L(s) = 1 | + (0.707 − 0.707i)3-s + (−3.37 + 3.37i)7-s − 1.00i·9-s + (−3.25 + 0.626i)11-s + (−1.72 − 1.72i)13-s + (−0.580 + 0.580i)17-s + 4.50·19-s + 4.77i·21-s + (3.65 − 3.65i)23-s + (−0.707 − 0.707i)27-s − 0.725·29-s + 6.16·31-s + (−1.86 + 2.74i)33-s + (0.978 + 0.978i)37-s − 2.43·39-s + ⋯ |
L(s) = 1 | + (0.408 − 0.408i)3-s + (−1.27 + 1.27i)7-s − 0.333i·9-s + (−0.982 + 0.188i)11-s + (−0.477 − 0.477i)13-s + (−0.140 + 0.140i)17-s + 1.03·19-s + 1.04i·21-s + (0.761 − 0.761i)23-s + (−0.136 − 0.136i)27-s − 0.134·29-s + 1.10·31-s + (−0.323 + 0.477i)33-s + (0.160 + 0.160i)37-s − 0.390·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0587 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0587 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.086092528\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.086092528\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (3.25 - 0.626i)T \) |
good | 7 | \( 1 + (3.37 - 3.37i)T - 7iT^{2} \) |
| 13 | \( 1 + (1.72 + 1.72i)T + 13iT^{2} \) |
| 17 | \( 1 + (0.580 - 0.580i)T - 17iT^{2} \) |
| 19 | \( 1 - 4.50T + 19T^{2} \) |
| 23 | \( 1 + (-3.65 + 3.65i)T - 23iT^{2} \) |
| 29 | \( 1 + 0.725T + 29T^{2} \) |
| 31 | \( 1 - 6.16T + 31T^{2} \) |
| 37 | \( 1 + (-0.978 - 0.978i)T + 37iT^{2} \) |
| 41 | \( 1 - 8.99iT - 41T^{2} \) |
| 43 | \( 1 + (0.936 + 0.936i)T + 43iT^{2} \) |
| 47 | \( 1 + (8.25 + 8.25i)T + 47iT^{2} \) |
| 53 | \( 1 + (0.742 - 0.742i)T - 53iT^{2} \) |
| 59 | \( 1 + 9.89iT - 59T^{2} \) |
| 61 | \( 1 + 14.4iT - 61T^{2} \) |
| 67 | \( 1 + (1.66 + 1.66i)T + 67iT^{2} \) |
| 71 | \( 1 - 4.84T + 71T^{2} \) |
| 73 | \( 1 + (8.52 + 8.52i)T + 73iT^{2} \) |
| 79 | \( 1 - 8.00T + 79T^{2} \) |
| 83 | \( 1 + (-8.89 - 8.89i)T + 83iT^{2} \) |
| 89 | \( 1 + 12.7iT - 89T^{2} \) |
| 97 | \( 1 + (1.29 + 1.29i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.318844261380905874606842577714, −7.911545304113664477618525700073, −6.82711272220384409100240959947, −6.35675766471750131895155908679, −5.41784882129940412720116170265, −4.81059922262964862807195314931, −3.21619933688788133001748191179, −2.95166441048393650381894062980, −2.03235219595051169021070934540, −0.35728875288249951361510408901,
1.00108414652067369839228061481, 2.62660064973976337570437438139, 3.24555110886984295333727901713, 4.05434465253282300564271694294, 4.88385630526675690433316221330, 5.75874467214732892248050039999, 6.77577720427114704741958170401, 7.34719157755408483678541141033, 7.912447428785384444933714725593, 9.032032210473385040692332690192