Properties

Label 147.4.g.c.80.1
Level $147$
Weight $4$
Character 147.80
Analytic conductor $8.673$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [147,4,Mod(68,147)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(147, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("147.68"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 147.g (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.67328077084\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.443364212736.6
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 16x^{6} + 175x^{4} - 1296x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 80.1
Root \(2.17132 - 2.07011i\) of defining polynomial
Character \(\chi\) \(=\) 147.80
Dual form 147.4.g.c.68.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.57071 + 2.06155i) q^{2} +(-3.58554 + 3.76084i) q^{3} +(4.50000 - 7.79423i) q^{4} +(5.04975 + 8.74643i) q^{5} +(5.04975 - 20.8207i) q^{6} +4.12311i q^{8} +(-1.28786 - 26.9693i) q^{9} +(-36.0624 - 20.8207i) q^{10} +(-28.5657 - 16.4924i) q^{11} +(13.1779 + 44.8703i) q^{12} -56.3383i q^{13} +(-51.0000 - 12.3693i) q^{15} +(27.5000 + 47.6314i) q^{16} +(30.2985 - 52.4786i) q^{17} +(60.1971 + 93.6446i) q^{18} +(31.8198 - 18.3712i) q^{19} +90.8955 q^{20} +136.000 q^{22} +(-78.5557 + 45.3542i) q^{23} +(-15.5063 - 14.7835i) q^{24} +(11.5000 - 19.9186i) q^{25} +(116.144 + 201.168i) q^{26} +(106.045 + 91.8559i) q^{27} +57.7235i q^{29} +(207.606 - 60.9719i) q^{30} +(220.617 + 127.373i) q^{31} +(-224.955 - 129.878i) q^{32} +(164.449 - 48.2969i) q^{33} +249.848i q^{34} +(-216.000 - 111.324i) q^{36} +(-115.000 - 199.186i) q^{37} +(-75.7463 + 131.196i) q^{38} +(211.879 + 202.003i) q^{39} +(-36.0624 + 20.8207i) q^{40} +141.393 q^{41} +44.0000 q^{43} +(-257.091 + 148.432i) q^{44} +(229.381 - 147.452i) q^{45} +(187.000 - 323.894i) q^{46} +(-171.692 - 297.379i) q^{47} +(-277.736 - 67.3610i) q^{48} +94.8314i q^{50} +(88.7271 + 302.112i) q^{51} +(-439.113 - 253.522i) q^{52} +(-178.536 - 103.078i) q^{53} +(-568.021 - 109.374i) q^{54} -333.131i q^{55} +(-45.0000 + 185.540i) q^{57} +(-119.000 - 206.114i) q^{58} +(65.6468 - 113.704i) q^{59} +(-325.909 + 341.844i) q^{60} +(61.5183 - 35.5176i) q^{61} -1050.35 q^{62} +631.000 q^{64} +(492.759 - 284.494i) q^{65} +(-487.633 + 511.474i) q^{66} +(32.0000 - 55.4256i) q^{67} +(-272.687 - 472.307i) q^{68} +(111.095 - 458.055i) q^{69} -461.788i q^{71} +(111.197 - 5.30997i) q^{72} +(-76.3675 - 44.0908i) q^{73} +(821.264 + 474.157i) q^{74} +(33.6770 + 114.668i) q^{75} -330.681i q^{76} +(-1173.00 - 284.494i) q^{78} +(221.000 + 382.783i) q^{79} +(-277.736 + 481.054i) q^{80} +(-725.683 + 69.4651i) q^{81} +(-504.874 + 291.489i) q^{82} +494.876 q^{83} +612.000 q^{85} +(-157.111 + 90.7083i) q^{86} +(-217.089 - 206.970i) q^{87} +(68.0000 - 117.779i) q^{88} +(-242.388 - 419.829i) q^{89} +(-515.075 + 999.392i) q^{90} +816.375i q^{92} +(-1270.06 + 373.005i) q^{93} +(1226.12 + 707.903i) q^{94} +(321.364 + 185.540i) q^{95} +(1295.03 - 380.338i) q^{96} +1092.47i q^{97} +(-408.000 + 791.636i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 36 q^{4} - 96 q^{9} - 408 q^{15} + 220 q^{16} - 204 q^{18} + 1088 q^{22} + 92 q^{25} + 204 q^{30} - 1728 q^{36} - 920 q^{37} - 276 q^{39} + 352 q^{43} + 1496 q^{46} + 1224 q^{51} - 360 q^{57} - 952 q^{58}+ \cdots - 3264 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.57071 + 2.06155i −1.26244 + 0.728869i −0.973546 0.228493i \(-0.926620\pi\)
−0.288892 + 0.957362i \(0.593287\pi\)
\(3\) −3.58554 + 3.76084i −0.690037 + 0.723774i
\(4\) 4.50000 7.79423i 0.562500 0.974279i
\(5\) 5.04975 + 8.74643i 0.451664 + 0.782304i 0.998490 0.0549420i \(-0.0174974\pi\)
−0.546826 + 0.837246i \(0.684164\pi\)
\(6\) 5.04975 20.8207i 0.343592 1.41667i
\(7\) 0 0
\(8\) 4.12311i 0.182217i
\(9\) −1.28786 26.9693i −0.0476984 0.998862i
\(10\) −36.0624 20.8207i −1.14039 0.658407i
\(11\) −28.5657 16.4924i −0.782990 0.452059i 0.0544991 0.998514i \(-0.482644\pi\)
−0.837489 + 0.546455i \(0.815977\pi\)
\(12\) 13.1779 + 44.8703i 0.317012 + 1.07941i
\(13\) 56.3383i 1.20196i −0.799266 0.600978i \(-0.794778\pi\)
0.799266 0.600978i \(-0.205222\pi\)
\(14\) 0 0
\(15\) −51.0000 12.3693i −0.877876 0.212916i
\(16\) 27.5000 + 47.6314i 0.429688 + 0.744241i
\(17\) 30.2985 52.4786i 0.432263 0.748701i −0.564805 0.825224i \(-0.691049\pi\)
0.997068 + 0.0765232i \(0.0243819\pi\)
\(18\) 60.1971 + 93.6446i 0.788256 + 1.22624i
\(19\) 31.8198 18.3712i 0.384209 0.221823i −0.295439 0.955362i \(-0.595466\pi\)
0.679648 + 0.733539i \(0.262133\pi\)
\(20\) 90.8955 1.01624
\(21\) 0 0
\(22\) 136.000 1.31797
\(23\) −78.5557 + 45.3542i −0.712174 + 0.411174i −0.811865 0.583845i \(-0.801548\pi\)
0.0996916 + 0.995018i \(0.468214\pi\)
\(24\) −15.5063 14.7835i −0.131884 0.125737i
\(25\) 11.5000 19.9186i 0.0920000 0.159349i
\(26\) 116.144 + 201.168i 0.876068 + 1.51739i
\(27\) 106.045 + 91.8559i 0.755864 + 0.654729i
\(28\) 0 0
\(29\) 57.7235i 0.369620i 0.982774 + 0.184810i \(0.0591670\pi\)
−0.982774 + 0.184810i \(0.940833\pi\)
\(30\) 207.606 60.9719i 1.26345 0.371063i
\(31\) 220.617 + 127.373i 1.27819 + 0.737966i 0.976516 0.215444i \(-0.0691197\pi\)
0.301679 + 0.953410i \(0.402453\pi\)
\(32\) −224.955 129.878i −1.24271 0.717480i
\(33\) 164.449 48.2969i 0.867481 0.254770i
\(34\) 249.848i 1.26025i
\(35\) 0 0
\(36\) −216.000 111.324i −1.00000 0.515388i
\(37\) −115.000 199.186i −0.510970 0.885026i −0.999919 0.0127135i \(-0.995953\pi\)
0.488949 0.872312i \(-0.337380\pi\)
\(38\) −75.7463 + 131.196i −0.323360 + 0.560076i
\(39\) 211.879 + 202.003i 0.869945 + 0.829394i
\(40\) −36.0624 + 20.8207i −0.142549 + 0.0823009i
\(41\) 141.393 0.538583 0.269291 0.963059i \(-0.413211\pi\)
0.269291 + 0.963059i \(0.413211\pi\)
\(42\) 0 0
\(43\) 44.0000 0.156045 0.0780225 0.996952i \(-0.475139\pi\)
0.0780225 + 0.996952i \(0.475139\pi\)
\(44\) −257.091 + 148.432i −0.880863 + 0.508567i
\(45\) 229.381 147.452i 0.759870 0.488464i
\(46\) 187.000 323.894i 0.599384 1.03816i
\(47\) −171.692 297.379i −0.532847 0.922917i −0.999264 0.0383528i \(-0.987789\pi\)
0.466418 0.884565i \(-0.345544\pi\)
\(48\) −277.736 67.3610i −0.835162 0.202557i
\(49\) 0 0
\(50\) 94.8314i 0.268224i
\(51\) 88.7271 + 302.112i 0.243613 + 0.829492i
\(52\) −439.113 253.522i −1.17104 0.676100i
\(53\) −178.536 103.078i −0.462713 0.267147i 0.250472 0.968124i \(-0.419414\pi\)
−0.713184 + 0.700977i \(0.752748\pi\)
\(54\) −568.021 109.374i −1.43144 0.275628i
\(55\) 333.131i 0.816715i
\(56\) 0 0
\(57\) −45.0000 + 185.540i −0.104568 + 0.431146i
\(58\) −119.000 206.114i −0.269405 0.466622i
\(59\) 65.6468 113.704i 0.144856 0.250897i −0.784463 0.620175i \(-0.787062\pi\)
0.929319 + 0.369278i \(0.120395\pi\)
\(60\) −325.909 + 341.844i −0.701245 + 0.735531i
\(61\) 61.5183 35.5176i 0.129125 0.0745502i −0.434046 0.900891i \(-0.642915\pi\)
0.563171 + 0.826340i \(0.309581\pi\)
\(62\) −1050.35 −2.15152
\(63\) 0 0
\(64\) 631.000 1.23242
\(65\) 492.759 284.494i 0.940295 0.542880i
\(66\) −487.633 + 511.474i −0.909446 + 0.953911i
\(67\) 32.0000 55.4256i 0.0583496 0.101064i −0.835375 0.549680i \(-0.814750\pi\)
0.893725 + 0.448616i \(0.148083\pi\)
\(68\) −272.687 472.307i −0.486296 0.842289i
\(69\) 111.095 458.055i 0.193829 0.799178i
\(70\) 0 0
\(71\) 461.788i 0.771889i −0.922522 0.385945i \(-0.873876\pi\)
0.922522 0.385945i \(-0.126124\pi\)
\(72\) 111.197 5.30997i 0.182010 0.00869147i
\(73\) −76.3675 44.0908i −0.122440 0.0706910i 0.437529 0.899204i \(-0.355854\pi\)
−0.559969 + 0.828513i \(0.689187\pi\)
\(74\) 821.264 + 474.157i 1.29014 + 0.744860i
\(75\) 33.6770 + 114.668i 0.0518491 + 0.176544i
\(76\) 330.681i 0.499102i
\(77\) 0 0
\(78\) −1173.00 284.494i −1.70277 0.412982i
\(79\) 221.000 + 382.783i 0.314740 + 0.545145i 0.979382 0.202016i \(-0.0647494\pi\)
−0.664642 + 0.747162i \(0.731416\pi\)
\(80\) −277.736 + 481.054i −0.388148 + 0.672293i
\(81\) −725.683 + 69.4651i −0.995450 + 0.0952883i
\(82\) −504.874 + 291.489i −0.679927 + 0.392556i
\(83\) 494.876 0.654454 0.327227 0.944946i \(-0.393886\pi\)
0.327227 + 0.944946i \(0.393886\pi\)
\(84\) 0 0
\(85\) 612.000 0.780950
\(86\) −157.111 + 90.7083i −0.196997 + 0.113736i
\(87\) −217.089 206.970i −0.267521 0.255051i
\(88\) 68.0000 117.779i 0.0823730 0.142674i
\(89\) −242.388 419.829i −0.288686 0.500020i 0.684810 0.728722i \(-0.259885\pi\)
−0.973496 + 0.228702i \(0.926552\pi\)
\(90\) −515.075 + 999.392i −0.603263 + 1.17050i
\(91\) 0 0
\(92\) 816.375i 0.925141i
\(93\) −1270.06 + 373.005i −1.41612 + 0.415901i
\(94\) 1226.12 + 707.903i 1.34537 + 0.776751i
\(95\) 321.364 + 185.540i 0.347066 + 0.200379i
\(96\) 1295.03 380.338i 1.37681 0.404355i
\(97\) 1092.47i 1.14354i 0.820413 + 0.571772i \(0.193744\pi\)
−0.820413 + 0.571772i \(0.806256\pi\)
\(98\) 0 0
\(99\) −408.000 + 791.636i −0.414197 + 0.803661i
\(100\) −103.500 179.267i −0.103500 0.179267i
\(101\) 631.219 1093.30i 0.621868 1.07711i −0.367270 0.930114i \(-0.619707\pi\)
0.989138 0.146992i \(-0.0469592\pi\)
\(102\) −939.639 895.839i −0.912138 0.869620i
\(103\) −42.4264 + 24.4949i −0.0405864 + 0.0234326i −0.520156 0.854071i \(-0.674126\pi\)
0.479570 + 0.877504i \(0.340793\pi\)
\(104\) 232.289 0.219017
\(105\) 0 0
\(106\) 850.000 0.778861
\(107\) 1271.17 733.913i 1.14850 0.663084i 0.199976 0.979801i \(-0.435914\pi\)
0.948520 + 0.316717i \(0.102580\pi\)
\(108\) 1193.15 413.186i 1.06306 0.368137i
\(109\) 935.000 1619.47i 0.821622 1.42309i −0.0828525 0.996562i \(-0.526403\pi\)
0.904474 0.426529i \(-0.140264\pi\)
\(110\) 686.766 + 1189.51i 0.595278 + 1.03105i
\(111\) 1161.44 + 281.691i 0.993147 + 0.240873i
\(112\) 0 0
\(113\) 1673.98i 1.39358i −0.717274 0.696791i \(-0.754610\pi\)
0.717274 0.696791i \(-0.245390\pi\)
\(114\) −221.818 755.279i −0.182238 0.620512i
\(115\) −793.374 458.055i −0.643326 0.371424i
\(116\) 449.910 + 259.756i 0.360113 + 0.207911i
\(117\) −1519.40 + 72.5556i −1.20059 + 0.0573314i
\(118\) 541.337i 0.422323i
\(119\) 0 0
\(120\) 51.0000 210.278i 0.0387970 0.159964i
\(121\) −121.500 210.444i −0.0912847 0.158110i
\(122\) −146.443 + 253.646i −0.108675 + 0.188230i
\(123\) −506.970 + 531.757i −0.371642 + 0.389812i
\(124\) 1985.56 1146.36i 1.43797 0.830212i
\(125\) 1494.73 1.06954
\(126\) 0 0
\(127\) −1048.00 −0.732244 −0.366122 0.930567i \(-0.619315\pi\)
−0.366122 + 0.930567i \(0.619315\pi\)
\(128\) −453.481 + 261.817i −0.313144 + 0.180794i
\(129\) −157.764 + 165.477i −0.107677 + 0.112941i
\(130\) −1173.00 + 2031.70i −0.791376 + 1.37070i
\(131\) 1277.59 + 2212.85i 0.852086 + 1.47586i 0.879322 + 0.476228i \(0.157996\pi\)
−0.0272354 + 0.999629i \(0.508670\pi\)
\(132\) 363.582 1499.09i 0.239741 0.988476i
\(133\) 0 0
\(134\) 263.879i 0.170117i
\(135\) −267.911 + 1391.36i −0.170801 + 0.887033i
\(136\) 216.375 + 124.924i 0.136426 + 0.0787658i
\(137\) 871.254 + 503.019i 0.543330 + 0.313692i 0.746428 0.665467i \(-0.231767\pi\)
−0.203097 + 0.979159i \(0.565101\pi\)
\(138\) 547.617 + 1864.61i 0.337799 + 1.15019i
\(139\) 1393.76i 0.850483i −0.905080 0.425242i \(-0.860189\pi\)
0.905080 0.425242i \(-0.139811\pi\)
\(140\) 0 0
\(141\) 1734.00 + 420.557i 1.03567 + 0.251186i
\(142\) 952.000 + 1648.91i 0.562606 + 0.974462i
\(143\) −929.154 + 1609.34i −0.543355 + 0.941119i
\(144\) 1249.17 802.997i 0.722898 0.464698i
\(145\) −504.874 + 291.489i −0.289155 + 0.166944i
\(146\) 363.582 0.206098
\(147\) 0 0
\(148\) −2070.00 −1.14968
\(149\) 221.384 127.816i 0.121722 0.0702760i −0.437903 0.899022i \(-0.644279\pi\)
0.559625 + 0.828746i \(0.310945\pi\)
\(150\) −356.646 340.022i −0.194133 0.185084i
\(151\) −724.000 + 1254.00i −0.390187 + 0.675824i −0.992474 0.122456i \(-0.960923\pi\)
0.602287 + 0.798280i \(0.294256\pi\)
\(152\) 75.7463 + 131.196i 0.0404200 + 0.0700094i
\(153\) −1454.33 749.544i −0.768467 0.396059i
\(154\) 0 0
\(155\) 2572.82i 1.33325i
\(156\) 2527.91 742.423i 1.29740 0.381034i
\(157\) −2942.27 1698.72i −1.49566 0.863520i −0.495674 0.868509i \(-0.665079\pi\)
−0.999988 + 0.00498842i \(0.998412\pi\)
\(158\) −1578.26 911.206i −0.794679 0.458808i
\(159\) 1027.80 301.856i 0.512643 0.150558i
\(160\) 2623.40i 1.29624i
\(161\) 0 0
\(162\) 2448.00 1744.07i 1.18724 0.845848i
\(163\) −1564.00 2708.93i −0.751546 1.30172i −0.947073 0.321017i \(-0.895975\pi\)
0.195528 0.980698i \(-0.437358\pi\)
\(164\) 636.269 1102.05i 0.302953 0.524730i
\(165\) 1252.85 + 1194.45i 0.591117 + 0.563563i
\(166\) −1767.06 + 1020.21i −0.826207 + 0.477011i
\(167\) −706.965 −0.327585 −0.163792 0.986495i \(-0.552373\pi\)
−0.163792 + 0.986495i \(0.552373\pi\)
\(168\) 0 0
\(169\) −977.000 −0.444697
\(170\) −2185.28 + 1261.67i −0.985901 + 0.569210i
\(171\) −536.436 834.497i −0.239897 0.373191i
\(172\) 198.000 342.946i 0.0877753 0.152031i
\(173\) −1126.09 1950.45i −0.494887 0.857169i 0.505096 0.863063i \(-0.331457\pi\)
−0.999983 + 0.00589428i \(0.998124\pi\)
\(174\) 1201.84 + 291.489i 0.523628 + 0.126999i
\(175\) 0 0
\(176\) 1814.17i 0.776977i
\(177\) 192.242 + 654.575i 0.0816373 + 0.277971i
\(178\) 1731.00 + 999.392i 0.728897 + 0.420829i
\(179\) −3027.97 1748.20i −1.26436 0.729980i −0.290447 0.956891i \(-0.593804\pi\)
−0.973915 + 0.226912i \(0.927137\pi\)
\(180\) −117.060 2451.39i −0.0484732 1.01509i
\(181\) 183.712i 0.0754430i 0.999288 + 0.0377215i \(0.0120100\pi\)
−0.999288 + 0.0377215i \(0.987990\pi\)
\(182\) 0 0
\(183\) −87.0000 + 358.710i −0.0351433 + 0.144900i
\(184\) −187.000 323.894i −0.0749230 0.129770i
\(185\) 1161.44 2011.68i 0.461573 0.799468i
\(186\) 3766.06 3950.19i 1.48463 1.55722i
\(187\) −1731.00 + 999.392i −0.676915 + 0.390817i
\(188\) −3090.45 −1.19890
\(189\) 0 0
\(190\) −1530.00 −0.584199
\(191\) −228.526 + 131.939i −0.0865735 + 0.0499832i −0.542662 0.839951i \(-0.682583\pi\)
0.456088 + 0.889935i \(0.349250\pi\)
\(192\) −2262.47 + 2373.09i −0.850416 + 0.891995i
\(193\) 326.000 564.649i 0.121585 0.210592i −0.798808 0.601587i \(-0.794535\pi\)
0.920393 + 0.390994i \(0.127869\pi\)
\(194\) −2252.19 3900.91i −0.833494 1.44365i
\(195\) −696.866 + 2873.25i −0.255916 + 1.05517i
\(196\) 0 0
\(197\) 2020.32i 0.730670i −0.930876 0.365335i \(-0.880954\pi\)
0.930876 0.365335i \(-0.119046\pi\)
\(198\) −175.149 3667.82i −0.0628650 1.31647i
\(199\) 4200.21 + 2424.99i 1.49621 + 0.863836i 0.999990 0.00436270i \(-0.00138869\pi\)
0.496217 + 0.868199i \(0.334722\pi\)
\(200\) 82.1264 + 47.4157i 0.0290361 + 0.0167640i
\(201\) 93.7098 + 319.078i 0.0328845 + 0.111970i
\(202\) 5205.17i 1.81304i
\(203\) 0 0
\(204\) 2754.00 + 667.943i 0.945189 + 0.229242i
\(205\) 714.000 + 1236.68i 0.243258 + 0.421335i
\(206\) 100.995 174.929i 0.0341585 0.0591643i
\(207\) 1324.34 + 2060.18i 0.444675 + 0.691751i
\(208\) 2683.47 1549.30i 0.894544 0.516465i
\(209\) −1211.94 −0.401109
\(210\) 0 0
\(211\) −2224.00 −0.725623 −0.362812 0.931863i \(-0.618183\pi\)
−0.362812 + 0.931863i \(0.618183\pi\)
\(212\) −1606.82 + 927.699i −0.520552 + 0.300541i
\(213\) 1736.71 + 1655.76i 0.558674 + 0.532632i
\(214\) −3026.00 + 5241.19i −0.966603 + 1.67421i
\(215\) 222.189 + 384.843i 0.0704799 + 0.122075i
\(216\) −378.731 + 437.234i −0.119303 + 0.137731i
\(217\) 0 0
\(218\) 7710.21i 2.39542i
\(219\) 439.637 129.117i 0.135653 0.0398398i
\(220\) −2596.50 1499.09i −0.795708 0.459402i
\(221\) −2956.55 1706.97i −0.899906 0.519561i
\(222\) −4727.90 + 1388.54i −1.42935 + 0.419786i
\(223\) 1915.50i 0.575208i 0.957749 + 0.287604i \(0.0928587\pi\)
−0.957749 + 0.287604i \(0.907141\pi\)
\(224\) 0 0
\(225\) −552.000 284.494i −0.163556 0.0842946i
\(226\) 3451.00 + 5977.31i 1.01574 + 1.75931i
\(227\) −2974.30 + 5151.65i −0.869654 + 1.50629i −0.00730379 + 0.999973i \(0.502325\pi\)
−0.862350 + 0.506312i \(0.831008\pi\)
\(228\) 1243.64 + 1185.67i 0.361237 + 0.344399i
\(229\) 3209.56 1853.04i 0.926173 0.534726i 0.0405736 0.999177i \(-0.487081\pi\)
0.885599 + 0.464451i \(0.153748\pi\)
\(230\) 3777.21 1.08288
\(231\) 0 0
\(232\) −238.000 −0.0673511
\(233\) −828.406 + 478.280i −0.232921 + 0.134477i −0.611919 0.790920i \(-0.709602\pi\)
0.378998 + 0.925398i \(0.376269\pi\)
\(234\) 5275.77 3391.40i 1.47388 0.947448i
\(235\) 1734.00 3003.38i 0.481335 0.833696i
\(236\) −590.821 1023.33i −0.162963 0.282260i
\(237\) −2231.99 541.337i −0.611744 0.148370i
\(238\) 0 0
\(239\) 4791.05i 1.29668i −0.761350 0.648341i \(-0.775463\pi\)
0.761350 0.648341i \(-0.224537\pi\)
\(240\) −813.332 2769.36i −0.218752 0.744839i
\(241\) 3279.56 + 1893.46i 0.876577 + 0.506092i 0.869528 0.493883i \(-0.164423\pi\)
0.00704889 + 0.999975i \(0.497756\pi\)
\(242\) 867.684 + 500.957i 0.230483 + 0.133069i
\(243\) 2340.71 2978.25i 0.617930 0.786233i
\(244\) 639.317i 0.167738i
\(245\) 0 0
\(246\) 714.000 2943.90i 0.185053 0.762992i
\(247\) −1035.00 1792.67i −0.266621 0.461802i
\(248\) −525.174 + 909.628i −0.134470 + 0.232909i
\(249\) −1774.39 + 1861.15i −0.451597 + 0.473677i
\(250\) −5337.24 + 3081.46i −1.35023 + 0.779554i
\(251\) −4029.70 −1.01336 −0.506678 0.862135i \(-0.669127\pi\)
−0.506678 + 0.862135i \(0.669127\pi\)
\(252\) 0 0
\(253\) 2992.00 0.743500
\(254\) 3742.11 2160.51i 0.924412 0.533710i
\(255\) −2194.35 + 2301.63i −0.538884 + 0.565231i
\(256\) −1444.50 + 2501.95i −0.352661 + 0.610827i
\(257\) −100.995 174.929i −0.0245132 0.0424581i 0.853509 0.521079i \(-0.174470\pi\)
−0.878022 + 0.478621i \(0.841137\pi\)
\(258\) 222.189 916.109i 0.0536159 0.221064i
\(259\) 0 0
\(260\) 5120.90i 1.22148i
\(261\) 1556.76 74.3396i 0.369199 0.0176303i
\(262\) −9123.80 5267.63i −2.15141 1.24212i
\(263\) 7169.99 + 4139.60i 1.68107 + 0.970565i 0.960954 + 0.276709i \(0.0892438\pi\)
0.720114 + 0.693856i \(0.244090\pi\)
\(264\) 199.133 + 678.040i 0.0464235 + 0.158070i
\(265\) 2082.07i 0.482643i
\(266\) 0 0
\(267\) 2448.00 + 593.727i 0.561105 + 0.136088i
\(268\) −288.000 498.831i −0.0656433 0.113698i
\(269\) 2893.51 5011.70i 0.655838 1.13594i −0.325846 0.945423i \(-0.605649\pi\)
0.981683 0.190521i \(-0.0610177\pi\)
\(270\) −1911.73 5520.47i −0.430905 1.24432i
\(271\) 1056.42 609.923i 0.236800 0.136717i −0.376905 0.926252i \(-0.623012\pi\)
0.613705 + 0.789535i \(0.289678\pi\)
\(272\) 3332.84 0.742952
\(273\) 0 0
\(274\) −4148.00 −0.914561
\(275\) −657.011 + 379.326i −0.144070 + 0.0831789i
\(276\) −3070.26 2927.14i −0.669593 0.638381i
\(277\) 1607.00 2783.41i 0.348575 0.603750i −0.637422 0.770515i \(-0.719999\pi\)
0.985997 + 0.166766i \(0.0533323\pi\)
\(278\) 2873.31 + 4976.72i 0.619891 + 1.07368i
\(279\) 3151.05 6113.93i 0.676158 1.31194i
\(280\) 0 0
\(281\) 9235.76i 1.96071i 0.197245 + 0.980354i \(0.436800\pi\)
−0.197245 + 0.980354i \(0.563200\pi\)
\(282\) −7058.62 + 2073.04i −1.49055 + 0.437759i
\(283\) 2581.65 + 1490.51i 0.542272 + 0.313081i 0.745999 0.665947i \(-0.231972\pi\)
−0.203727 + 0.979028i \(0.565306\pi\)
\(284\) −3599.28 2078.05i −0.752035 0.434188i
\(285\) −1850.05 + 543.341i −0.384517 + 0.112929i
\(286\) 7662.00i 1.58414i
\(287\) 0 0
\(288\) −3213.00 + 6234.14i −0.657388 + 1.27552i
\(289\) 620.500 + 1074.74i 0.126298 + 0.218754i
\(290\) 1201.84 2081.65i 0.243360 0.421513i
\(291\) −4108.62 3917.10i −0.827668 0.789087i
\(292\) −687.308 + 396.817i −0.137745 + 0.0795273i
\(293\) −5160.85 −1.02901 −0.514505 0.857487i \(-0.672024\pi\)
−0.514505 + 0.857487i \(0.672024\pi\)
\(294\) 0 0
\(295\) 1326.00 0.261704
\(296\) 821.264 474.157i 0.161267 0.0931075i
\(297\) −1514.32 4372.86i −0.295858 0.854341i
\(298\) −527.000 + 912.791i −0.102444 + 0.177438i
\(299\) 2555.17 + 4425.69i 0.494213 + 0.856001i
\(300\) 1045.30 + 253.522i 0.201168 + 0.0487904i
\(301\) 0 0
\(302\) 5970.26i 1.13758i
\(303\) 1848.48 + 6293.99i 0.350470 + 1.19334i
\(304\) 1750.09 + 1010.41i 0.330179 + 0.190629i
\(305\) 621.304 + 358.710i 0.116642 + 0.0673432i
\(306\) 6738.22 321.769i 1.25882 0.0601120i
\(307\) 1873.86i 0.348361i −0.984714 0.174180i \(-0.944272\pi\)
0.984714 0.174180i \(-0.0557276\pi\)
\(308\) 0 0
\(309\) 60.0000 247.386i 0.0110462 0.0455447i
\(310\) −5304.00 9186.80i −0.971764 1.68315i
\(311\) −4282.19 + 7416.97i −0.780774 + 1.35234i 0.150717 + 0.988577i \(0.451842\pi\)
−0.931491 + 0.363763i \(0.881492\pi\)
\(312\) −832.879 + 873.601i −0.151130 + 0.158519i
\(313\) 462.448 266.994i 0.0835115 0.0482154i −0.457663 0.889126i \(-0.651313\pi\)
0.541174 + 0.840910i \(0.317980\pi\)
\(314\) 14008.0 2.51757
\(315\) 0 0
\(316\) 3978.00 0.708165
\(317\) 4420.54 2552.20i 0.783226 0.452195i −0.0543467 0.998522i \(-0.517308\pi\)
0.837572 + 0.546327i \(0.183974\pi\)
\(318\) −3047.71 + 3196.72i −0.537443 + 0.563720i
\(319\) 952.000 1648.91i 0.167090 0.289409i
\(320\) 3186.39 + 5519.00i 0.556640 + 0.964129i
\(321\) −1797.71 + 7412.16i −0.312581 + 1.28880i
\(322\) 0 0
\(323\) 2226.48i 0.383543i
\(324\) −2724.15 + 5968.73i −0.467103 + 1.02344i
\(325\) −1122.18 647.890i −0.191530 0.110580i
\(326\) 11169.2 + 6448.54i 1.89756 + 1.09556i
\(327\) 2738.08 + 9323.05i 0.463047 + 1.57665i
\(328\) 582.979i 0.0981390i
\(329\) 0 0
\(330\) −6936.00 1682.23i −1.15701 0.280617i
\(331\) −1816.00 3145.40i −0.301560 0.522317i 0.674929 0.737882i \(-0.264174\pi\)
−0.976490 + 0.215565i \(0.930841\pi\)
\(332\) 2226.94 3857.17i 0.368130 0.637620i
\(333\) −5223.79 + 3357.99i −0.859646 + 0.552603i
\(334\) 2524.37 1457.45i 0.413555 0.238766i
\(335\) 646.368 0.105418
\(336\) 0 0
\(337\) −6256.00 −1.01123 −0.505617 0.862758i \(-0.668735\pi\)
−0.505617 + 0.862758i \(0.668735\pi\)
\(338\) 3488.59 2014.14i 0.561403 0.324126i
\(339\) 6295.58 + 6002.12i 1.00864 + 0.961624i
\(340\) 2754.00 4770.07i 0.439284 0.760863i
\(341\) −4201.39 7277.03i −0.667209 1.15564i
\(342\) 3635.82 + 1873.86i 0.574862 + 0.296277i
\(343\) 0 0
\(344\) 181.417i 0.0284341i
\(345\) 4567.34 1341.38i 0.712746 0.209326i
\(346\) 8041.93 + 4643.01i 1.24953 + 0.721415i
\(347\) −928.386 536.004i −0.143626 0.0829227i 0.426465 0.904504i \(-0.359759\pi\)
−0.570091 + 0.821581i \(0.693092\pi\)
\(348\) −2590.07 + 760.677i −0.398972 + 0.117174i
\(349\) 6287.84i 0.964414i 0.876057 + 0.482207i \(0.160165\pi\)
−0.876057 + 0.482207i \(0.839835\pi\)
\(350\) 0 0
\(351\) 5175.00 5974.38i 0.786955 0.908515i
\(352\) 4284.00 + 7420.11i 0.648687 + 1.12356i
\(353\) 2646.07 4583.13i 0.398969 0.691035i −0.594630 0.804000i \(-0.702701\pi\)
0.993599 + 0.112965i \(0.0360347\pi\)
\(354\) −2035.88 1940.98i −0.305667 0.291419i
\(355\) 4038.99 2331.91i 0.603852 0.348634i
\(356\) −4362.99 −0.649544
\(357\) 0 0
\(358\) 14416.0 2.12824
\(359\) −2778.02 + 1603.89i −0.408407 + 0.235794i −0.690105 0.723709i \(-0.742436\pi\)
0.281698 + 0.959503i \(0.409102\pi\)
\(360\) 607.961 + 945.764i 0.0890066 + 0.138461i
\(361\) −2754.50 + 4770.93i −0.401589 + 0.695573i
\(362\) −378.731 655.982i −0.0549881 0.0952421i
\(363\) 1227.09 + 297.613i 0.177426 + 0.0430320i
\(364\) 0 0
\(365\) 890.591i 0.127714i
\(366\) −428.848 1460.21i −0.0612465 0.208542i
\(367\) −8124.66 4690.77i −1.15560 0.667184i −0.205351 0.978688i \(-0.565834\pi\)
−0.950245 + 0.311505i \(0.899167\pi\)
\(368\) −4320.56 2494.48i −0.612024 0.353352i
\(369\) −182.094 3813.27i −0.0256895 0.537970i
\(370\) 9577.50i 1.34570i
\(371\) 0 0
\(372\) −2808.00 + 11577.7i −0.391366 + 1.61364i
\(373\) −2299.00 3981.98i −0.319136 0.552760i 0.661172 0.750234i \(-0.270059\pi\)
−0.980308 + 0.197475i \(0.936726\pi\)
\(374\) 4120.60 7137.09i 0.569709 0.986764i
\(375\) −5359.40 + 5621.43i −0.738022 + 0.774105i
\(376\) 1226.12 707.903i 0.168171 0.0970938i
\(377\) 3252.04 0.444267
\(378\) 0 0
\(379\) 5252.00 0.711813 0.355906 0.934522i \(-0.384172\pi\)
0.355906 + 0.934522i \(0.384172\pi\)
\(380\) 2892.28 1669.86i 0.390449 0.225426i
\(381\) 3757.64 3941.36i 0.505275 0.529979i
\(382\) 544.000 942.236i 0.0728625 0.126201i
\(383\) 959.453 + 1661.82i 0.128005 + 0.221710i 0.922903 0.385032i \(-0.125809\pi\)
−0.794899 + 0.606742i \(0.792476\pi\)
\(384\) 641.319 2644.22i 0.0852270 0.351400i
\(385\) 0 0
\(386\) 2688.26i 0.354479i
\(387\) −56.6657 1186.65i −0.00744310 0.155867i
\(388\) 8514.98 + 4916.13i 1.11413 + 0.643244i
\(389\) 6120.20 + 3533.50i 0.797704 + 0.460554i 0.842668 0.538434i \(-0.180984\pi\)
−0.0449640 + 0.998989i \(0.514317\pi\)
\(390\) −3435.05 11696.2i −0.446001 1.51861i
\(391\) 5496.65i 0.710941i
\(392\) 0 0
\(393\) −12903.0 3129.44i −1.65616 0.401677i
\(394\) 4165.00 + 7213.99i 0.532563 + 0.922426i
\(395\) −2231.99 + 3865.92i −0.284313 + 0.492445i
\(396\) 4334.19 + 6742.41i 0.550004 + 0.855603i
\(397\) −11550.6 + 6668.74i −1.46022 + 0.843059i −0.999021 0.0442380i \(-0.985914\pi\)
−0.461199 + 0.887297i \(0.652581\pi\)
\(398\) −19997.0 −2.51849
\(399\) 0 0
\(400\) 1265.00 0.158125
\(401\) −11476.3 + 6625.83i −1.42917 + 0.825133i −0.997055 0.0766852i \(-0.975566\pi\)
−0.432116 + 0.901818i \(0.642233\pi\)
\(402\) −992.406 946.147i −0.123126 0.117387i
\(403\) 7176.00 12429.2i 0.887003 1.53633i
\(404\) −5680.97 9839.73i −0.699601 1.21174i
\(405\) −4272.09 5996.35i −0.524153 0.735706i
\(406\) 0 0
\(407\) 7586.51i 0.923955i
\(408\) −1245.64 + 365.831i −0.151148 + 0.0443906i
\(409\) −6461.54 3730.57i −0.781180 0.451015i 0.0556682 0.998449i \(-0.482271\pi\)
−0.836848 + 0.547435i \(0.815604\pi\)
\(410\) −5098.98 2943.90i −0.614197 0.354607i
\(411\) −5015.69 + 1473.06i −0.601960 + 0.176790i
\(412\) 440.908i 0.0527233i
\(413\) 0 0
\(414\) −8976.00 4626.12i −1.06557 0.549183i
\(415\) 2499.00 + 4328.39i 0.295593 + 0.511982i
\(416\) −7317.09 + 12673.6i −0.862380 + 1.49369i
\(417\) 5241.71 + 4997.38i 0.615558 + 0.586865i
\(418\) 4327.49 2498.48i 0.506375 0.292356i
\(419\) 9261.25 1.07981 0.539906 0.841725i \(-0.318460\pi\)
0.539906 + 0.841725i \(0.318460\pi\)
\(420\) 0 0
\(421\) −2854.00 −0.330393 −0.165196 0.986261i \(-0.552826\pi\)
−0.165196 + 0.986261i \(0.552826\pi\)
\(422\) 7941.27 4584.89i 0.916054 0.528884i
\(423\) −7798.97 + 5013.38i −0.896451 + 0.576262i
\(424\) 425.000 736.122i 0.0486788 0.0843142i
\(425\) −696.866 1207.01i −0.0795364 0.137761i
\(426\) −9614.73 2331.91i −1.09351 0.265215i
\(427\) 0 0
\(428\) 13210.4i 1.49194i
\(429\) −2720.97 9264.76i −0.306223 1.04267i
\(430\) −1586.75 916.109i −0.177953 0.102741i
\(431\) −9776.62 5644.53i −1.09263 0.630830i −0.158354 0.987382i \(-0.550619\pi\)
−0.934275 + 0.356553i \(0.883952\pi\)
\(432\) −1458.99 + 7577.10i −0.162490 + 0.843873i
\(433\) 13036.2i 1.44683i −0.690411 0.723417i \(-0.742570\pi\)
0.690411 0.723417i \(-0.257430\pi\)
\(434\) 0 0
\(435\) 714.000 2943.90i 0.0786981 0.324481i
\(436\) −8415.00 14575.2i −0.924324 1.60098i
\(437\) −1666.42 + 2886.32i −0.182416 + 0.315953i
\(438\) −1303.64 + 1367.37i −0.142215 + 0.149168i
\(439\) 2600.74 1501.54i 0.282748 0.163245i −0.351919 0.936031i \(-0.614471\pi\)
0.634667 + 0.772786i \(0.281137\pi\)
\(440\) 1373.53 0.148820
\(441\) 0 0
\(442\) 14076.0 1.51477
\(443\) −5927.39 + 3422.18i −0.635708 + 0.367026i −0.782959 0.622073i \(-0.786291\pi\)
0.147251 + 0.989099i \(0.452957\pi\)
\(444\) 7422.06 7784.94i 0.793323 0.832110i
\(445\) 2448.00 4240.06i 0.260778 0.451681i
\(446\) −3948.91 6839.71i −0.419251 0.726165i
\(447\) −313.085 + 1290.88i −0.0331284 + 0.136592i
\(448\) 0 0
\(449\) 2655.28i 0.279088i 0.990216 + 0.139544i \(0.0445636\pi\)
−0.990216 + 0.139544i \(0.955436\pi\)
\(450\) 2557.53 122.129i 0.267918 0.0127939i
\(451\) −4038.99 2331.91i −0.421705 0.243471i
\(452\) −13047.4 7532.91i −1.35774 0.783890i
\(453\) −2120.18 7219.13i −0.219901 0.748751i
\(454\) 24526.7i 2.53546i
\(455\) 0 0
\(456\) −765.000 185.540i −0.0785623 0.0190542i
\(457\) −598.000 1035.77i −0.0612106 0.106020i 0.833796 0.552072i \(-0.186163\pi\)
−0.895007 + 0.446052i \(0.852829\pi\)
\(458\) −7640.28 + 13233.3i −0.779490 + 1.35012i
\(459\) 8033.46 2781.98i 0.816928 0.282902i
\(460\) −7140.36 + 4122.49i −0.723742 + 0.417852i
\(461\) −5443.63 −0.549968 −0.274984 0.961449i \(-0.588673\pi\)
−0.274984 + 0.961449i \(0.588673\pi\)
\(462\) 0 0
\(463\) 926.000 0.0929479 0.0464739 0.998920i \(-0.485202\pi\)
0.0464739 + 0.998920i \(0.485202\pi\)
\(464\) −2749.45 + 1587.40i −0.275086 + 0.158821i
\(465\) −9675.96 9224.93i −0.964972 0.919991i
\(466\) 1972.00 3415.60i 0.196032 0.339538i
\(467\) 3893.36 + 6743.50i 0.385788 + 0.668205i 0.991878 0.127191i \(-0.0405962\pi\)
−0.606090 + 0.795396i \(0.707263\pi\)
\(468\) −6271.79 + 12169.1i −0.619474 + 1.20196i
\(469\) 0 0
\(470\) 14298.9i 1.40332i
\(471\) 16938.2 4974.59i 1.65706 0.486660i
\(472\) 468.812 + 270.669i 0.0457178 + 0.0263952i
\(473\) −1256.89 725.667i −0.122182 0.0705416i
\(474\) 9085.80 2668.41i 0.880431 0.258574i
\(475\) 845.074i 0.0816308i
\(476\) 0 0
\(477\) −2550.00 + 4947.73i −0.244772 + 0.474928i
\(478\) 9877.00 + 17107.5i 0.945112 + 1.63698i
\(479\) 6251.59 10828.1i 0.596331 1.03288i −0.397026 0.917807i \(-0.629958\pi\)
0.993358 0.115069i \(-0.0367088\pi\)
\(480\) 9866.20 + 9406.31i 0.938185 + 0.894453i
\(481\) −11221.8 + 6478.90i −1.06376 + 0.614163i
\(482\) −15613.8 −1.47550
\(483\) 0 0
\(484\) −2187.00 −0.205391
\(485\) −9555.23 + 5516.72i −0.894599 + 0.516497i
\(486\) −2218.21 + 15460.0i −0.207037 + 1.44296i
\(487\) −6856.00 + 11874.9i −0.637936 + 1.10494i 0.347949 + 0.937514i \(0.386878\pi\)
−0.985885 + 0.167425i \(0.946455\pi\)
\(488\) 146.443 + 253.646i 0.0135843 + 0.0235288i
\(489\) 15795.6 + 3831.00i 1.46074 + 0.354282i
\(490\) 0 0
\(491\) 5772.35i 0.530555i 0.964172 + 0.265277i \(0.0854635\pi\)
−0.964172 + 0.265277i \(0.914536\pi\)
\(492\) 1863.27 + 6344.35i 0.170737 + 0.581352i
\(493\) 3029.25 + 1748.94i 0.276735 + 0.159773i
\(494\) 7391.38 + 4267.41i 0.673186 + 0.388664i
\(495\) −8984.29 + 429.025i −0.815785 + 0.0389560i
\(496\) 14011.1i 1.26838i
\(497\) 0 0
\(498\) 2499.00 10303.6i 0.224865 0.927143i
\(499\) −7738.00 13402.6i −0.694189 1.20237i −0.970453 0.241289i \(-0.922430\pi\)
0.276264 0.961082i \(-0.410904\pi\)
\(500\) 6726.27 11650.2i 0.601616 1.04203i
\(501\) 2534.85 2658.78i 0.226045 0.237097i
\(502\) 14388.9 8307.44i 1.27930 0.738604i
\(503\) 1696.72 0.150403 0.0752017 0.997168i \(-0.476040\pi\)
0.0752017 + 0.997168i \(0.476040\pi\)
\(504\) 0 0
\(505\) 12750.0 1.12350
\(506\) −10683.6 + 6168.17i −0.938622 + 0.541914i
\(507\) 3503.07 3674.34i 0.306858 0.321860i
\(508\) −4716.00 + 8168.35i −0.411887 + 0.713409i
\(509\) −2115.85 3664.75i −0.184250 0.319130i 0.759074 0.651005i \(-0.225652\pi\)
−0.943324 + 0.331875i \(0.892319\pi\)
\(510\) 3090.45 12742.2i 0.268328 1.10635i
\(511\) 0 0
\(512\) 16100.7i 1.38976i
\(513\) 5061.82 + 974.668i 0.435643 + 0.0838843i
\(514\) 721.249 + 416.413i 0.0618929 + 0.0357339i
\(515\) −428.486 247.386i −0.0366628 0.0211673i
\(516\) 579.830 + 1974.29i 0.0494682 + 0.168437i
\(517\) 11326.4i 0.963513i
\(518\) 0 0
\(519\) 11373.0 + 2758.36i 0.961887 + 0.233292i
\(520\) 1173.00 + 2031.70i 0.0989220 + 0.171338i
\(521\) 9786.42 16950.6i 0.822938 1.42537i −0.0805465 0.996751i \(-0.525667\pi\)
0.903485 0.428620i \(-0.141000\pi\)
\(522\) −5405.49 + 3474.79i −0.453241 + 0.291355i
\(523\) 7248.55 4184.95i 0.606036 0.349895i −0.165376 0.986231i \(-0.552884\pi\)
0.771413 + 0.636335i \(0.219551\pi\)
\(524\) 22996.6 1.91719
\(525\) 0 0
\(526\) −34136.0 −2.82966
\(527\) 13368.8 7718.45i 1.10503 0.637991i
\(528\) 6822.79 + 6504.76i 0.562356 + 0.536143i
\(529\) −1969.50 + 3411.27i −0.161872 + 0.280371i
\(530\) 4292.29 + 7434.46i 0.351783 + 0.609307i
\(531\) −3151.05 1624.01i −0.257521 0.132723i
\(532\) 0 0
\(533\) 7965.84i 0.647352i
\(534\) −9965.11 + 2926.65i −0.807551 + 0.237170i
\(535\) 12838.2 + 7412.16i 1.03747 + 0.598982i
\(536\) 228.526 + 131.939i 0.0184157 + 0.0106323i
\(537\) 17431.6 5119.48i 1.40080 0.411400i
\(538\) 23860.5i 1.91208i
\(539\) 0 0
\(540\) 9639.00 + 8349.29i 0.768142 + 0.665363i
\(541\) 8075.00 + 13986.3i 0.641722 + 1.11149i 0.985048 + 0.172278i \(0.0551128\pi\)
−0.343327 + 0.939216i \(0.611554\pi\)
\(542\) −2514.78 + 4355.72i −0.199297 + 0.345192i
\(543\) −690.911 658.705i −0.0546037 0.0520585i
\(544\) −13631.6 + 7870.21i −1.07436 + 0.620280i
\(545\) 18886.1 1.48439
\(546\) 0 0
\(547\) −18352.0 −1.43451 −0.717253 0.696813i \(-0.754601\pi\)
−0.717253 + 0.696813i \(0.754601\pi\)
\(548\) 7841.29 4527.17i 0.611247 0.352903i
\(549\) −1037.11 1613.36i −0.0806244 0.125422i
\(550\) 1564.00 2708.93i 0.121253 0.210016i
\(551\) 1060.45 + 1836.75i 0.0819902 + 0.142011i
\(552\) 1888.61 + 458.055i 0.145624 + 0.0353190i
\(553\) 0 0
\(554\) 13251.7i 1.01626i
\(555\) 3401.21 + 11580.9i 0.260132 + 0.885737i
\(556\) −10863.3 6271.92i −0.828607 0.478397i
\(557\) −2878.00 1661.61i −0.218931 0.126400i 0.386524 0.922279i \(-0.373676\pi\)
−0.605455 + 0.795879i \(0.707009\pi\)
\(558\) 1352.70 + 28327.1i 0.102624 + 2.14907i
\(559\) 2478.88i 0.187559i
\(560\) 0 0
\(561\) 2448.00 10093.4i 0.184233 0.759612i
\(562\) −19040.0 32978.2i −1.42910 2.47527i
\(563\) −7145.40 + 12376.2i −0.534889 + 0.926456i 0.464279 + 0.885689i \(0.346313\pi\)
−0.999169 + 0.0407667i \(0.987020\pi\)
\(564\) 11080.9 11622.7i 0.827289 0.867737i
\(565\) 14641.4 8453.19i 1.09021 0.629431i
\(566\) −12291.1 −0.912780
\(567\) 0 0
\(568\) 1904.00 0.140652
\(569\) 12818.9 7400.97i 0.944455 0.545281i 0.0531008 0.998589i \(-0.483090\pi\)
0.891354 + 0.453308i \(0.149756\pi\)
\(570\) 5485.87 5754.09i 0.403119 0.422828i
\(571\) −2068.00 + 3581.88i −0.151564 + 0.262517i −0.931803 0.362965i \(-0.881764\pi\)
0.780239 + 0.625482i \(0.215098\pi\)
\(572\) 8362.39 + 14484.1i 0.611275 + 1.05876i
\(573\) 323.184 1332.52i 0.0235623 0.0971500i
\(574\) 0 0
\(575\) 2086.29i 0.151312i
\(576\) −812.638 17017.6i −0.0587846 1.23102i
\(577\) 16851.8 + 9729.37i 1.21585 + 0.701974i 0.964029 0.265798i \(-0.0856355\pi\)
0.251826 + 0.967772i \(0.418969\pi\)
\(578\) −4431.26 2558.39i −0.318886 0.184109i
\(579\) 954.669 + 3250.60i 0.0685228 + 0.233317i
\(580\) 5246.81i 0.375624i
\(581\) 0 0
\(582\) 22746.0 + 5516.72i 1.62002 + 0.392913i
\(583\) 3400.00 + 5888.97i 0.241533 + 0.418347i
\(584\) 181.791 314.871i 0.0128811 0.0223107i
\(585\) −8307.21 12922.9i −0.587112 0.913330i
\(586\) 18427.9 10639.4i 1.29906 0.750013i
\(587\) 18310.4 1.28748 0.643740 0.765244i \(-0.277382\pi\)
0.643740 + 0.765244i \(0.277382\pi\)
\(588\) 0 0
\(589\) 9360.00 0.654791
\(590\) −4734.77 + 2733.62i −0.330385 + 0.190748i
\(591\) 7598.11 + 7243.94i 0.528840 + 0.504189i
\(592\) 6325.00 10955.2i 0.439115 0.760569i
\(593\) 3999.40 + 6927.17i 0.276958 + 0.479705i 0.970627 0.240589i \(-0.0773405\pi\)
−0.693670 + 0.720293i \(0.744007\pi\)
\(594\) 14422.1 + 12492.4i 0.996205 + 0.862911i
\(595\) 0 0
\(596\) 2300.69i 0.158121i
\(597\) −24180.0 + 7101.43i −1.65766 + 0.486838i
\(598\) −18247.6 10535.3i −1.24783 0.720432i
\(599\) 10769.3 + 6217.64i 0.734592 + 0.424117i 0.820100 0.572221i \(-0.193918\pi\)
−0.0855077 + 0.996338i \(0.527251\pi\)
\(600\) −472.790 + 138.854i −0.0321693 + 0.00944780i
\(601\) 18557.3i 1.25952i −0.776791 0.629758i \(-0.783154\pi\)
0.776791 0.629758i \(-0.216846\pi\)
\(602\) 0 0
\(603\) −1536.00 791.636i −0.103733 0.0534626i
\(604\) 6516.00 + 11286.0i 0.438961 + 0.760302i
\(605\) 1227.09 2125.38i 0.0824600 0.142825i
\(606\) −19575.8 18663.3i −1.31223 1.25106i
\(607\) −1378.86 + 796.084i −0.0922012 + 0.0532324i −0.545392 0.838181i \(-0.683619\pi\)
0.453190 + 0.891414i \(0.350286\pi\)
\(608\) −9544.03 −0.636614
\(609\) 0 0
\(610\) −2958.00 −0.196338
\(611\) −16753.8 + 9672.81i −1.10931 + 0.640458i
\(612\) −12386.6 + 7962.42i −0.818135 + 0.525918i
\(613\) 893.000 1546.72i 0.0588384 0.101911i −0.835106 0.550089i \(-0.814594\pi\)
0.893944 + 0.448178i \(0.147927\pi\)
\(614\) 3863.06 + 6691.02i 0.253910 + 0.439784i
\(615\) −7211.05 1748.94i −0.472809 0.114673i
\(616\) 0 0
\(617\) 8254.46i 0.538593i −0.963057 0.269297i \(-0.913209\pi\)
0.963057 0.269297i \(-0.0867912\pi\)
\(618\) 295.757 + 1007.04i 0.0192510 + 0.0655486i
\(619\) −7189.15 4150.66i −0.466812 0.269514i 0.248092 0.968736i \(-0.420196\pi\)
−0.714904 + 0.699222i \(0.753530\pi\)
\(620\) 20053.1 + 11577.7i 1.29896 + 0.749953i
\(621\) −12496.5 2406.23i −0.807514 0.155489i
\(622\) 35311.8i 2.27633i
\(623\) 0 0
\(624\) −3795.00 + 15647.2i −0.243464 + 1.00383i
\(625\) 6110.50 + 10583.7i 0.391072 + 0.677357i
\(626\) −1100.85 + 1906.72i −0.0702854 + 0.121738i
\(627\) 4345.46 4557.92i 0.276780 0.290312i
\(628\) −26480.4 + 15288.5i −1.68262 + 0.971460i
\(629\) −13937.3 −0.883493
\(630\) 0 0
\(631\) −13102.0 −0.826596 −0.413298 0.910596i \(-0.635623\pi\)
−0.413298 + 0.910596i \(0.635623\pi\)
\(632\) −1578.26 + 911.206i −0.0993349 + 0.0573510i
\(633\) 7974.23 8364.11i 0.500707 0.525187i
\(634\) −10523.0 + 18226.4i −0.659183 + 1.14174i
\(635\) −5292.14 9166.26i −0.330728 0.572837i
\(636\) 2272.39 9369.30i 0.141676 0.584146i
\(637\) 0 0
\(638\) 7850.39i 0.487147i
\(639\) −12454.1 + 594.717i −0.771011 + 0.0368179i
\(640\) −4579.93 2644.22i −0.282871 0.163316i
\(641\) 8519.72 + 4918.87i 0.524975 + 0.303094i 0.738968 0.673741i \(-0.235314\pi\)
−0.213993 + 0.976835i \(0.568647\pi\)
\(642\) −8861.44 30172.8i −0.544755 1.85487i
\(643\) 9624.05i 0.590257i −0.955458 0.295129i \(-0.904638\pi\)
0.955458 0.295129i \(-0.0953625\pi\)
\(644\) 0 0
\(645\) −2244.00 544.250i −0.136988 0.0332245i
\(646\) 4590.00 + 7950.11i 0.279553 + 0.484200i
\(647\) 3847.91 6664.78i 0.233813 0.404976i −0.725114 0.688629i \(-0.758213\pi\)
0.958927 + 0.283653i \(0.0915463\pi\)
\(648\) −286.412 2992.07i −0.0173632 0.181388i
\(649\) −3750.49 + 2165.35i −0.226841 + 0.130967i
\(650\) 5342.64 0.322393
\(651\) 0 0
\(652\) −28152.0 −1.69098
\(653\) 24516.5 14154.6i 1.46923 0.848259i 0.469823 0.882761i \(-0.344318\pi\)
0.999405 + 0.0345016i \(0.0109844\pi\)
\(654\) −28996.9 27645.2i −1.73374 1.65293i
\(655\) −12903.0 + 22348.7i −0.769713 + 1.33318i
\(656\) 3888.31 + 6734.75i 0.231422 + 0.400835i
\(657\) −1090.75 + 2116.36i −0.0647703 + 0.125673i
\(658\) 0 0
\(659\) 22973.9i 1.35802i −0.734127 0.679012i \(-0.762408\pi\)
0.734127 0.679012i \(-0.237592\pi\)
\(660\) 14947.7 4389.98i 0.881571 0.258908i
\(661\) −9357.14 5402.35i −0.550606 0.317893i 0.198760 0.980048i \(-0.436308\pi\)
−0.749366 + 0.662155i \(0.769642\pi\)
\(662\) 12968.8 + 7487.56i 0.761402 + 0.439596i
\(663\) 17020.5 4998.73i 0.997013 0.292813i
\(664\) 2040.42i 0.119253i
\(665\) 0 0
\(666\) 11730.0 22759.5i 0.682475 1.32420i
\(667\) −2618.00 4534.51i −0.151978 0.263234i
\(668\) −3181.34 + 5510.25i −0.184266 + 0.319159i
\(669\) −7203.90 6868.10i −0.416321 0.396915i
\(670\) −2308.00 + 1332.52i −0.133083 + 0.0768356i
\(671\) −2343.09 −0.134804
\(672\) 0 0
\(673\) 26882.0 1.53971 0.769855 0.638219i \(-0.220328\pi\)
0.769855 + 0.638219i \(0.220328\pi\)
\(674\) 22338.4 12897.1i 1.27662 0.737057i
\(675\) 3049.15 1055.92i 0.173870 0.0602109i
\(676\) −4396.50 + 7614.96i −0.250142 + 0.433259i
\(677\) −10245.9 17746.5i −0.581660 1.00746i −0.995283 0.0970162i \(-0.969070\pi\)
0.413623 0.910448i \(-0.364263\pi\)
\(678\) −34853.4 8453.19i −1.97424 0.478824i
\(679\) 0 0
\(680\) 2523.34i 0.142302i
\(681\) −8710.05 29657.3i −0.490117 1.66883i
\(682\) 30004.0 + 17322.8i 1.68462 + 0.972616i
\(683\) −628.446 362.833i −0.0352076 0.0203271i 0.482293 0.876010i \(-0.339804\pi\)
−0.517501 + 0.855683i \(0.673137\pi\)
\(684\) −8918.23 + 425.870i −0.498534 + 0.0238064i
\(685\) 10160.5i 0.566733i
\(686\) 0 0
\(687\) −4539.00 + 18714.8i −0.252072 + 1.03932i
\(688\) 1210.00 + 2095.78i 0.0670506 + 0.116135i
\(689\) −5807.22 + 10058.4i −0.321099 + 0.556160i
\(690\) −13543.3 + 14205.5i −0.747226 + 0.783760i
\(691\) −10184.5 + 5880.00i −0.560688 + 0.323713i −0.753421 0.657538i \(-0.771598\pi\)
0.192734 + 0.981251i \(0.438265\pi\)
\(692\) −20269.7 −1.11350
\(693\) 0 0
\(694\) 4420.00 0.241759
\(695\) 12190.4 7038.14i 0.665337 0.384132i
\(696\) 853.358 895.080i 0.0464748 0.0487470i
\(697\) 4284.00 7420.11i 0.232809 0.403238i
\(698\) −12962.7 22452.1i −0.702931 1.21751i
\(699\) 1171.54 4830.39i 0.0633931 0.261377i
\(700\) 0 0
\(701\) 21877.2i 1.17873i 0.807867 + 0.589365i \(0.200622\pi\)
−0.807867 + 0.589365i \(0.799378\pi\)
\(702\) −6161.95 + 32001.3i −0.331293 + 1.72053i
\(703\) −7318.56 4225.37i −0.392638 0.226690i
\(704\) −18025.0 10406.7i −0.964974 0.557128i
\(705\) 5077.90 + 17290.0i 0.271269 + 0.923659i
\(706\) 21820.1i 1.16318i
\(707\) 0 0
\(708\) 5967.00 + 1447.21i 0.316742 + 0.0768213i
\(709\) 12191.0 + 21115.4i 0.645758 + 1.11849i 0.984126 + 0.177472i \(0.0567920\pi\)
−0.338368 + 0.941014i \(0.609875\pi\)
\(710\) −9614.73 + 16653.2i −0.508217 + 0.880258i
\(711\) 10038.8 6453.18i 0.529512 0.340384i
\(712\) 1731.00 999.392i 0.0911122 0.0526036i
\(713\) −23107.7 −1.21373
\(714\) 0 0
\(715\) −18768.0 −0.981655
\(716\) −27251.7 + 15733.8i −1.42241 + 0.821227i
\(717\) 18018.4 + 17178.5i 0.938506 + 0.894759i
\(718\) 6613.00 11454.1i 0.343726 0.595350i
\(719\) −5544.63 9603.58i −0.287594 0.498127i 0.685641 0.727940i \(-0.259522\pi\)
−0.973235 + 0.229813i \(0.926189\pi\)
\(720\) 13331.3 + 6870.82i 0.690042 + 0.355639i
\(721\) 0 0
\(722\) 22714.2i 1.17082i
\(723\) −18880.0 + 5544.86i −0.971167 + 0.285222i
\(724\) 1431.89 + 826.703i 0.0735025 + 0.0424367i
\(725\) 1149.77 + 663.820i 0.0588985 + 0.0340050i
\(726\) −4995.13 + 1467.02i −0.255354 + 0.0749948i
\(727\) 5927.77i 0.302405i 0.988503 + 0.151203i \(0.0483146\pi\)
−0.988503 + 0.151203i \(0.951685\pi\)
\(728\) 0 0
\(729\) 2808.00 + 19481.7i 0.142661 + 0.989772i
\(730\) 1836.00 + 3180.05i 0.0930869 + 0.161231i
\(731\) 1333.13 2309.06i 0.0674525 0.116831i
\(732\) 2404.37 + 2292.29i 0.121404 + 0.115745i
\(733\) 19514.0 11266.4i 0.983311 0.567715i 0.0800429 0.996791i \(-0.474494\pi\)
0.903268 + 0.429077i \(0.141161\pi\)
\(734\) 38681.1 1.94516
\(735\) 0 0
\(736\) 23562.0 1.18004
\(737\) −1828.21 + 1055.52i −0.0913742 + 0.0527549i
\(738\) 8511.46 + 13240.7i 0.424541 + 0.660429i
\(739\) 4610.00 7984.75i 0.229474 0.397461i −0.728178 0.685388i \(-0.759633\pi\)
0.957652 + 0.287927i \(0.0929659\pi\)
\(740\) −10453.0 18105.1i −0.519270 0.899401i
\(741\) 10453.0 + 2535.22i 0.518219 + 0.125687i
\(742\) 0 0
\(743\) 14950.4i 0.738191i 0.929391 + 0.369096i \(0.120333\pi\)
−0.929391 + 0.369096i \(0.879667\pi\)
\(744\) −1537.94 5236.60i −0.0757843 0.258042i
\(745\) 2235.87 + 1290.88i 0.109954 + 0.0634822i
\(746\) 16418.1 + 9479.02i 0.805779 + 0.465217i
\(747\) −637.329 13346.4i −0.0312164 0.653709i
\(748\) 17989.1i 0.879338i
\(749\) 0 0
\(750\) 7548.00 31121.2i 0.367485 1.51518i
\(751\) −13324.0 23077.8i −0.647403 1.12133i −0.983741 0.179594i \(-0.942522\pi\)
0.336338 0.941741i \(-0.390812\pi\)
\(752\) 9443.04 16355.8i 0.457915 0.793132i
\(753\) 14448.6 15155.1i 0.699254 0.733442i
\(754\) −11612.1 + 6704.25i −0.560859 + 0.323812i
\(755\) −14624.1 −0.704934
\(756\) 0 0
\(757\) −3274.00 −0.157194 −0.0785968 0.996906i \(-0.525044\pi\)
−0.0785968 + 0.996906i \(0.525044\pi\)
\(758\) −18753.4 + 10827.3i −0.898620 + 0.518818i
\(759\) −10727.9 + 11252.4i −0.513042 + 0.538126i
\(760\) −765.000 + 1325.02i −0.0365125 + 0.0632414i
\(761\) 18350.8 + 31784.5i 0.874134 + 1.51404i 0.857682 + 0.514180i \(0.171904\pi\)
0.0164517 + 0.999865i \(0.494763\pi\)
\(762\) −5292.14 + 21820.1i −0.251593 + 1.03735i
\(763\) 0 0
\(764\) 2374.91i 0.112462i
\(765\) −788.169 16505.2i −0.0372501 0.780061i
\(766\) −6851.86 3955.93i −0.323196 0.186597i
\(767\) −6405.86 3698.43i −0.301567 0.174110i
\(768\) −4230.12 14403.4i −0.198752 0.676740i
\(769\) 20570.8i 0.964633i 0.875997 + 0.482316i \(0.160204\pi\)
−0.875997 + 0.482316i \(0.839796\pi\)
\(770\) 0 0
\(771\) 1020.00 + 247.386i 0.0476451 + 0.0115556i
\(772\) −2934.00 5081.84i −0.136784 0.236916i
\(773\) −13225.3 + 22906.9i −0.615370 + 1.06585i 0.374949 + 0.927045i \(0.377660\pi\)
−0.990319 + 0.138807i \(0.955673\pi\)
\(774\) 2648.67 + 4120.36i 0.123003 + 0.191348i
\(775\) 5074.20 2929.59i 0.235188 0.135786i
\(776\) −4504.38 −0.208373
\(777\) 0 0
\(778\) −29138.0 −1.34274
\(779\) 4499.10 2597.56i 0.206928 0.119470i
\(780\) 19258.9 + 18361.2i 0.884075 + 0.842866i
\(781\) −7616.00 + 13191.3i −0.348940 + 0.604381i
\(782\) −11331.6 19627.0i −0.518183 0.897519i
\(783\) −5302.24 + 6121.27i −0.242001 + 0.279383i
\(784\) 0 0
\(785\) 34312.5i 1.56008i
\(786\) 52524.4 15425.9i 2.38357 0.700030i
\(787\) 20846.2 + 12035.6i 0.944202 + 0.545136i 0.891275 0.453463i \(-0.149812\pi\)
0.0529272 + 0.998598i \(0.483145\pi\)
\(788\) −15746.8 9091.45i −0.711876 0.411002i
\(789\) −41276.6 + 12122.5i −1.86247 + 0.546988i
\(790\) 18405.5i 0.828908i
\(791\) 0 0
\(792\) −3264.00 1682.23i −0.146441 0.0754739i
\(793\) −2001.00 3465.83i −0.0896060 0.155202i
\(794\) 27495.9 47624.3i 1.22896 2.12862i
\(795\) 7830.32 + 7465.32i 0.349324 + 0.333041i
\(796\) 37801.9 21825.0i 1.68323 0.971815i
\(797\) −24673.1 −1.09657 −0.548285 0.836292i \(-0.684719\pi\)
−0.548285 + 0.836292i \(0.684719\pi\)
\(798\) 0 0
\(799\) −20808.0 −0.921319
\(800\) −5173.96 + 2987.19i −0.228659 + 0.132016i
\(801\) −11010.3 + 7077.71i −0.485680 + 0.312208i
\(802\) 27319.0 47317.9i 1.20283 2.08336i
\(803\) 1454.33 + 2518.97i 0.0639130 + 0.110701i
\(804\) 2908.66 + 705.453i 0.127588 + 0.0309445i
\(805\) 0 0
\(806\) 59174.8i 2.58603i
\(807\) 8473.44 + 28851.7i 0.369615 + 1.25852i
\(808\) 4507.81 + 2602.58i 0.196267 + 0.113315i
\(809\) −38870.8 22442.1i −1.68928 0.975304i −0.955071 0.296376i \(-0.904222\pi\)
−0.734205 0.678928i \(-0.762445\pi\)
\(810\) 27616.2 + 12604.1i 1.19794 + 0.546745i
\(811\) 30430.0i 1.31756i 0.752335 + 0.658781i \(0.228927\pi\)
−0.752335 + 0.658781i \(0.771073\pi\)
\(812\) 0 0
\(813\) −1494.00 + 6159.92i −0.0644488 + 0.265729i
\(814\) −15640.0 27089.3i −0.673442 1.16644i
\(815\) 15795.6 27358.8i 0.678892 1.17587i
\(816\) −11950.0 + 12534.3i −0.512664 + 0.537729i
\(817\) 1400.07 808.332i 0.0599539 0.0346144i
\(818\) 30763.1 1.31492
\(819\) 0 0
\(820\) 12852.0 0.547331
\(821\) −15975.4 + 9223.39i −0.679104 + 0.392081i −0.799517 0.600643i \(-0.794911\pi\)
0.120413 + 0.992724i \(0.461578\pi\)
\(822\) 14872.8 15600.0i 0.631081 0.661936i
\(823\) −17503.0 + 30316.1i −0.741332 + 1.28402i 0.210557 + 0.977582i \(0.432472\pi\)
−0.951889 + 0.306443i \(0.900861\pi\)
\(824\) −100.995 174.929i −0.00426982 0.00739554i
\(825\) 929.154 3831.00i 0.0392109 0.161671i
\(826\) 0 0
\(827\) 1500.81i 0.0631056i −0.999502 0.0315528i \(-0.989955\pi\)
0.999502 0.0315528i \(-0.0100452\pi\)
\(828\) 22017.0 1051.37i 0.924088 0.0441278i
\(829\) −29522.4 17044.8i −1.23686 0.714101i −0.268408 0.963305i \(-0.586497\pi\)
−0.968451 + 0.249205i \(0.919831\pi\)
\(830\) −17846.4 10303.6i −0.746336 0.430897i
\(831\) 4705.99 + 16023.7i 0.196449 + 0.668899i
\(832\) 35549.4i 1.48132i
\(833\) 0 0
\(834\) −29019.0 7038.14i −1.20485 0.292219i
\(835\) −3570.00 6183.42i −0.147958 0.256271i
\(836\) −5453.73 + 9446.14i −0.225624 + 0.390791i
\(837\) 11695.3 + 33772.3i 0.482974 + 1.39467i
\(838\) −33069.3 + 19092.5i −1.36320 + 0.787042i
\(839\) −989.751 −0.0407271 −0.0203635 0.999793i \(-0.506482\pi\)
−0.0203635 + 0.999793i \(0.506482\pi\)
\(840\) 0 0
\(841\) 21057.0 0.863381
\(842\) 10190.8 5883.67i 0.417101 0.240813i
\(843\) −34734.2 33115.1i −1.41911 1.35296i
\(844\) −10008.0 + 17334.4i −0.408163 + 0.706959i
\(845\) −4933.61 8545.26i −0.200854 0.347889i
\(846\) 17512.5 33979.3i 0.711695 1.38089i
\(847\) 0 0
\(848\) 11338.5i 0.459159i
\(849\) −14862.2 + 4364.87i −0.600788 + 0.176445i
\(850\) 4976.62 + 2873.25i 0.200819 + 0.115943i
\(851\) 18067.8 + 10431.5i 0.727799 + 0.420195i
\(852\) 20720.5 6085.41i 0.833186 0.244698i
\(853\) 21592.3i 0.866711i −0.901223 0.433356i \(-0.857329\pi\)
0.901223 0.433356i \(-0.142671\pi\)
\(854\) 0 0
\(855\) 4590.00 8905.91i 0.183596 0.356229i
\(856\) 3026.00 + 5241.19i 0.120825 + 0.209276i
\(857\) −23441.0 + 40600.9i −0.934338 + 1.61832i −0.158528 + 0.987355i \(0.550675\pi\)
−0.775810 + 0.630966i \(0.782659\pi\)
\(858\) 28815.6 + 27472.4i 1.14656 + 1.09311i
\(859\) −30824.9 + 17796.8i −1.22437 + 0.706889i −0.965846 0.259116i \(-0.916569\pi\)
−0.258522 + 0.966005i \(0.583235\pi\)
\(860\) 3999.40 0.158580
\(861\) 0 0
\(862\) 46546.0 1.83917
\(863\) −3227.93 + 1863.64i −0.127323 + 0.0735100i −0.562309 0.826927i \(-0.690087\pi\)
0.434986 + 0.900437i \(0.356753\pi\)
\(864\) −11925.3 34436.3i −0.469567 1.35596i
\(865\) 11373.0 19698.6i 0.447045 0.774304i
\(866\) 26874.8 + 46548.5i 1.05455 + 1.82654i
\(867\) −6266.74 1519.91i −0.245478 0.0595372i
\(868\) 0 0
\(869\) 14579.3i 0.569124i
\(870\) 3519.51 + 11983.8i 0.137152 + 0.466997i
\(871\) −3122.58 1802.82i −0.121475 0.0701336i
\(872\) 6677.24 + 3855.10i 0.259312 + 0.149714i
\(873\) 29463.2 1406.95i 1.14224 0.0545452i
\(874\) 13741.6i 0.531828i
\(875\) 0 0
\(876\) 972.000 4007.66i 0.0374895 0.154573i
\(877\) 15215.0 + 26353.2i 0.585831 + 1.01469i 0.994771 + 0.102128i \(0.0325652\pi\)
−0.408940 + 0.912561i \(0.634101\pi\)
\(878\) −6191.00 + 10723.1i −0.237968 + 0.412173i
\(879\) 18504.4 19409.1i 0.710055 0.744771i
\(880\) 15867.5 9161.09i 0.607832 0.350932i
\(881\) 36479.4 1.39503 0.697516 0.716570i \(-0.254289\pi\)
0.697516 + 0.716570i \(0.254289\pi\)
\(882\) 0 0
\(883\) 21632.0 0.824433 0.412217 0.911086i \(-0.364755\pi\)
0.412217 + 0.911086i \(0.364755\pi\)
\(884\) −26609.0 + 15362.7i −1.01239 + 0.584506i
\(885\) −4754.42 + 4986.88i −0.180585 + 0.189415i
\(886\) 14110.0 24439.2i 0.535028 0.926696i
\(887\) −1585.62 2746.38i −0.0600225 0.103962i 0.834453 0.551080i \(-0.185784\pi\)
−0.894475 + 0.447117i \(0.852451\pi\)
\(888\) −1161.44 + 4788.75i −0.0438913 + 0.180968i
\(889\) 0 0
\(890\) 20186.7i 0.760293i
\(891\) 21875.3 + 9983.95i 0.822503 + 0.375393i
\(892\) 14929.9 + 8619.75i 0.560413 + 0.323555i
\(893\) −10926.4 6308.35i −0.409449 0.236395i
\(894\) −1543.28 5254.81i −0.0577350 0.196585i
\(895\) 35311.8i 1.31882i
\(896\) 0 0
\(897\) −25806.0 6258.87i −0.960577 0.232974i
\(898\) −5474.00 9481.25i −0.203418 0.352331i
\(899\) −7352.44 + 12734.8i −0.272767 + 0.472446i
\(900\) −4701.41 + 3022.19i −0.174126 + 0.111933i
\(901\) −10818.7 + 6246.20i −0.400027 + 0.230956i
\(902\) 19229.5 0.709835
\(903\) 0 0
\(904\) 6902.00 0.253935
\(905\) −1606.82 + 927.699i −0.0590194 + 0.0340749i
\(906\) 22453.2 + 21406.6i 0.823352 + 0.784973i
\(907\) −13450.0 + 23296.1i −0.492392 + 0.852849i −0.999962 0.00876232i \(-0.997211\pi\)
0.507569 + 0.861611i \(0.330544\pi\)
\(908\) 26768.7 + 46364.8i 0.978361 + 1.69457i
\(909\) −30298.5 15615.5i −1.10554 0.569784i
\(910\) 0 0
\(911\) 25917.8i 0.942587i −0.881977 0.471293i \(-0.843787\pi\)
0.881977 0.471293i \(-0.156213\pi\)
\(912\) −10075.0 + 2958.93i −0.365808 + 0.107434i
\(913\) −14136.5 8161.70i −0.512431 0.295852i
\(914\) 4270.57 + 2465.62i 0.154549 + 0.0892291i
\(915\) −3576.76 + 1050.46i −0.129229 + 0.0379531i
\(916\) 33354.7i 1.20313i
\(917\) 0 0
\(918\) −22950.0 + 26495.1i −0.825123 + 0.952579i
\(919\) 6563.00 + 11367.4i 0.235575 + 0.408028i 0.959440 0.281914i \(-0.0909693\pi\)
−0.723865 + 0.689942i \(0.757636\pi\)
\(920\) 1888.61 3271.16i 0.0676799 0.117225i
\(921\) 7047.29 + 6718.79i 0.252135 + 0.240382i
\(922\) 19437.7 11222.3i 0.694301 0.400855i
\(923\) −26016.3 −0.927777
\(924\) 0 0
\(925\) −5290.00 −0.188037
\(926\) −3306.48 + 1909.00i −0.117341 + 0.0677468i
\(927\) 715.249 + 1112.66i 0.0253418 + 0.0394225i
\(928\) 7497.00 12985.2i 0.265195 0.459331i
\(929\) 20613.1 + 35702.9i 0.727980 + 1.26090i 0.957736 + 0.287650i \(0.0928740\pi\)
−0.229755 + 0.973248i \(0.573793\pi\)
\(930\) 53567.8 + 12992.1i 1.88877 + 0.458094i
\(931\) 0 0
\(932\) 8609.04i 0.302574i
\(933\) −12540.1 42698.5i −0.440026 1.49827i
\(934\) −27804.1 16052.7i −0.974068 0.562378i
\(935\) −17482.2 10093.4i −0.611476 0.353036i
\(936\) −299.155 6264.65i −0.0104468 0.218768i
\(937\) 12580.6i 0.438623i 0.975655 + 0.219311i \(0.0703811\pi\)
−0.975655 + 0.219311i \(0.929619\pi\)
\(938\) 0 0
\(939\) −654.000 + 2696.51i −0.0227289 + 0.0937139i
\(940\) −15606.0 27030.4i −0.541502 0.937908i
\(941\) −2691.52 + 4661.85i −0.0932423 + 0.161500i −0.908874 0.417072i \(-0.863056\pi\)
0.815631 + 0.578572i \(0.196390\pi\)
\(942\) −50226.2 + 52681.9i −1.73722 + 1.82215i
\(943\) −11107.2 + 6412.76i −0.383564 + 0.221451i
\(944\) 7221.15 0.248971
\(945\) 0 0
\(946\) 5984.00 0.205662
\(947\) 44462.5 25670.5i 1.52570 0.880863i 0.526165 0.850383i \(-0.323629\pi\)
0.999535 0.0304810i \(-0.00970390\pi\)
\(948\) −14263.3 + 14960.6i −0.488660 + 0.512551i
\(949\) −2484.00 + 4302.41i −0.0849674 + 0.147168i
\(950\) 1742.16 + 3017.52i 0.0594982 + 0.103054i
\(951\) −6251.59 + 25776.0i −0.213167 + 0.878910i
\(952\) 0 0
\(953\) 32440.6i 1.10268i 0.834281 + 0.551340i \(0.185883\pi\)
−0.834281 + 0.551340i \(0.814117\pi\)
\(954\) −1094.68 22923.9i −0.0371505 0.777975i
\(955\) −2308.00 1332.52i −0.0782042 0.0451512i
\(956\) −37342.5 21559.7i −1.26333 0.729384i
\(957\) 2787.87 + 9492.56i 0.0941682 + 0.320638i
\(958\) 51552.0i 1.73859i
\(959\) 0 0
\(960\) −32181.0 7805.04i −1.08191 0.262403i
\(961\) 17552.5 + 30401.8i 0.589188 + 1.02050i
\(962\) 26713.2 46268.6i 0.895289 1.55069i
\(963\) −21430.2 33337.5i −0.717111 1.11556i
\(964\) 29516.1 17041.1i 0.986149 0.569354i
\(965\) 6584.88 0.219663
\(966\) 0 0
\(967\) 34232.0 1.13839 0.569197 0.822201i \(-0.307254\pi\)
0.569197 + 0.822201i \(0.307254\pi\)
\(968\) 867.684 500.957i 0.0288103 0.0166337i
\(969\) 8373.43 + 7983.11i 0.277599 + 0.264659i
\(970\) 22746.0 39397.2i 0.752918 1.30409i
\(971\) −9892.47 17134.3i −0.326946 0.566287i 0.654958 0.755665i \(-0.272686\pi\)
−0.981904 + 0.189378i \(0.939353\pi\)
\(972\) −12679.9 31646.2i −0.418425 1.04429i
\(973\) 0 0
\(974\) 56536.0i 1.85989i
\(975\) 6460.22 1897.30i 0.212198 0.0623203i
\(976\) 3383.51 + 1953.47i 0.110967 + 0.0640666i
\(977\) 34464.5 + 19898.1i 1.12858 + 0.651583i 0.943576 0.331155i \(-0.107438\pi\)
0.184999 + 0.982739i \(0.440772\pi\)
\(978\) −64299.5 + 18884.1i −2.10232 + 0.617431i
\(979\) 15990.3i 0.522013i
\(980\) 0 0
\(981\) −44880.0 23130.6i −1.46066 0.752807i
\(982\) −11900.0 20611.4i −0.386705 0.669793i
\(983\) 11341.7 19644.5i 0.368001 0.637397i −0.621252 0.783611i \(-0.713375\pi\)
0.989253 + 0.146214i \(0.0467088\pi\)
\(984\) −2192.49 2090.29i −0.0710305 0.0677196i
\(985\) 17670.6 10202.1i 0.571606 0.330017i
\(986\) −14422.1 −0.465814
\(987\) 0 0
\(988\) −18630.0 −0.599898
\(989\) −3456.45 + 1995.58i −0.111131 + 0.0641616i
\(990\) 31195.9 20053.5i 1.00148 0.643780i
\(991\) 25211.0 43666.7i 0.808127 1.39972i −0.106033 0.994363i \(-0.533815\pi\)
0.914160 0.405354i \(-0.132852\pi\)
\(992\) −33086.0 57306.6i −1.05895 1.83416i
\(993\) 18340.7 + 4448.27i 0.586127 + 0.142157i
\(994\) 0 0
\(995\) 48982.5i 1.56065i
\(996\) 6521.45 + 22205.2i 0.207470 + 0.706425i
\(997\) 39942.3 + 23060.7i 1.26879 + 0.732538i 0.974760 0.223257i \(-0.0716690\pi\)
0.294033 + 0.955795i \(0.405002\pi\)
\(998\) 55260.4 + 31904.6i 1.75274 + 1.01195i
\(999\) 6101.24 31686.0i 0.193228 1.00351i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 147.4.g.c.80.1 8
3.2 odd 2 inner 147.4.g.c.80.4 8
7.2 even 3 inner 147.4.g.c.68.3 8
7.3 odd 6 21.4.c.b.20.1 4
7.4 even 3 21.4.c.b.20.2 yes 4
7.5 odd 6 inner 147.4.g.c.68.4 8
7.6 odd 2 inner 147.4.g.c.80.2 8
21.2 odd 6 inner 147.4.g.c.68.2 8
21.5 even 6 inner 147.4.g.c.68.1 8
21.11 odd 6 21.4.c.b.20.3 yes 4
21.17 even 6 21.4.c.b.20.4 yes 4
21.20 even 2 inner 147.4.g.c.80.3 8
28.3 even 6 336.4.k.b.209.4 4
28.11 odd 6 336.4.k.b.209.1 4
84.11 even 6 336.4.k.b.209.3 4
84.59 odd 6 336.4.k.b.209.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.4.c.b.20.1 4 7.3 odd 6
21.4.c.b.20.2 yes 4 7.4 even 3
21.4.c.b.20.3 yes 4 21.11 odd 6
21.4.c.b.20.4 yes 4 21.17 even 6
147.4.g.c.68.1 8 21.5 even 6 inner
147.4.g.c.68.2 8 21.2 odd 6 inner
147.4.g.c.68.3 8 7.2 even 3 inner
147.4.g.c.68.4 8 7.5 odd 6 inner
147.4.g.c.80.1 8 1.1 even 1 trivial
147.4.g.c.80.2 8 7.6 odd 2 inner
147.4.g.c.80.3 8 21.20 even 2 inner
147.4.g.c.80.4 8 3.2 odd 2 inner
336.4.k.b.209.1 4 28.11 odd 6
336.4.k.b.209.2 4 84.59 odd 6
336.4.k.b.209.3 4 84.11 even 6
336.4.k.b.209.4 4 28.3 even 6