gp: [N,k,chi] = [336,4,Mod(95,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.95");
S:= CuspForms(chi, 4);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 0, 3, 4]))
N = Newforms(chi, 4, names="a")
Newform invariants
sage: traces = [32,0,0,0,0,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic q q q -expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) :
T 5 16 − 579 T 5 14 + 256770 T 5 12 − 37395467 T 5 10 + 3759550482 T 5 8 + ⋯ + 50 ⋯ 00 T_{5}^{16} - 579 T_{5}^{14} + 256770 T_{5}^{12} - 37395467 T_{5}^{10} + 3759550482 T_{5}^{8} + \cdots + 50\!\cdots\!00 T 5 1 6 − 5 7 9 T 5 1 4 + 2 5 6 7 7 0 T 5 1 2 − 3 7 3 9 5 4 6 7 T 5 1 0 + 3 7 5 9 5 5 0 4 8 2 T 5 8 + ⋯ + 5 0 ⋯ 0 0
T5^16 - 579*T5^14 + 256770*T5^12 - 37395467*T5^10 + 3759550482*T5^8 - 233452565091*T5^6 + 10602642000841*T5^4 - 284536107802800*T5^2 + 5010771054240000
T 13 4 + 5 T 13 3 − 3684 T 13 2 + 85684 T 13 − 180880 T_{13}^{4} + 5T_{13}^{3} - 3684T_{13}^{2} + 85684T_{13} - 180880 T 1 3 4 + 5 T 1 3 3 − 3 6 8 4 T 1 3 2 + 8 5 6 8 4 T 1 3 − 1 8 0 8 8 0
T13^4 + 5*T13^3 - 3684*T13^2 + 85684*T13 - 180880
T 19 16 − 19023 T 19 14 + 243345570 T 19 12 − 1748942749615 T 19 10 + ⋯ + 37 ⋯ 00 T_{19}^{16} - 19023 T_{19}^{14} + 243345570 T_{19}^{12} - 1748942749615 T_{19}^{10} + \cdots + 37\!\cdots\!00 T 1 9 1 6 − 1 9 0 2 3 T 1 9 1 4 + 2 4 3 3 4 5 5 7 0 T 1 9 1 2 − 1 7 4 8 9 4 2 7 4 9 6 1 5 T 1 9 1 0 + ⋯ + 3 7 ⋯ 0 0
T19^16 - 19023*T19^14 + 243345570*T19^12 - 1748942749615*T19^10 + 9176937791252898*T19^8 - 27659455872985546239*T19^6 + 56743799430348782765041*T19^4 - 15412671982647108235105200*T19^2 + 3713645554182899116417440000