Properties

Label 3300.2.x.d
Level $3300$
Weight $2$
Character orbit 3300.x
Analytic conductor $26.351$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3300,2,Mod(1693,3300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3300, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3300.1693"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3300.x (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,0,0,-24,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.3506326670\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q - 24 q^{11} + 16 q^{31} - 32 q^{71} - 32 q^{81} + 80 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1693.1 0 −0.707107 0.707107i 0 0 0 −3.37614 3.37614i 0 1.00000i 0
1693.2 0 −0.707107 0.707107i 0 0 0 3.37614 + 3.37614i 0 1.00000i 0
1693.3 0 −0.707107 0.707107i 0 0 0 −0.256514 0.256514i 0 1.00000i 0
1693.4 0 −0.707107 0.707107i 0 0 0 0.256514 + 0.256514i 0 1.00000i 0
1693.5 0 −0.707107 0.707107i 0 0 0 −2.08903 2.08903i 0 1.00000i 0
1693.6 0 −0.707107 0.707107i 0 0 0 2.08903 + 2.08903i 0 1.00000i 0
1693.7 0 −0.707107 0.707107i 0 0 0 −0.414559 0.414559i 0 1.00000i 0
1693.8 0 −0.707107 0.707107i 0 0 0 0.414559 + 0.414559i 0 1.00000i 0
1693.9 0 0.707107 + 0.707107i 0 0 0 −2.08903 2.08903i 0 1.00000i 0
1693.10 0 0.707107 + 0.707107i 0 0 0 2.08903 + 2.08903i 0 1.00000i 0
1693.11 0 0.707107 + 0.707107i 0 0 0 −0.414559 0.414559i 0 1.00000i 0
1693.12 0 0.707107 + 0.707107i 0 0 0 0.414559 + 0.414559i 0 1.00000i 0
1693.13 0 0.707107 + 0.707107i 0 0 0 −3.37614 3.37614i 0 1.00000i 0
1693.14 0 0.707107 + 0.707107i 0 0 0 3.37614 + 3.37614i 0 1.00000i 0
1693.15 0 0.707107 + 0.707107i 0 0 0 −0.256514 0.256514i 0 1.00000i 0
1693.16 0 0.707107 + 0.707107i 0 0 0 0.256514 + 0.256514i 0 1.00000i 0
1957.1 0 −0.707107 + 0.707107i 0 0 0 −3.37614 + 3.37614i 0 1.00000i 0
1957.2 0 −0.707107 + 0.707107i 0 0 0 3.37614 3.37614i 0 1.00000i 0
1957.3 0 −0.707107 + 0.707107i 0 0 0 −0.256514 + 0.256514i 0 1.00000i 0
1957.4 0 −0.707107 + 0.707107i 0 0 0 0.256514 0.256514i 0 1.00000i 0
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1693.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
5.c odd 4 2 inner
11.b odd 2 1 inner
55.d odd 2 1 inner
55.e even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3300.2.x.d 32
5.b even 2 1 inner 3300.2.x.d 32
5.c odd 4 2 inner 3300.2.x.d 32
11.b odd 2 1 inner 3300.2.x.d 32
55.d odd 2 1 inner 3300.2.x.d 32
55.e even 4 2 inner 3300.2.x.d 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3300.2.x.d 32 1.a even 1 1 trivial
3300.2.x.d 32 5.b even 2 1 inner
3300.2.x.d 32 5.c odd 4 2 inner
3300.2.x.d 32 11.b odd 2 1 inner
3300.2.x.d 32 55.d odd 2 1 inner
3300.2.x.d 32 55.e even 4 2 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3300, [\chi])\):

\( T_{7}^{16} + 596T_{7}^{12} + 39670T_{7}^{8} + 5364T_{7}^{4} + 81 \) Copy content Toggle raw display
\( T_{19}^{8} - 88T_{19}^{6} + 2046T_{19}^{4} - 14632T_{19}^{2} + 20449 \) Copy content Toggle raw display