Properties

Label 336.4.k.b
Level $336$
Weight $4$
Character orbit 336.k
Analytic conductor $19.825$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(209,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.209"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 336.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8246417619\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-6}, \sqrt{-17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 46x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} - \beta_1) q^{3} + ( - 2 \beta_{3} - \beta_1) q^{5} + ( - 7 \beta_1 - 7) q^{7} + ( - 3 \beta_{2} + 24) q^{9} + 8 \beta_{2} q^{11} - 23 \beta_1 q^{13} + ( - 3 \beta_{2} + 51) q^{15} + ( - 12 \beta_{3} - 6 \beta_1) q^{17}+ \cdots + (192 \beta_{2} + 408) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 28 q^{7} + 96 q^{9} + 204 q^{15} - 84 q^{21} - 92 q^{25} + 920 q^{37} - 276 q^{39} - 176 q^{43} - 980 q^{49} + 1224 q^{51} - 180 q^{57} - 672 q^{63} + 256 q^{67} + 1768 q^{79} + 1692 q^{81} + 2448 q^{85}+ \cdots + 1632 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 46x^{2} + 121 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} - 35\nu ) / 22 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 57\nu ) / 22 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 11\nu^{2} + 35\nu + 253 ) / 44 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_{2} + \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 4\beta_{3} + 2\beta _1 - 23 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -35\beta_{2} - 57\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
209.1
1.67362i
1.67362i
6.57260i
6.57260i
0 −5.04975 1.22474i 0 −10.0995 0 −7.00000 17.1464i 0 24.0000 + 12.3693i 0
209.2 0 −5.04975 + 1.22474i 0 −10.0995 0 −7.00000 + 17.1464i 0 24.0000 12.3693i 0
209.3 0 5.04975 1.22474i 0 10.0995 0 −7.00000 17.1464i 0 24.0000 12.3693i 0
209.4 0 5.04975 + 1.22474i 0 10.0995 0 −7.00000 + 17.1464i 0 24.0000 + 12.3693i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.k.b 4
3.b odd 2 1 inner 336.4.k.b 4
4.b odd 2 1 21.4.c.b 4
7.b odd 2 1 inner 336.4.k.b 4
12.b even 2 1 21.4.c.b 4
21.c even 2 1 inner 336.4.k.b 4
28.d even 2 1 21.4.c.b 4
28.f even 6 2 147.4.g.c 8
28.g odd 6 2 147.4.g.c 8
84.h odd 2 1 21.4.c.b 4
84.j odd 6 2 147.4.g.c 8
84.n even 6 2 147.4.g.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.c.b 4 4.b odd 2 1
21.4.c.b 4 12.b even 2 1
21.4.c.b 4 28.d even 2 1
21.4.c.b 4 84.h odd 2 1
147.4.g.c 8 28.f even 6 2
147.4.g.c 8 28.g odd 6 2
147.4.g.c 8 84.j odd 6 2
147.4.g.c 8 84.n even 6 2
336.4.k.b 4 1.a even 1 1 trivial
336.4.k.b 4 3.b odd 2 1 inner
336.4.k.b 4 7.b odd 2 1 inner
336.4.k.b 4 21.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 102 \) acting on \(S_{4}^{\mathrm{new}}(336, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 48T^{2} + 729 \) Copy content Toggle raw display
$5$ \( (T^{2} - 102)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 14 T + 343)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 1088)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 3174)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 3672)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 1350)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 8228)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 3332)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 64896)^{2} \) Copy content Toggle raw display
$37$ \( (T - 230)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 19992)^{2} \) Copy content Toggle raw display
$43$ \( (T + 44)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 117912)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 42500)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 17238)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 5046)^{2} \) Copy content Toggle raw display
$67$ \( (T - 64)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 213248)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 7776)^{2} \) Copy content Toggle raw display
$79$ \( (T - 442)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 244902)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 235008)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 1193496)^{2} \) Copy content Toggle raw display
show more
show less