L(s) = 1 | + (3.03 − 4.21i)3-s + (5.91 + 3.41i)5-s + (13.7 − 12.4i)7-s + (−8.54 − 25.6i)9-s + (30.3 + 52.6i)11-s + 2.34·13-s + (32.3 − 14.5i)15-s + (72.5 − 41.8i)17-s + (14.3 + 8.28i)19-s + (−10.6 − 95.6i)21-s + (19.1 − 33.2i)23-s + (−39.1 − 67.8i)25-s + (−133. − 41.7i)27-s + 236. i·29-s + (−5.88 + 3.39i)31-s + ⋯ |
L(s) = 1 | + (0.584 − 0.811i)3-s + (0.528 + 0.305i)5-s + (0.741 − 0.670i)7-s + (−0.316 − 0.948i)9-s + (0.832 + 1.44i)11-s + 0.0500·13-s + (0.556 − 0.250i)15-s + (1.03 − 0.597i)17-s + (0.173 + 0.100i)19-s + (−0.110 − 0.993i)21-s + (0.173 − 0.301i)23-s + (−0.313 − 0.543i)25-s + (−0.954 − 0.297i)27-s + 1.51i·29-s + (−0.0341 + 0.0196i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.642 + 0.766i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.884320336\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.884320336\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-3.03 + 4.21i)T \) |
| 7 | \( 1 + (-13.7 + 12.4i)T \) |
good | 5 | \( 1 + (-5.91 - 3.41i)T + (62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-30.3 - 52.6i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 - 2.34T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-72.5 + 41.8i)T + (2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-14.3 - 8.28i)T + (3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-19.1 + 33.2i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 236. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + (5.88 - 3.39i)T + (1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-138. + 239. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + 223. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 136. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (196. - 339. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-93.1 + 53.7i)T + (7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (376. + 652. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-405. + 701. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (361. - 208. i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 74.7T + 3.57e5T^{2} \) |
| 73 | \( 1 + (123. + 213. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-570. - 329. i)T + (2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 664.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-254. - 147. i)T + (3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 1.30e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.03166638220989704781937079646, −9.901330089133630849216593085143, −9.203296201152079884276593284171, −7.925624663520391132195898492422, −7.24014645981898475927454745060, −6.42702369541938247404448633134, −4.97664173174897721764647100327, −3.65922706963861134903936757098, −2.17992339816627498866175221058, −1.17010069726997686137671043923,
1.44302444183053392069147424798, 2.93431880478823615377060299195, 4.07643324226254151104442772368, 5.37325606046617154653783377213, 6.02238001863115950810706672042, 7.86284251237140192174354379645, 8.564845262127743465094401534583, 9.312042008548595083812379519460, 10.17166201503681905032061530516, 11.30021072964511051889563823904