L(s) = 1 | + (2.89 + 4.31i)3-s + (−6.70 − 3.86i)5-s + (−13.9 − 12.2i)7-s + (−10.2 + 24.9i)9-s + (2.34 + 4.05i)11-s + 32.7·13-s + (−2.67 − 40.1i)15-s + (63.6 − 36.7i)17-s + (−79.1 − 45.7i)19-s + (12.5 − 95.4i)21-s + (70.4 − 122. i)23-s + (−32.5 − 56.4i)25-s + (−137. + 27.8i)27-s − 155. i·29-s + (76.0 − 43.9i)31-s + ⋯ |
L(s) = 1 | + (0.556 + 0.830i)3-s + (−0.599 − 0.346i)5-s + (−0.751 − 0.660i)7-s + (−0.380 + 0.924i)9-s + (0.0642 + 0.111i)11-s + 0.699·13-s + (−0.0461 − 0.690i)15-s + (0.907 − 0.523i)17-s + (−0.955 − 0.551i)19-s + (0.130 − 0.991i)21-s + (0.639 − 1.10i)23-s + (−0.260 − 0.451i)25-s + (−0.980 + 0.198i)27-s − 0.997i·29-s + (0.440 − 0.254i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.440 + 0.897i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.440 + 0.897i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.371986260\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.371986260\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-2.89 - 4.31i)T \) |
| 7 | \( 1 + (13.9 + 12.2i)T \) |
good | 5 | \( 1 + (6.70 + 3.86i)T + (62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-2.34 - 4.05i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 - 32.7T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-63.6 + 36.7i)T + (2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (79.1 + 45.7i)T + (3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-70.4 + 122. i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + 155. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + (-76.0 + 43.9i)T + (1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-97.5 + 168. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + 371. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 353. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (20.4 - 35.4i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-617. + 356. i)T + (7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (114. + 198. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (208. - 361. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (524. - 302. i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 419.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (82.5 + 143. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (486. + 280. i)T + (2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 447.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (418. + 241. i)T + (3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 1.16e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.74899474890748838033526676794, −10.06282484834786510747090801789, −9.085428746778357622545573982910, −8.285374491838606349704295076792, −7.29469497196555065262420975246, −6.02519771769713667248484681040, −4.55361957512706541829916280427, −3.88702708056535951915688482983, −2.69297455421381060953833863400, −0.48013148368033625062384051656,
1.40783130089083474123125777903, 2.98875008133162386465731495931, 3.72725484965058646708833202312, 5.69104695777162535775386164450, 6.53318017964433505931439491841, 7.52463271993462012022222252672, 8.424089331991721966764013875992, 9.194816610822131389822332068133, 10.35458879047967200036307640790, 11.52749682737927827059379319780