184810i \(0.940833\pi\)
\(30\) 0 0
\(31\) 254.747i 1.47593i −0.674838 0.737966i \(-0.735786\pi\)
0.674838 0.737966i \(-0.264214\pi\)
\(32\) 0 0
\(33\) 40.3980 166.565i 0.213103 0.878645i
\(34\) 0 0
\(35\) −70.6965 + 173.170i −0.341426 + 0.836318i
\(36\) 0 0
\(37\) 230.000 1.02194 0.510970 0.859599i \(-0.329286\pi\)
0.510970 + 0.859599i \(0.329286\pi\)
\(38\) 0 0
\(39\) −69.0000 + 284.494i −0.283304 + 1.16809i
\(40\) 0 0
\(41\) −141.393 −0.538583 −0.269291 0.963059i \(-0.586789\pi\)
−0.269291 + 0.963059i \(0.586789\pi\)
\(42\) 0 0
\(43\) −44.0000 −0.156045 −0.0780225 0.996952i \(-0.524861\pi\)
−0.0780225 + 0.996952i \(0.524861\pi\)
\(44\) 0 0
\(45\) 242.388 + 124.924i 0.802957 + 0.413835i
\(46\) 0 0
\(47\) 343.383 1.06569 0.532847 0.846212i \(-0.321122\pi\)
0.532847 + 0.846212i \(0.321122\pi\)
\(48\) 0 0
\(49\) −245.000 240.050i −0.714286 0.699854i
\(50\) 0 0
\(51\) 306.000 + 74.2159i 0.840168 + 0.203771i
\(52\) 0 0
\(53\) 206.155i 0.534294i 0.963656 + 0.267147i \(0.0860810\pi\)
−0.963656 + 0.267147i \(0.913919\pi\)
\(54\) 0 0
\(55\) 333.131i 0.816715i
\(56\) 0 0
\(57\) −45.0000 + 185.540i −0.104568 + 0.431146i
\(58\) 0 0
\(59\) −131.294 −0.289711 −0.144856 0.989453i \(-0.546272\pi\)
−0.144856 + 0.989453i \(0.546272\pi\)
\(60\) 0 0
\(61\) 71.0352i 0.149100i −0.997217 0.0745502i \(-0.976248\pi\)
0.997217 0.0745502i \(-0.0237521\pi\)
\(62\) 0 0
\(63\) −380.090 + 324.929i −0.760108 + 0.649797i
\(64\) 0 0
\(65\) 568.989i 1.08576i
\(66\) 0 0
\(67\) 64.0000 0.116699 0.0583496 0.998296i \(-0.481416\pi\)
0.0583496 + 0.998296i \(0.481416\pi\)
\(68\) 0 0
\(69\) −111.095 + 458.055i −0.193829 + 0.799178i
\(70\) 0 0
\(71\) 461.788i 0.771889i 0.922522 + 0.385945i \(0.126124\pi\)
−0.922522 + 0.385945i \(0.873876\pi\)
\(72\) 0 0
\(73\) 88.1816i 0.141382i −0.997498 0.0706910i \(-0.977480\pi\)
0.997498 0.0706910i \(-0.0225204\pi\)
\(74\) 0 0
\(75\) −116.144 28.1691i −0.178816 0.0433692i
\(76\) 0 0
\(77\) 565.572 + 230.894i 0.837051 + 0.341725i
\(78\) 0 0
\(79\) 442.000 0.629480 0.314740 0.949178i \(-0.398083\pi\)
0.314740 + 0.949178i \(0.398083\pi\)
\(80\) 0 0
\(81\) 423.000 + 593.727i 0.580247 + 0.814441i
\(82\) 0 0
\(83\) 494.876 0.654454 0.327227 0.944946i \(-0.393886\pi\)
0.327227 + 0.944946i \(0.393886\pi\)
\(84\) 0 0
\(85\) 612.000 0.780950
\(86\) 0 0
\(87\) −70.6965 + 291.489i −0.0871203 + 0.359206i
\(88\) 0 0
\(89\) −484.776 −0.577373 −0.288686 0.957424i \(-0.593218\pi\)
−0.288686 + 0.957424i \(0.593218\pi\)
\(90\) 0 0
\(91\) −966.000 394.368i −1.11279 0.454297i
\(92\) 0 0
\(93\) 312.000 1286.41i 0.347881 1.43435i
\(94\) 0 0
\(95\) 371.080i 0.400757i
\(96\) 0 0
\(97\) 1092.47i 1.14354i −0.820413 0.571772i \(-0.806256\pi\)
0.820413 0.571772i \(-0.193744\pi\)
\(98\) 0 0
\(99\) 408.000 791.636i 0.414197 0.803661i
\(100\) 0 0
\(101\) 1262.44 1.24374 0.621868 0.783122i \(-0.286374\pi\)
0.621868 + 0.783122i \(0.286374\pi\)
\(102\) 0 0
\(103\) 48.9898i 0.0468651i −0.999725 0.0234326i \(-0.992541\pi\)
0.999725 0.0234326i \(-0.00745950\pi\)
\(104\) 0 0
\(105\) −569.090 + 787.883i −0.528928 + 0.732281i
\(106\) 0 0
\(107\) 1467.83i 1.32617i −0.748545 0.663084i \(-0.769247\pi\)
0.748545 0.663084i \(-0.230753\pi\)
\(108\) 0 0
\(109\) −1870.00 −1.64324 −0.821622 0.570033i \(-0.806930\pi\)
−0.821622 + 0.570033i \(0.806930\pi\)
\(110\) 0 0
\(111\) 1161.44 + 281.691i 0.993147 + 0.240873i
\(112\) 0 0
\(113\) 1673.98i 1.39358i −0.717274 0.696791i \(-0.754610\pi\)
0.717274 0.696791i \(-0.245390\pi\)
\(114\) 0 0
\(115\) 916.109i 0.742849i
\(116\) 0 0
\(117\) −696.866 + 1352.12i −0.550643 + 1.06840i
\(118\) 0 0
\(119\) −424.179 + 1039.02i −0.326760 + 0.800395i
\(120\) 0 0
\(121\) 243.000 0.182569
\(122\) 0 0
\(123\) −714.000 173.170i −0.523408 0.126945i
\(124\) 0 0
\(125\) −1494.73 −1.06954
\(126\) 0 0
\(127\) 1048.00 0.732244 0.366122 0.930567i \(-0.380685\pi\)
0.366122 + 0.930567i \(0.380685\pi\)
\(128\) 0 0
\(129\) −222.189 53.8888i −0.151649 0.0367802i
\(130\) 0 0
\(131\) −2555.17 −1.70417 −0.852086 0.523401i \(-0.824663\pi\)
−0.852086 + 0.523401i \(0.824663\pi\)
\(132\) 0 0
\(133\) −630.000 257.196i −0.410736 0.167682i
\(134\) 0 0
\(135\) 1071.00 + 927.699i 0.682793 + 0.591434i
\(136\) 0 0
\(137\) 1006.04i 0.627384i −0.949525 0.313692i \(-0.898434\pi\)
0.949525 0.313692i \(-0.101566\pi\)
\(138\) 0 0
\(139\) 1393.76i 0.850483i −0.905080 0.425242i \(-0.860189\pi\)
0.905080 0.425242i \(-0.139811\pi\)
\(140\) 0 0
\(141\) 1734.00 + 420.557i 1.03567 + 0.251186i
\(142\) 0 0
\(143\) 1858.31 1.08671
\(144\) 0 0
\(145\) 582.979i 0.333888i
\(146\) 0 0
\(147\) −943.189 1512.26i −0.529204 0.848495i
\(148\) 0 0
\(149\) 255.633i 0.140552i 0.997528 + 0.0702760i \(0.0223880\pi\)
−0.997528 + 0.0702760i \(0.977612\pi\)
\(150\) 0 0
\(151\) −1448.00 −0.780375 −0.390187 0.920735i \(-0.627590\pi\)
−0.390187 + 0.920735i \(0.627590\pi\)
\(152\) 0 0
\(153\) 1454.33 + 749.544i 0.768467 + 0.396059i
\(154\) 0 0
\(155\) 2572.82i 1.33325i
\(156\) 0 0
\(157\) 3397.44i 1.72704i −0.504314 0.863520i \(-0.668255\pi\)
0.504314 0.863520i \(-0.331745\pi\)
\(158\) 0 0
\(159\) −252.488 + 1041.03i −0.125934 + 0.519241i
\(160\) 0 0
\(161\) −1555.32 634.958i −0.761346 0.310818i
\(162\) 0 0
\(163\) −3128.00 −1.50309 −0.751546 0.659681i \(-0.770691\pi\)
−0.751546 + 0.659681i \(0.770691\pi\)
\(164\) 0 0
\(165\) 408.000 1682.23i 0.192502 0.793704i
\(166\) 0 0
\(167\) −706.965 −0.327585 −0.163792 0.986495i \(-0.552373\pi\)
−0.163792 + 0.986495i \(0.552373\pi\)
\(168\) 0 0
\(169\) −977.000 −0.444697
\(170\) 0 0
\(171\) −454.478 + 881.816i −0.203244 + 0.394352i
\(172\) 0 0
\(173\) −2252.19 −0.989773 −0.494887 0.868957i \(-0.664790\pi\)
−0.494887 + 0.868957i \(0.664790\pi\)
\(174\) 0 0
\(175\) 161.000 394.368i 0.0695455 0.170351i
\(176\) 0 0
\(177\) −663.000 160.801i −0.281549 0.0682856i
\(178\) 0 0
\(179\) 3496.39i 1.45996i −0.683469 0.729980i \(-0.739529\pi\)
0.683469 0.729980i \(-0.260471\pi\)
\(180\) 0 0
\(181\) 183.712i 0.0754430i −0.999288 0.0377215i \(-0.987990\pi\)
0.999288 0.0377215i \(-0.0120100\pi\)
\(182\) 0 0
\(183\) 87.0000 358.710i 0.0351433 0.144900i
\(184\) 0 0
\(185\) 2322.89 0.923146
\(186\) 0 0
\(187\) 1998.78i 0.781634i
\(188\) 0 0
\(189\) −2317.31 + 1175.30i −0.891851 + 0.452330i
\(190\) 0 0
\(191\) 263.879i 0.0999665i 0.998750 + 0.0499832i \(0.0159168\pi\)
−0.998750 + 0.0499832i \(0.984083\pi\)
\(192\) 0 0
\(193\) −652.000 −0.243171 −0.121585 0.992581i \(-0.538798\pi\)
−0.121585 + 0.992581i \(0.538798\pi\)
\(194\) 0 0
\(195\) −696.866 + 2873.25i −0.255916 + 1.05517i
\(196\) 0 0
\(197\) 2020.32i 0.730670i −0.930876 0.365335i \(-0.880954\pi\)
0.930876 0.365335i \(-0.119046\pi\)
\(198\) 0 0
\(199\) 4849.99i 1.72767i −0.503773 0.863836i \(-0.668055\pi\)
0.503773 0.863836i \(-0.331945\pi\)
\(200\) 0 0
\(201\) 323.184 + 78.3837i 0.113411 + 0.0275063i
\(202\) 0 0
\(203\) −989.751 404.064i −0.342202 0.139703i
\(204\) 0 0
\(205\) −1428.00 −0.486516
\(206\) 0 0
\(207\) −1122.00 + 2177.00i −0.376736 + 0.730976i
\(208\) 0 0
\(209\) 1211.94 0.401109
\(210\) 0 0
\(211\) 2224.00 0.725623 0.362812 0.931863i \(-0.381817\pi\)
0.362812 + 0.931863i \(0.381817\pi\)
\(212\) 0 0
\(213\) −565.572 + 2331.91i −0.181936 + 0.750141i
\(214\) 0 0
\(215\) −444.378 −0.140960
\(216\) 0 0
\(217\) 4368.00 + 1783.23i 1.36645 + 0.557850i
\(218\) 0 0
\(219\) 108.000 445.295i 0.0333240 0.137399i
\(220\) 0 0
\(221\) 3413.93i 1.03912i
\(222\) 0 0
\(223\) 1915.50i 0.575208i 0.957749 + 0.287604i \(0.0928587\pi\)
−0.957749 + 0.287604i \(0.907141\pi\)
\(224\) 0 0
\(225\) −552.000 284.494i −0.163556 0.0842946i
\(226\) 0 0
\(227\) 5948.61 1.73931 0.869654 0.493661i \(-0.164342\pi\)
0.869654 + 0.493661i \(0.164342\pi\)
\(228\) 0 0
\(229\) 3706.08i 1.06945i −0.845025 0.534726i \(-0.820415\pi\)
0.845025 0.534726i \(-0.179585\pi\)
\(230\) 0 0
\(231\) 2573.21 + 1858.64i 0.732922 + 0.529392i
\(232\) 0 0
\(233\) 956.561i 0.268954i −0.990917 0.134477i \(-0.957065\pi\)
0.990917 0.134477i \(-0.0429355\pi\)
\(234\) 0 0
\(235\) 3468.00 0.962670
\(236\) 0 0
\(237\) 2231.99 + 541.337i 0.611744 + 0.148370i
\(238\) 0 0
\(239\) 4791.05i 1.29668i 0.761350 + 0.648341i \(0.224537\pi\)
−0.761350 + 0.648341i \(0.775463\pi\)
\(240\) 0 0
\(241\) 3786.91i 1.01218i 0.862479 + 0.506092i \(0.168910\pi\)
−0.862479 + 0.506092i \(0.831090\pi\)
\(242\) 0 0
\(243\) 1408.88 + 3516.24i 0.371933 + 0.928260i
\(244\) 0 0
\(245\) −2474.38 2424.39i −0.645234 0.632197i
\(246\) 0 0
\(247\) −2070.00 −0.533243
\(248\) 0 0
\(249\) 2499.00 + 606.097i 0.636015 + 0.154256i
\(250\) 0 0
\(251\) −4029.70 −1.01336 −0.506678 0.862135i \(-0.669127\pi\)
−0.506678 + 0.862135i \(0.669127\pi\)
\(252\) 0 0
\(253\) 2992.00 0.743500
\(254\) 0 0
\(255\) 3090.45 + 749.544i 0.758947 + 0.184072i
\(256\) 0 0
\(257\) −201.990 −0.0490264 −0.0245132 0.999700i \(-0.507804\pi\)
−0.0245132 + 0.999700i \(0.507804\pi\)
\(258\) 0 0
\(259\) −1610.00 + 3943.68i −0.386257 + 0.946132i
\(260\) 0 0
\(261\) −714.000 + 1385.36i −0.169331 + 0.328551i
\(262\) 0 0
\(263\) 8279.20i 1.94113i 0.240840 + 0.970565i \(0.422577\pi\)
−0.240840 + 0.970565i \(0.577423\pi\)
\(264\) 0 0
\(265\) 2082.07i 0.482643i
\(266\) 0 0
\(267\) −2448.00 593.727i −0.561105 0.136088i
\(268\) 0 0
\(269\) 5787.02 1.31168 0.655838 0.754902i \(-0.272316\pi\)
0.655838 + 0.754902i \(0.272316\pi\)
\(270\) 0 0
\(271\) 1219.85i 0.273433i 0.990610 + 0.136717i \(0.0436549\pi\)
−0.990610 + 0.136717i \(0.956345\pi\)
\(272\) 0 0
\(273\) −4395.06 3174.56i −0.974363 0.703785i
\(274\) 0 0
\(275\) 758.651i 0.166358i
\(276\) 0 0
\(277\) −3214.00 −0.697150 −0.348575 0.937281i \(-0.613334\pi\)
−0.348575 + 0.937281i \(0.613334\pi\)
\(278\) 0 0
\(279\) 3151.05 6113.93i 0.676158 1.31194i
\(280\) 0 0
\(281\) 9235.76i 1.96071i 0.197245 + 0.980354i \(0.436800\pi\)
−0.197245 + 0.980354i \(0.563200\pi\)
\(282\) 0 0
\(283\) 2981.03i 0.626162i −0.949726 0.313081i \(-0.898639\pi\)
0.949726 0.313081i \(-0.101361\pi\)
\(284\) 0 0
\(285\) −454.478 + 1873.86i −0.0944594 + 0.389466i
\(286\) 0 0
\(287\) 989.751 2424.39i 0.203565 0.498631i
\(288\) 0 0
\(289\) −1241.00 −0.252595
\(290\) 0 0
\(291\) 1338.00 5516.72i 0.269536 1.11133i
\(292\) 0 0
\(293\) 5160.85 1.02901 0.514505 0.857487i \(-0.327976\pi\)
0.514505 + 0.857487i \(0.327976\pi\)
\(294\) 0 0
\(295\) −1326.00 −0.261704
\(296\) 0 0
\(297\) 3029.85 3497.87i 0.591952 0.683391i
\(298\) 0 0
\(299\) −5110.35 −0.988425
\(300\) 0 0
\(301\) 308.000 754.443i 0.0589795 0.144470i
\(302\) 0 0
\(303\) 6375.00 + 1546.16i 1.20869 + 0.293151i
\(304\) 0 0
\(305\) 717.420i 0.134686i
\(306\) 0 0
\(307\) 1873.86i 0.348361i −0.984714 0.174180i \(-0.944272\pi\)
0.984714 0.174180i \(-0.0557276\pi\)
\(308\) 0 0
\(309\) 60.0000 247.386i 0.0110462 0.0455447i
\(310\) 0 0
\(311\) 8564.38 1.56155 0.780774 0.624814i \(-0.214825\pi\)
0.780774 + 0.624814i \(0.214825\pi\)
\(312\) 0 0
\(313\) 533.989i 0.0964308i −0.998837 0.0482154i \(-0.984647\pi\)
0.998837 0.0482154i \(-0.0153534\pi\)
\(314\) 0 0
\(315\) −3838.72 + 3281.62i −0.686626 + 0.586979i
\(316\) 0 0
\(317\) 5104.40i 0.904391i 0.891919 + 0.452195i \(0.149359\pi\)
−0.891919 + 0.452195i \(0.850641\pi\)
\(318\) 0 0
\(319\) 1904.00 0.334180
\(320\) 0 0
\(321\) 1797.71 7412.16i 0.312581 1.28880i
\(322\) 0 0
\(323\) 2226.48i 0.383543i
\(324\) 0 0
\(325\) 1295.78i 0.221160i
\(326\) 0 0
\(327\) −9443.04 2290.27i −1.59695 0.387316i
\(328\) 0 0
\(329\) −2403.68 + 5887.79i −0.402794 + 0.986640i
\(330\) 0 0
\(331\) −3632.00 −0.603120 −0.301560 0.953447i \(-0.597507\pi\)
−0.301560 + 0.953447i \(0.597507\pi\)
\(332\) 0 0
\(333\) 5520.00 + 2844.94i 0.908391 + 0.468174i
\(334\) 0 0
\(335\) 646.368 0.105418
\(336\) 0 0
\(337\) −6256.00 −1.01123 −0.505617 0.862758i \(-0.668735\pi\)
−0.505617 + 0.862758i \(0.668735\pi\)
\(338\) 0 0
\(339\) 2050.20 8453.19i 0.328471 1.35432i
\(340\) 0 0
\(341\) −8402.79 −1.33442
\(342\) 0 0
\(343\) 5831.00 2520.52i 0.917914 0.396780i
\(344\) 0 0
\(345\) −1122.00 + 4626.12i −0.175091 + 0.721919i
\(346\) 0 0
\(347\) 1072.01i 0.165845i −0.996556 0.0829227i \(-0.973575\pi\)
0.996556 0.0829227i \(-0.0264255\pi\)
\(348\) 0 0
\(349\) 6287.84i 0.964414i −0.876057 0.482207i \(-0.839835\pi\)
0.876057 0.482207i \(-0.160165\pi\)
\(350\) 0 0
\(351\) −5175.00 + 5974.38i −0.786955 + 0.908515i
\(352\) 0 0
\(353\) 5292.14 0.797938 0.398969 0.916964i \(-0.369368\pi\)
0.398969 + 0.916964i \(0.369368\pi\)
\(354\) 0 0
\(355\) 4663.83i 0.697268i
\(356\) 0 0
\(357\) −3414.54 + 4727.30i −0.506209 + 0.700826i
\(358\) 0 0
\(359\) 3207.78i 0.471588i 0.971803 + 0.235794i \(0.0757690\pi\)
−0.971803 + 0.235794i \(0.924231\pi\)
\(360\) 0 0
\(361\) 5509.00 0.803178
\(362\) 0 0
\(363\) 1227.09 + 297.613i 0.177426 + 0.0430320i
\(364\) 0 0
\(365\) 890.591i 0.127714i
\(366\) 0 0
\(367\) 9381.55i 1.33437i 0.744893 + 0.667184i \(0.232500\pi\)
−0.744893 + 0.667184i \(0.767500\pi\)
\(368\) 0 0
\(369\) −3393.43 1748.94i −0.478740 0.246737i
\(370\) 0 0
\(371\) −3534.83 1443.09i −0.494661 0.201944i
\(372\) 0 0
\(373\) 4598.00 0.638272 0.319136 0.947709i \(-0.396607\pi\)
0.319136 + 0.947709i \(0.396607\pi\)
\(374\) 0 0
\(375\) −7548.00 1830.66i −1.03941 0.252093i
\(376\) 0 0
\(377\) −3252.04 −0.444267
\(378\) 0 0
\(379\) −5252.00 −0.711813 −0.355906 0.934522i \(-0.615828\pi\)
−0.355906 + 0.934522i \(0.615828\pi\)
\(380\) 0 0
\(381\) 5292.14 + 1283.53i 0.711613 + 0.172592i
\(382\) 0 0
\(383\) −1918.91 −0.256009 −0.128005 0.991774i \(-0.540857\pi\)
−0.128005 + 0.991774i \(0.540857\pi\)
\(384\) 0 0
\(385\) 5712.00 + 2331.91i 0.756131 + 0.308689i
\(386\) 0 0
\(387\) −1056.00 544.250i −0.138707 0.0714878i
\(388\) 0 0
\(389\) 7067.00i 0.921109i −0.887632 0.460554i \(-0.847651\pi\)
0.887632 0.460554i \(-0.152349\pi\)
\(390\) 0 0
\(391\) 5496.65i 0.710941i
\(392\) 0 0
\(393\) −12903.0 3129.44i −1.65616 0.401677i
\(394\) 0 0
\(395\) 4463.98 0.568626
\(396\) 0 0
\(397\) 13337.5i 1.68612i 0.537822 + 0.843059i \(0.319247\pi\)
−0.537822 + 0.843059i \(0.680753\pi\)
\(398\) 0 0
\(399\) −2866.34 2070.37i −0.359641 0.259769i
\(400\) 0 0
\(401\) 13251.7i 1.65027i −0.564939 0.825133i \(-0.691100\pi\)
0.564939 0.825133i \(-0.308900\pi\)
\(402\) 0 0
\(403\) 14352.0 1.77401
\(404\) 0 0
\(405\) 4272.09 + 5996.35i 0.524153 + 0.735706i
\(406\) 0 0
\(407\) 7586.51i 0.923955i
\(408\) 0 0
\(409\) 7461.15i 0.902029i −0.892517 0.451015i \(-0.851062\pi\)
0.892517 0.451015i \(-0.148938\pi\)
\(410\) 0 0
\(411\) 1232.14 5080.24i 0.147876 0.609708i
\(412\) 0 0
\(413\) 919.055 2251.22i 0.109501 0.268221i
\(414\) 0 0
\(415\) 4998.00 0.591186
\(416\) 0 0
\(417\) 1707.00 7038.14i 0.200461 0.826521i
\(418\) 0 0
\(419\) 9261.25 1.07981 0.539906 0.841725i \(-0.318460\pi\)
0.539906 + 0.841725i \(0.318460\pi\)
\(420\) 0 0
\(421\) −2854.00 −0.330393 −0.165196 0.986261i \(-0.552826\pi\)
−0.165196 + 0.986261i \(0.552826\pi\)
\(422\) 0 0
\(423\) 8241.20 + 4247.42i 0.947283 + 0.488218i
\(424\) 0 0
\(425\) −1393.73 −0.159073
\(426\) 0 0
\(427\) 1218.00 + 497.246i 0.138040 + 0.0563547i
\(428\) 0 0
\(429\) 9384.00 + 2275.95i 1.05609 + 0.256140i
\(430\) 0 0
\(431\) 11289.1i 1.26166i −0.775921 0.630830i \(-0.782715\pi\)
0.775921 0.630830i \(-0.217285\pi\)
\(432\) 0 0
\(433\) 13036.2i 1.44683i 0.690411 + 0.723417i \(0.257430\pi\)
−0.690411 + 0.723417i \(0.742570\pi\)
\(434\) 0 0
\(435\) −714.000 + 2943.90i −0.0786981 + 0.324481i
\(436\) 0 0
\(437\) −3332.84 −0.364831
\(438\) 0 0
\(439\) 3003.07i 0.326490i 0.986586 + 0.163245i \(0.0521960\pi\)
−0.986586 + 0.163245i \(0.947804\pi\)
\(440\) 0 0
\(441\) −2910.75 8791.68i −0.314301 0.949323i
\(442\) 0 0
\(443\) 6844.36i 0.734052i 0.930211 + 0.367026i \(0.119624\pi\)
−0.930211 + 0.367026i \(0.880376\pi\)
\(444\) 0 0
\(445\) −4896.00 −0.521557
\(446\) 0 0
\(447\) −313.085 + 1290.88i −0.0331284 + 0.136592i
\(448\) 0 0
\(449\) 2655.28i 0.279088i 0.990216 + 0.139544i \(0.0445636\pi\)
−0.990216 + 0.139544i \(0.955436\pi\)
\(450\) 0 0
\(451\) 4663.83i 0.486943i
\(452\) 0 0
\(453\) −7312.04 1773.43i −0.758388 0.183936i
\(454\) 0 0
\(455\) −9756.12 3982.92i −1.00522 0.410378i
\(456\) 0 0
\(457\) 1196.00 0.122421 0.0612106 0.998125i \(-0.480504\pi\)
0.0612106 + 0.998125i \(0.480504\pi\)
\(458\) 0 0
\(459\) 6426.00 + 5566.19i 0.653464 + 0.566030i
\(460\) 0 0
\(461\) 5443.63 0.549968 0.274984 0.961449i \(-0.411327\pi\)
0.274984 + 0.961449i \(0.411327\pi\)
\(462\) 0 0
\(463\) −926.000 −0.0929479 −0.0464739 0.998920i \(-0.514798\pi\)
−0.0464739 + 0.998920i \(0.514798\pi\)
\(464\) 0 0
\(465\) 3151.05 12992.1i 0.314250 1.29569i
\(466\) 0 0
\(467\) −7786.72 −0.771577 −0.385788 0.922587i \(-0.626071\pi\)
−0.385788 + 0.922587i \(0.626071\pi\)
\(468\) 0 0
\(469\) −448.000 + 1097.37i −0.0441081 + 0.108042i
\(470\) 0 0
\(471\) 4161.00 17156.2i 0.407067 1.67838i
\(472\) 0 0
\(473\) 1451.33i 0.141083i
\(474\) 0 0
\(475\) 845.074i 0.0816308i
\(476\) 0 0
\(477\) −2550.00 + 4947.73i −0.244772 + 0.474928i
\(478\) 0 0
\(479\) −12503.2 −1.19266 −0.596331 0.802739i \(-0.703375\pi\)
−0.596331 + 0.802739i \(0.703375\pi\)
\(480\) 0 0
\(481\) 12957.8i 1.22833i
\(482\) 0 0
\(483\) −7076.34 5111.26i −0.666635 0.481512i
\(484\) 0 0
\(485\) 11033.4i 1.03299i
\(486\) 0 0
\(487\) −13712.0 −1.27587 −0.637936 0.770089i \(-0.720212\pi\)
−0.637936 + 0.770089i \(0.720212\pi\)
\(488\) 0 0
\(489\) −15795.6 3831.00i −1.46074 0.354282i
\(490\) 0 0
\(491\) 5772.35i 0.530555i −0.964172 0.265277i \(-0.914536\pi\)
0.964172 0.265277i \(-0.0854635\pi\)
\(492\) 0 0
\(493\) 3497.87i 0.319546i
\(494\) 0 0
\(495\) 4120.60 7995.13i 0.374156 0.725969i
\(496\) 0 0
\(497\) −7918.01 3232.51i −0.714631 0.291747i
\(498\) 0 0
\(499\) −15476.0 −1.38838 −0.694189 0.719792i \(-0.744237\pi\)
−0.694189 + 0.719792i \(0.744237\pi\)
\(500\) 0 0
\(501\) −3570.00 865.852i −0.318355 0.0772124i
\(502\) 0 0
\(503\) 1696.72 0.150403 0.0752017 0.997168i \(-0.476040\pi\)
0.0752017 + 0.997168i \(0.476040\pi\)
\(504\) 0 0
\(505\) 12750.0 1.12350
\(506\) 0 0
\(507\) −4933.61 1196.58i −0.432168 0.104816i
\(508\) 0 0
\(509\) −4231.69 −0.368500 −0.184250 0.982879i \(-0.558986\pi\)
−0.184250 + 0.982879i \(0.558986\pi\)
\(510\) 0 0
\(511\) 1512.00 + 617.271i 0.130894 + 0.0534373i
\(512\) 0 0
\(513\) −3375.00 + 3896.33i −0.290468 + 0.335336i
\(514\) 0 0
\(515\) 494.773i 0.0423345i
\(516\) 0 0
\(517\) 11326.4i 0.963513i
\(518\) 0 0
\(519\) −11373.0 2758.36i −0.961887 0.233292i
\(520\) 0 0
\(521\) 19572.8 1.64588 0.822938 0.568131i \(-0.192333\pi\)
0.822938 + 0.568131i \(0.192333\pi\)
\(522\) 0 0
\(523\) 8369.91i 0.699791i 0.936789 + 0.349895i \(0.113783\pi\)
−0.936789 + 0.349895i \(0.886217\pi\)
\(524\) 0 0
\(525\) 1296.01 1794.28i 0.107738 0.149159i
\(526\) 0 0
\(527\) 15436.9i 1.27598i
\(528\) 0 0
\(529\) 3939.00 0.323745
\(530\) 0 0
\(531\) −3151.05 1624.01i −0.257521 0.132723i
\(532\) 0 0
\(533\) 7965.84i 0.647352i
\(534\) 0 0
\(535\) 14824.3i 1.19796i
\(536\) 0 0
\(537\) 4282.19 17655.9i 0.344116 1.41883i
\(538\) 0 0
\(539\) −7918.01 + 8081.29i −0.632751 + 0.645799i
\(540\) 0 0
\(541\) −16150.0 −1.28344 −0.641722 0.766938i \(-0.721780\pi\)
−0.641722 + 0.766938i \(0.721780\pi\)
\(542\) 0 0
\(543\) 225.000 927.699i 0.0177821 0.0733174i
\(544\) 0 0
\(545\) −18886.1 −1.48439
\(546\) 0 0
\(547\) 18352.0 1.43451 0.717253 0.696813i \(-0.245399\pi\)
0.717253 + 0.696813i \(0.245399\pi\)
\(548\) 0 0
\(549\) 878.657 1704.84i 0.0683063 0.132534i
\(550\) 0 0
\(551\) −2120.90 −0.163980
\(552\) 0 0
\(553\) −3094.00 + 7578.72i −0.237921 + 0.582785i
\(554\) 0 0
\(555\) 11730.0 + 2844.94i 0.897137 + 0.217588i
\(556\) 0 0
\(557\) 3323.22i 0.252800i 0.991979 + 0.126400i \(0.0403423\pi\)
−0.991979 + 0.126400i \(0.959658\pi\)
\(558\) 0 0
\(559\) 2478.88i 0.187559i
\(560\) 0 0
\(561\) 2448.00 10093.4i 0.184233 0.759612i
\(562\) 0 0
\(563\) 14290.8 1.06978 0.534889 0.844922i \(-0.320353\pi\)
0.534889 + 0.844922i \(0.320353\pi\)
\(564\) 0 0
\(565\) 16906.4i 1.25886i
\(566\) 0 0
\(567\) −13141.3 + 3096.85i −0.973338 + 0.229375i
\(568\) 0 0
\(569\) 14801.9i 1.09056i 0.838253 + 0.545281i \(0.183577\pi\)
−0.838253 + 0.545281i \(0.816423\pi\)
\(570\) 0 0
\(571\) −4136.00 −0.303128 −0.151564 0.988447i \(-0.548431\pi\)
−0.151564 + 0.988447i \(0.548431\pi\)
\(572\) 0 0
\(573\) −323.184 + 1332.52i −0.0235623 + 0.0971500i
\(574\) 0 0
\(575\) 2086.29i 0.151312i
\(576\) 0 0
\(577\) 19458.7i 1.40395i 0.712202 + 0.701974i \(0.247698\pi\)
−0.712202 + 0.701974i \(0.752302\pi\)
\(578\) 0 0
\(579\) −3292.44 798.534i −0.236320 0.0573159i
\(580\) 0 0
\(581\) −3464.13 + 8485.35i −0.247360 + 0.605907i
\(582\) 0 0
\(583\) 6800.00 0.483066
\(584\) 0 0
\(585\) −7038.00 + 13655.7i −0.497411 + 0.965119i
\(586\) 0 0
\(587\) 18310.4 1.28748 0.643740 0.765244i \(-0.277382\pi\)
0.643740 + 0.765244i \(0.277382\pi\)
\(588\) 0 0
\(589\) 9360.00 0.654791
\(590\) 0 0
\(591\) 2474.38 10202.1i 0.172221 0.710083i
\(592\) 0 0
\(593\) 7998.81 0.553915 0.276958 0.960882i \(-0.410674\pi\)
0.276958 + 0.960882i \(0.410674\pi\)
\(594\) 0 0
\(595\) −4284.00 + 10493.6i −0.295171 + 0.723019i
\(596\) 0 0
\(597\) 5940.00 24491.2i 0.407216 1.67900i
\(598\) 0 0
\(599\) 12435.3i 0.848234i 0.905607 + 0.424117i \(0.139415\pi\)
−0.905607 + 0.424117i \(0.860585\pi\)
\(600\) 0 0
\(601\) 18557.3i 1.25952i 0.776791 + 0.629758i \(0.216846\pi\)
−0.776791 + 0.629758i \(0.783154\pi\)
\(602\) 0 0
\(603\) 1536.00 + 791.636i 0.103733 + 0.0534626i
\(604\) 0 0
\(605\) 2454.18 0.164920
\(606\) 0 0
\(607\) 1592.17i 0.106465i −0.998582 0.0532324i \(-0.983048\pi\)
0.998582 0.0532324i \(-0.0169524\pi\)
\(608\) 0 0
\(609\) −4503.12 3252.62i −0.299632 0.216425i
\(610\) 0 0
\(611\) 19345.6i 1.28092i
\(612\) 0 0
\(613\) −1786.00 −0.117677 −0.0588384 0.998268i \(-0.518740\pi\)
−0.0588384 + 0.998268i \(0.518740\pi\)
\(614\) 0 0
\(615\) −7211.05 1748.94i −0.472809 0.114673i
\(616\) 0 0
\(617\) 8254.46i 0.538593i −0.963057 0.269297i \(-0.913209\pi\)
0.963057 0.269297i \(-0.0867912\pi\)
\(618\) 0 0
\(619\) 8301.32i 0.539028i 0.962996 + 0.269514i \(0.0868630\pi\)
−0.962996 + 0.269514i \(0.913137\pi\)
\(620\) 0 0
\(621\) −8332.09 + 9619.15i −0.538414 + 0.621583i
\(622\) 0 0
\(623\) 3393.43 8312.18i 0.218226 0.534543i
\(624\) 0 0
\(625\) −12221.0 −0.782144
\(626\) 0 0
\(627\) 6120.00 + 1484.32i 0.389807 + 0.0945422i
\(628\) 0 0
\(629\) 13937.3 0.883493
\(630\) 0 0
\(631\) 13102.0 0.826596 0.413298 0.910596i \(-0.364377\pi\)
0.413298 + 0.910596i \(0.364377\pi\)
\(632\) 0 0
\(633\) 11230.6 + 2723.83i 0.705179 + 0.171031i
\(634\) 0 0
\(635\) 10584.3 0.661456
\(636\) 0 0
\(637\) 13524.0 13802.9i 0.841194 0.858540i
\(638\) 0 0
\(639\) −5712.00 + 11082.9i −0.353620 + 0.686124i
\(640\) 0 0
\(641\) 9837.73i 0.606189i −0.952961 0.303094i \(-0.901980\pi\)
0.952961 0.303094i \(-0.0980197\pi\)
\(642\) 0 0
\(643\) 9624.05i 0.590257i −0.955458 0.295129i \(-0.904638\pi\)
0.955458 0.295129i \(-0.0953625\pi\)
\(644\) 0 0
\(645\) −2244.00 544.250i −0.136988 0.0332245i
\(646\) 0 0
\(647\) −7695.82 −0.467626 −0.233813 0.972282i \(-0.575120\pi\)
−0.233813 + 0.972282i \(0.575120\pi\)
\(648\) 0 0
\(649\) 4330.70i 0.261933i
\(650\) 0 0
\(651\) 19873.3 + 14354.5i 1.19646 + 0.864208i
\(652\) 0 0
\(653\) 28309.2i 1.69652i 0.529582 + 0.848259i \(0.322349\pi\)
−0.529582 + 0.848259i \(0.677651\pi\)
\(654\) 0 0
\(655\) −25806.0 −1.53943
\(656\) 0 0
\(657\) 1090.75 2116.36i 0.0647703 0.125673i
\(658\) 0 0
\(659\) 22973.9i 1.35802i 0.734127 + 0.679012i \(0.237592\pi\)
−0.734127 + 0.679012i \(0.762408\pi\)
\(660\) 0 0
\(661\) 10804.7i 0.635785i −0.948127 0.317893i \(-0.897025\pi\)
0.948127 0.317893i \(-0.102975\pi\)
\(662\) 0 0
\(663\) −4181.20 + 17239.5i −0.244923 + 1.00984i
\(664\) 0 0
\(665\) −6362.69 2597.56i −0.371029 0.151472i
\(666\) 0 0
\(667\) −5236.00 −0.303956
\(668\) 0 0
\(669\) −2346.00 + 9672.81i −0.135578 + 0.559002i
\(670\) 0 0
\(671\) −2343.09 −0.134804
\(672\) 0 0
\(673\) 26882.0 1.53971 0.769855 0.638219i \(-0.220328\pi\)
0.769855 + 0.638219i \(0.220328\pi\)
\(674\) 0 0
\(675\) −2439.03 2112.68i −0.139079 0.120470i
\(676\) 0 0
\(677\) −20491.9 −1.16332 −0.581660 0.813432i \(-0.697597\pi\)
−0.581660 + 0.813432i \(0.697597\pi\)
\(678\) 0 0
\(679\) 18732.0 + 7647.31i 1.05872 + 0.432219i
\(680\) 0 0
\(681\) 30039.0 + 7285.53i 1.69030 + 0.409959i
\(682\) 0 0
\(683\) 725.667i 0.0406543i −0.999793 0.0203271i \(-0.993529\pi\)
0.999793 0.0203271i \(-0.00647077\pi\)
\(684\) 0 0
\(685\) 10160.5i 0.566733i
\(686\) 0 0
\(687\) 4539.00 18714.8i 0.252072 1.03932i
\(688\) 0 0
\(689\) −11614.4 −0.642198
\(690\) 0 0
\(691\) 11760.0i 0.647426i −0.946155 0.323713i \(-0.895069\pi\)
0.946155 0.323713i \(-0.104931\pi\)
\(692\) 0 0
\(693\) 10717.7 + 12537.2i 0.587494 + 0.687228i
\(694\) 0 0
\(695\) 14076.3i 0.768265i
\(696\) 0 0
\(697\) −8568.00 −0.465619
\(698\) 0 0
\(699\) 1171.54 4830.39i 0.0633931 0.261377i
\(700\) 0 0
\(701\) 21877.2i 1.17873i 0.807867 + 0.589365i \(0.200622\pi\)
−0.807867 + 0.589365i \(0.799378\pi\)
\(702\) 0 0
\(703\) 8450.74i 0.453379i
\(704\) 0 0
\(705\) 17512.5 + 4247.42i 0.935547 + 0.226903i
\(706\) 0 0
\(707\) −8837.07 + 21646.3i −0.470088 + 1.15148i
\(708\) 0 0
\(709\) −24382.0 −1.29152 −0.645758 0.763542i \(-0.723459\pi\)
−0.645758 + 0.763542i \(0.723459\pi\)
\(710\) 0 0
\(711\) 10608.0 + 5467.24i 0.559537 + 0.288379i
\(712\) 0 0
\(713\) 23107.7 1.21373
\(714\) 0 0
\(715\) 18768.0 0.981655
\(716\) 0 0
\(717\) −5867.81 + 24193.6i −0.305631 + 1.26015i
\(718\) 0 0
\(719\) 11089.3 0.575187 0.287594 0.957753i \(-0.407145\pi\)
0.287594 + 0.957753i \(0.407145\pi\)
\(720\) 0 0
\(721\) 840.000 + 342.929i 0.0433887 + 0.0177134i
\(722\) 0 0
\(723\) −4638.00 + 19123.0i −0.238574 + 0.983666i
\(724\) 0 0
\(725\) 1327.64i 0.0680101i
\(726\) 0 0
\(727\) 5927.77i 0.302405i 0.988503 + 0.151203i \(0.0483146\pi\)
−0.988503 + 0.151203i \(0.951685\pi\)
\(728\) 0 0
\(729\) 2808.00 + 19481.7i 0.142661 + 0.989772i
\(730\) 0 0
\(731\) −2666.27 −0.134905
\(732\) 0 0
\(733\) 22532.9i 1.13543i −0.823225 0.567715i \(-0.807828\pi\)
0.823225 0.567715i \(-0.192172\pi\)
\(734\) 0 0
\(735\) −9525.75 15273.0i −0.478044 0.766468i
\(736\) 0 0
\(737\) 2111.03i 0.105510i
\(738\) 0 0
\(739\) 9220.00 0.458949 0.229474 0.973315i \(-0.426299\pi\)
0.229474 + 0.973315i \(0.426299\pi\)
\(740\) 0 0
\(741\) −10453.0 2535.22i −0.518219 0.125687i
\(742\) 0 0
\(743\) 14950.4i 0.738191i −0.929391 0.369096i \(-0.879667\pi\)
0.929391 0.369096i \(-0.120333\pi\)
\(744\) 0 0
\(745\) 2581.76i 0.126964i
\(746\) 0 0
\(747\) 11877.0 + 6121.27i 0.581737 + 0.299820i
\(748\) 0 0
\(749\) 25168.0 + 10274.8i 1.22779 + 0.501245i
\(750\) 0 0
\(751\) −26648.0 −1.29481 −0.647403 0.762148i \(-0.724145\pi\)
−0.647403 + 0.762148i \(0.724145\pi\)
\(752\) 0 0
\(753\) −20349.0 4935.36i −0.984806 0.238850i
\(754\) 0 0
\(755\) −14624.1 −0.704934
\(756\) 0 0
\(757\) −3274.00 −0.157194 −0.0785968 0.996906i \(-0.525044\pi\)
−0.0785968 + 0.996906i \(0.525044\pi\)
\(758\) 0 0
\(759\) 15108.9 + 3664.44i 0.722552 + 0.175245i
\(760\) 0 0
\(761\) 36701.6 1.74827 0.874134 0.485685i \(-0.161430\pi\)
0.874134 + 0.485685i \(0.161430\pi\)
\(762\) 0 0
\(763\) 13090.0 32063.8i 0.621088 1.52135i
\(764\) 0 0
\(765\) 14688.0 + 7570.02i 0.694177 + 0.357771i
\(766\) 0 0
\(767\) 7396.85i 0.348220i
\(768\) 0 0
\(769\) 20570.8i 0.964633i −0.875997 0.482316i \(-0.839796\pi\)
0.875997 0.482316i \(-0.160204\pi\)
\(770\) 0 0
\(771\) −1020.00 247.386i −0.0476451 0.0115556i
\(772\) 0 0
\(773\) −26450.6 −1.23074 −0.615370 0.788238i \(-0.710993\pi\)
−0.615370 + 0.788238i \(0.710993\pi\)
\(774\) 0 0
\(775\) 5859.18i 0.271572i
\(776\) 0 0
\(777\) −12960.1 + 17942.8i −0.598380 + 0.828434i
\(778\) 0 0
\(779\) 5195.11i 0.238940i
\(780\) 0 0
\(781\) 15232.0 0.697879
\(782\) 0 0
\(783\) −5302.24 + 6121.27i −0.242001 + 0.279383i
\(784\) 0 0
\(785\) 34312.5i 1.56008i
\(786\) 0 0
\(787\) 24071.1i 1.09027i −0.838348 0.545136i \(-0.816478\pi\)
0.838348 0.545136i \(-0.183522\pi\)
\(788\) 0 0
\(789\) −10139.9 + 41807.9i −0.457529 + 1.88644i
\(790\) 0 0
\(791\) 28702.8 + 11717.9i 1.29021 + 0.526725i
\(792\) 0 0
\(793\) 4002.00 0.179212
\(794\) 0 0
\(795\) −2550.00 + 10513.9i −0.113760 + 0.469044i
\(796\) 0 0
\(797\) 24673.1 1.09657 0.548285 0.836292i \(-0.315281\pi\)
0.548285 + 0.836292i \(0.315281\pi\)
\(798\) 0 0
\(799\) 20808.0 0.921319
\(800\) 0 0
\(801\) −11634.6 5996.35i −0.513220 0.264508i
\(802\) 0 0
\(803\) −2908.66 −0.127826
\(804\) 0 0
\(805\) −15708.0 6412.76i −0.687744 0.280770i
\(806\) 0 0
\(807\) 29223.0 + 7087.62i 1.27472 + 0.309165i
\(808\) 0 0
\(809\) 44884.1i 1.95061i 0.220867 + 0.975304i \(0.429111\pi\)
−0.220867 + 0.975304i \(0.570889\pi\)
\(810\) 0 0
\(811\) 30430.0i 1.31756i 0.752335 + 0.658781i \(0.228927\pi\)
−0.752335 + 0.658781i \(0.771073\pi\)
\(812\) 0 0
\(813\) −1494.00 + 6159.92i −0.0644488 + 0.265729i
\(814\) 0 0
\(815\) −31591.3 −1.35778
\(816\) 0 0
\(817\) 1616.66i 0.0692287i
\(818\) 0 0
\(819\) −18305.9 21413.6i −0.781027 0.913616i
\(820\) 0 0
\(821\) 18446.8i 0.784162i −0.919931 0.392081i \(-0.871755\pi\)
0.919931 0.392081i \(-0.128245\pi\)
\(822\) 0 0
\(823\) −35006.0 −1.48266 −0.741332 0.671138i \(-0.765806\pi\)
−0.741332 + 0.671138i \(0.765806\pi\)
\(824\) 0 0
\(825\) −929.154 + 3831.00i −0.0392109 + 0.161671i
\(826\) 0 0
\(827\) 1500.81i 0.0631056i 0.999502 + 0.0315528i \(0.0100452\pi\)
−0.999502 + 0.0315528i \(0.989955\pi\)
\(828\) 0 0
\(829\) 34089.5i 1.42820i −0.700043 0.714101i \(-0.746836\pi\)
0.700043 0.714101i \(-0.253164\pi\)
\(830\) 0 0
\(831\) −16229.9 3936.33i −0.677508 0.164320i
\(832\) 0 0
\(833\) −14846.3 14546.3i −0.617518 0.605042i
\(834\) 0 0
\(835\) −7140.00 −0.295916
\(836\) 0 0
\(837\) 23400.0 27014.6i 0.966335 1.11560i
\(838\) 0 0
\(839\) −989.751 −0.0407271 −0.0203635 0.999793i \(-0.506482\pi\)
−0.0203635 + 0.999793i \(0.506482\pi\)
\(840\) 0 0
\(841\) 21057.0 0.863381
\(842\) 0 0
\(843\) −11311.4 + 46638.3i −0.462143 + 1.90547i
\(844\) 0 0
\(845\) −9867.22 −0.401707
\(846\) 0 0
\(847\) −1701.00 + 4166.58i −0.0690048 + 0.169027i
\(848\) 0 0
\(849\) 3651.00 15053.5i 0.147588 0.608520i
\(850\) 0 0
\(851\) 20862.9i 0.840390i
\(852\) 0 0
\(853\) 21592.3i 0.866711i 0.901223 + 0.433356i \(0.142671\pi\)
−0.901223 + 0.433356i \(0.857329\pi\)
\(854\) 0 0
\(855\) −4590.00 + 8905.91i −0.183596 + 0.356229i
\(856\) 0 0
\(857\) −46881.9 −1.86868 −0.934338 0.356388i \(-0.884008\pi\)
−0.934338 + 0.356388i \(0.884008\pi\)
\(858\) 0 0
\(859\) 35593.5i 1.41378i −0.707324 0.706889i \(-0.750098\pi\)
0.707324 0.706889i \(-0.249902\pi\)
\(860\) 0 0
\(861\) 7967.25 11030.4i 0.315358 0.436601i
\(862\) 0 0
\(863\) 3727.29i 0.147020i 0.997294 + 0.0735100i \(0.0234201\pi\)
−0.997294 + 0.0735100i \(0.976580\pi\)
\(864\) 0 0
\(865\) −22746.0 −0.894089
\(866\) 0 0
\(867\) −6266.74 1519.91i −0.245478 0.0595372i
\(868\) 0 0
\(869\) 14579.3i 0.569124i
\(870\) 0 0
\(871\) 3605.65i 0.140267i
\(872\) 0 0
\(873\) 13513.1 26219.3i 0.523884 1.01648i
\(874\) 0 0
\(875\) 10463.1 25629.2i 0.404248 0.990201i
\(876\) 0 0
\(877\) −30430.0 −1.17166 −0.585831 0.810433i \(-0.699232\pi\)
−0.585831 + 0.810433i \(0.699232\pi\)
\(878\) 0 0
\(879\) 26061.0 + 6320.72i 1.00002 + 0.242540i
\(880\) 0 0
\(881\) −36479.4 −1.39503 −0.697516 0.716570i \(-0.745711\pi\)
−0.697516 + 0.716570i \(0.745711\pi\)
\(882\) 0 0
\(883\) −21632.0 −0.824433 −0.412217 0.911086i \(-0.635245\pi\)
−0.412217 + 0.911086i \(0.635245\pi\)
\(884\) 0 0
\(885\) −6695.97 1624.01i −0.254331 0.0616842i
\(886\) 0 0
\(887\) 3171.24 0.120045 0.0600225 0.998197i \(-0.480883\pi\)
0.0600225 + 0.998197i \(0.480883\pi\)
\(888\) 0 0
\(889\) −7336.00 + 17969.5i −0.276762 + 0.677926i
\(890\) 0 0
\(891\) 19584.0 13952.6i 0.736351 0.524612i
\(892\) 0 0
\(893\) 12616.7i 0.472790i
\(894\) 0 0
\(895\) 35311.8i 1.31882i
\(896\) 0 0
\(897\) −25806.0 6258.87i −0.960577 0.232974i
\(898\) 0 0
\(899\) 14704.9 0.545534
\(900\) 0 0
\(901\) 12492.4i 0.461911i
\(902\) 0 0
\(903\) 2479.32 3432.53i 0.0913696 0.126498i
\(904\) 0 0
\(905\) 1855.40i 0.0681497i
\(906\) 0 0
\(907\) −26900.0 −0.984785 −0.492392 0.870373i \(-0.663877\pi\)
−0.492392 + 0.870373i \(0.663877\pi\)
\(908\) 0 0
\(909\) 30298.5 + 15615.5i 1.10554 + 0.569784i
\(910\) 0 0
\(911\) 25917.8i 0.942587i 0.881977 + 0.471293i \(0.156213\pi\)
−0.881977 + 0.471293i \(0.843787\pi\)
\(912\) 0 0
\(913\) 16323.4i 0.591704i
\(914\) 0 0
\(915\) 878.657 3622.80i 0.0317459 0.130892i
\(916\) 0 0
\(917\) 17886.2 43812.1i 0.644117 1.57776i
\(918\) 0 0
\(919\) 13126.0 0.471150 0.235575 0.971856i \(-0.424303\pi\)
0.235575 + 0.971856i \(0.424303\pi\)
\(920\) 0 0
\(921\) 2295.00 9462.53i 0.0821095 0.338546i
\(922\) 0 0
\(923\) −26016.3 −0.927777
\(924\) 0 0
\(925\) −5290.00 −0.188037
\(926\) 0 0
\(927\) 605.970 1175.76i 0.0214700 0.0416579i
\(928\) 0 0
\(929\) 41226.2 1.45596 0.727980 0.685598i \(-0.240459\pi\)
0.727980 + 0.685598i \(0.240459\pi\)
\(930\) 0 0
\(931\) 8820.00 9001.87i 0.310487 0.316890i
\(932\) 0 0
\(933\) 43248.0 + 10489.2i 1.51755 + 0.368060i
\(934\) 0 0
\(935\) 20186.7i 0.706071i
\(936\) 0 0
\(937\) 12580.6i 0.438623i −0.975655 0.219311i \(-0.929619\pi\)
0.975655 0.219311i \(-0.0703811\pi\)
\(938\) 0 0
\(939\) 654.000 2696.51i 0.0227289 0.0937139i
\(940\) 0 0
\(941\) −5383.04 −0.186485 −0.0932423 0.995643i \(-0.529723\pi\)
−0.0932423 + 0.995643i \(0.529723\pi\)
\(942\) 0 0
\(943\) 12825.5i 0.442902i
\(944\) 0 0
\(945\) −23403.7 + 11869.9i −0.805633 + 0.408602i
\(946\) 0 0
\(947\) 51340.9i 1.76173i −0.473370 0.880863i \(-0.656963\pi\)
0.473370 0.880863i \(-0.343037\pi\)
\(948\) 0 0
\(949\) 4968.00 0.169935
\(950\) 0 0
\(951\) −6251.59 + 25776.0i −0.213167 + 0.878910i
\(952\) 0 0
\(953\) 32440.6i 1.10268i 0.834281 + 0.551340i \(0.185883\pi\)
−0.834281 + 0.551340i \(0.814117\pi\)
\(954\) 0 0
\(955\) 2665.04i 0.0903024i
\(956\) 0 0
\(957\) 9614.73 + 2331.91i 0.324765 + 0.0787671i
\(958\) 0 0
\(959\) 17250.0 + 7042.26i 0.580845 + 0.237129i
\(960\) 0 0
\(961\) −35105.0 −1.17838
\(962\) 0 0
\(963\) 18156.0 35227.8i 0.607548 1.17882i
\(964\) 0 0
\(965\) −6584.88 −0.219663
\(966\) 0 0
\(967\) −34232.0 −1.13839 −0.569197 0.822201i \(-0.692746\pi\)
−0.569197 + 0.822201i \(0.692746\pi\)
\(968\) 0 0
\(969\) −2726.87 + 11243.2i −0.0904020 + 0.372737i
\(970\) 0 0
\(971\) 19784.9 0.653891 0.326946 0.945043i \(-0.393981\pi\)
0.326946 + 0.945043i \(0.393981\pi\)
\(972\) 0 0
\(973\) 23898.0 + 9756.32i 0.787394 + 0.321452i
\(974\) 0 0
\(975\) 1587.00 6543.37i 0.0521279 0.214929i
\(976\) 0 0
\(977\) 39796.2i 1.30317i −0.758577 0.651583i \(-0.774105\pi\)
0.758577 0.651583i \(-0.225895\pi\)
\(978\) 0 0
\(979\) 15990.3i 0.522013i
\(980\) 0 0
\(981\) −44880.0 23130.6i −1.46066 0.752807i
\(982\) 0 0
\(983\) −22683.5 −0.736003 −0.368001 0.929825i \(-0.619958\pi\)
−0.368001 + 0.929825i \(0.619958\pi\)
\(984\) 0 0
\(985\) 20404.2i 0.660034i
\(986\) 0 0
\(987\) −19349.0 + 26788.0i −0.623999 + 0.863902i
\(988\) 0 0
\(989\) 3991.17i 0.128323i
\(990\) 0 0
\(991\) 50422.0 1.61625 0.808127 0.589008i \(-0.200481\pi\)
0.808127 + 0.589008i \(0.200481\pi\)
\(992\) 0 0
\(993\) −18340.7 4448.27i −0.586127 0.142157i
\(994\) 0 0
\(995\) 48982.5i 1.56065i
\(996\) 0 0
\(997\) 46121.4i 1.46508i 0.680726 + 0.732538i \(0.261664\pi\)
−0.680726 + 0.732538i \(0.738336\pi\)
\(998\) 0 0
\(999\) 24390.3 + 21126.8i 0.772448 + 0.669093i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.4.k.b.209.4 4
3.2 odd 2 inner 336.4.k.b.209.2 4
4.3 odd 2 21.4.c.b.20.1 4
7.6 odd 2 inner 336.4.k.b.209.1 4
12.11 even 2 21.4.c.b.20.4 yes 4
21.20 even 2 inner 336.4.k.b.209.3 4
28.3 even 6 147.4.g.c.68.3 8
28.11 odd 6 147.4.g.c.68.4 8
28.19 even 6 147.4.g.c.80.1 8
28.23 odd 6 147.4.g.c.80.2 8
28.27 even 2 21.4.c.b.20.2 yes 4
84.11 even 6 147.4.g.c.68.1 8
84.23 even 6 147.4.g.c.80.3 8
84.47 odd 6 147.4.g.c.80.4 8
84.59 odd 6 147.4.g.c.68.2 8
84.83 odd 2 21.4.c.b.20.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.4.c.b.20.1 4 4.3 odd 2
21.4.c.b.20.2 yes 4 28.27 even 2
21.4.c.b.20.3 yes 4 84.83 odd 2
21.4.c.b.20.4 yes 4 12.11 even 2
147.4.g.c.68.1 8 84.11 even 6
147.4.g.c.68.2 8 84.59 odd 6
147.4.g.c.68.3 8 28.3 even 6
147.4.g.c.68.4 8 28.11 odd 6
147.4.g.c.80.1 8 28.19 even 6
147.4.g.c.80.2 8 28.23 odd 6
147.4.g.c.80.3 8 84.23 even 6
147.4.g.c.80.4 8 84.47 odd 6
336.4.k.b.209.1 4 7.6 odd 2 inner
336.4.k.b.209.2 4 3.2 odd 2 inner
336.4.k.b.209.3 4 21.20 even 2 inner
336.4.k.b.209.4 4 1.1 even 1 trivial