| L(s) = 1 | + (5.19 + 0.158i)3-s + (17.5 − 10.1i)5-s + (−18.5 − 0.135i)7-s + (26.9 + 1.64i)9-s + (−1.55 + 2.69i)11-s + 32.4·13-s + (92.7 − 49.8i)15-s + (14.0 + 8.09i)17-s + (66.3 − 38.3i)19-s + (−96.1 − 3.63i)21-s + (−16.6 − 28.8i)23-s + (142. − 247. i)25-s + (139. + 12.7i)27-s + 173. i·29-s + (−164. − 94.7i)31-s + ⋯ |
| L(s) = 1 | + (0.999 + 0.0304i)3-s + (1.56 − 0.906i)5-s + (−0.999 − 0.00733i)7-s + (0.998 + 0.0608i)9-s + (−0.0426 + 0.0738i)11-s + 0.691·13-s + (1.59 − 0.858i)15-s + (0.200 + 0.115i)17-s + (0.801 − 0.462i)19-s + (−0.999 − 0.0377i)21-s + (−0.151 − 0.261i)23-s + (1.14 − 1.97i)25-s + (0.995 + 0.0911i)27-s + 1.11i·29-s + (−0.950 − 0.548i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.811 + 0.584i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.811 + 0.584i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(3.329380886\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.329380886\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-5.19 - 0.158i)T \) |
| 7 | \( 1 + (18.5 + 0.135i)T \) |
| good | 5 | \( 1 + (-17.5 + 10.1i)T + (62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (1.55 - 2.69i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 32.4T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-14.0 - 8.09i)T + (2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-66.3 + 38.3i)T + (3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (16.6 + 28.8i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 173. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + (164. + 94.7i)T + (1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (129. + 224. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 149. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 495. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (236. + 409. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-482. - 278. i)T + (7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (262. - 454. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (111. + 192. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (241. + 139. i)T + (1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 1.06e3T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-144. + 250. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (641. - 370. i)T + (2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 - 628.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (1.13e3 - 657. i)T + (3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + 1.22e3T + 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.66830921333925759639564416848, −9.771726399633856384815905230350, −9.231124476050632362109653079984, −8.581080313339419242736930840795, −7.18478071561718623007203162182, −6.11260660666021353087953290475, −5.12241078321853519897831002891, −3.66073204102752941319488379580, −2.41918077009826087382866416303, −1.20671744524692369150071936273,
1.62733424714841376135776628383, 2.80933370605340418750102387569, 3.60640428313963206444665266005, 5.53715937075213778484156116866, 6.45037080711552350389855779684, 7.25042425715962297484916394691, 8.578261710066720340658600961155, 9.690264305646591996237367441910, 9.867087465892578546750101035802, 10.90004642596216040636931595276