Properties

Label 336.4.k
Level 336336
Weight 44
Character orbit 336.k
Rep. character χ336(209,)\chi_{336}(209,\cdot)
Character field Q\Q
Dimension 4646
Newform subspaces 55
Sturm bound 256256
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.k (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 21 21
Character field: Q\Q
Newform subspaces: 5 5
Sturm bound: 256256
Trace bound: 77
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M4(336,[χ])M_{4}(336, [\chi]).

Total New Old
Modular forms 204 50 154
Cusp forms 180 46 134
Eisenstein series 24 4 20

Trace form

46q+20q72q9+56q15+94q21+1114q254q37+224q39+592q43+382q49+912q51+476q57+1180q63+64q67+1528q79+462q811152q85+2080q99+O(q100) 46 q + 20 q^{7} - 2 q^{9} + 56 q^{15} + 94 q^{21} + 1114 q^{25} - 4 q^{37} + 224 q^{39} + 592 q^{43} + 382 q^{49} + 912 q^{51} + 476 q^{57} + 1180 q^{63} + 64 q^{67} + 1528 q^{79} + 462 q^{81} - 1152 q^{85}+ \cdots - 2080 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
336.4.k.a 336.k 21.c 22 19.82519.825 Q(3)\Q(\sqrt{-3}) Q(3)\Q(\sqrt{-3}) 21.4.c.a 00 00 00 2020 U(1)[D2]\mathrm{U}(1)[D_{2}] q+βq3+(3β+10)q727q9+q+\beta q^{3}+(-3\beta+10)q^{7}-27 q^{9}+\cdots
336.4.k.b 336.k 21.c 44 19.82519.825 Q(6,17)\Q(\sqrt{-6}, \sqrt{-17}) None 21.4.c.b 00 00 00 28-28 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(β1β3)q3+(β12β3)q5+q+(-\beta _{1}-\beta _{3})q^{3}+(-\beta _{1}-2\beta _{3})q^{5}+\cdots
336.4.k.c 336.k 21.c 88 19.82519.825 8.0.\cdots.13 None 42.4.d.a 00 00 00 4-4 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β6q3+(β2β6β7)q5+(1+)q7+q+\beta _{6}q^{3}+(\beta _{2}-\beta _{6}-\beta _{7})q^{5}+(-1+\cdots)q^{7}+\cdots
336.4.k.d 336.k 21.c 88 19.82519.825 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 84.4.f.a 00 00 00 2020 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β2q3β5q5+(3+β7)q7+(2+)q9+q+\beta _{2}q^{3}-\beta _{5}q^{5}+(3+\beta _{7})q^{7}+(-2+\cdots)q^{9}+\cdots
336.4.k.e 336.k 21.c 2424 19.82519.825 None 168.4.k.a 00 00 00 1212 SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Decomposition of S4old(336,[χ])S_{4}^{\mathrm{old}}(336, [\chi]) into lower level spaces

S4old(336,[χ]) S_{4}^{\mathrm{old}}(336, [\chi]) \simeq S4new(21,[χ])S_{4}^{\mathrm{new}}(21, [\chi])5^{\oplus 5}\oplusS4new(42,[χ])S_{4}^{\mathrm{new}}(42, [\chi])4^{\oplus 4}\oplusS4new(84,[χ])S_{4}^{\mathrm{new}}(84, [\chi])3^{\oplus 3}\oplusS4new(168,[χ])S_{4}^{\mathrm{new}}(168, [\chi])2^{\oplus 2}