Properties

Label 3300.2.x.d.1957.13
Level $3300$
Weight $2$
Character 3300.1957
Analytic conductor $26.351$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3300,2,Mod(1693,3300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3300, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3300.1693"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3300.x (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,0,0,-24,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.3506326670\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1957.13
Character \(\chi\) \(=\) 3300.1957
Dual form 3300.2.x.d.1693.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{3} +(-3.37614 + 3.37614i) q^{7} -1.00000i q^{9} +(-3.25700 + 0.626035i) q^{11} +(-1.72243 - 1.72243i) q^{13} +(-0.580573 + 0.580573i) q^{17} +4.50902 q^{19} +4.77458i q^{21} +(3.65309 - 3.65309i) q^{23} +(-0.707107 - 0.707107i) q^{27} -0.725530 q^{29} +6.16625 q^{31} +(-1.86038 + 2.74572i) q^{33} +(0.978843 + 0.978843i) q^{37} -2.43589 q^{39} +8.99367i q^{41} +(-0.936850 - 0.936850i) q^{43} +(-8.25919 - 8.25919i) q^{47} -15.7966i q^{49} +0.821055i q^{51} +(-0.742397 + 0.742397i) q^{53} +(3.18836 - 3.18836i) q^{57} -9.89830i q^{59} -14.4938i q^{61} +(3.37614 + 3.37614i) q^{63} +(-1.66012 - 1.66012i) q^{67} -5.16625i q^{69} +4.84839 q^{71} +(-8.52297 - 8.52297i) q^{73} +(8.88251 - 13.1097i) q^{77} +8.00257 q^{79} -1.00000 q^{81} +(8.89853 + 8.89853i) q^{83} +(-0.513027 + 0.513027i) q^{87} -12.7467i q^{89} +11.6304 q^{91} +(4.36020 - 4.36020i) q^{93} +(-1.29533 - 1.29533i) q^{97} +(0.626035 + 3.25700i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 24 q^{11} + 16 q^{31} - 32 q^{71} - 32 q^{81} + 80 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3300\mathbb{Z}\right)^\times\).

\(n\) \(1201\) \(1651\) \(2201\) \(2377\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 0.707107i 0.408248 0.408248i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −3.37614 + 3.37614i −1.27606 + 1.27606i −0.333206 + 0.942854i \(0.608130\pi\)
−0.942854 + 0.333206i \(0.891870\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −3.25700 + 0.626035i −0.982024 + 0.188757i
\(12\) 0 0
\(13\) −1.72243 1.72243i −0.477717 0.477717i 0.426684 0.904401i \(-0.359682\pi\)
−0.904401 + 0.426684i \(0.859682\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.580573 + 0.580573i −0.140810 + 0.140810i −0.773998 0.633188i \(-0.781746\pi\)
0.633188 + 0.773998i \(0.281746\pi\)
\(18\) 0 0
\(19\) 4.50902 1.03444 0.517220 0.855853i \(-0.326967\pi\)
0.517220 + 0.855853i \(0.326967\pi\)
\(20\) 0 0
\(21\) 4.77458i 1.04190i
\(22\) 0 0
\(23\) 3.65309 3.65309i 0.761722 0.761722i −0.214911 0.976634i \(-0.568946\pi\)
0.976634 + 0.214911i \(0.0689463\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) 0 0
\(29\) −0.725530 −0.134728 −0.0673638 0.997728i \(-0.521459\pi\)
−0.0673638 + 0.997728i \(0.521459\pi\)
\(30\) 0 0
\(31\) 6.16625 1.10749 0.553746 0.832686i \(-0.313198\pi\)
0.553746 + 0.832686i \(0.313198\pi\)
\(32\) 0 0
\(33\) −1.86038 + 2.74572i −0.323850 + 0.477969i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.978843 + 0.978843i 0.160921 + 0.160921i 0.782975 0.622054i \(-0.213701\pi\)
−0.622054 + 0.782975i \(0.713701\pi\)
\(38\) 0 0
\(39\) −2.43589 −0.390055
\(40\) 0 0
\(41\) 8.99367i 1.40457i 0.711894 + 0.702287i \(0.247838\pi\)
−0.711894 + 0.702287i \(0.752162\pi\)
\(42\) 0 0
\(43\) −0.936850 0.936850i −0.142868 0.142868i 0.632055 0.774923i \(-0.282212\pi\)
−0.774923 + 0.632055i \(0.782212\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.25919 8.25919i −1.20473 1.20473i −0.972712 0.232015i \(-0.925468\pi\)
−0.232015 0.972712i \(-0.574532\pi\)
\(48\) 0 0
\(49\) 15.7966i 2.25666i
\(50\) 0 0
\(51\) 0.821055i 0.114971i
\(52\) 0 0
\(53\) −0.742397 + 0.742397i −0.101976 + 0.101976i −0.756254 0.654278i \(-0.772973\pi\)
0.654278 + 0.756254i \(0.272973\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.18836 3.18836i 0.422308 0.422308i
\(58\) 0 0
\(59\) 9.89830i 1.28865i −0.764752 0.644325i \(-0.777139\pi\)
0.764752 0.644325i \(-0.222861\pi\)
\(60\) 0 0
\(61\) 14.4938i 1.85574i −0.372907 0.927869i \(-0.621639\pi\)
0.372907 0.927869i \(-0.378361\pi\)
\(62\) 0 0
\(63\) 3.37614 + 3.37614i 0.425353 + 0.425353i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1.66012 1.66012i −0.202815 0.202815i 0.598390 0.801205i \(-0.295807\pi\)
−0.801205 + 0.598390i \(0.795807\pi\)
\(68\) 0 0
\(69\) 5.16625i 0.621944i
\(70\) 0 0
\(71\) 4.84839 0.575399 0.287699 0.957721i \(-0.407110\pi\)
0.287699 + 0.957721i \(0.407110\pi\)
\(72\) 0 0
\(73\) −8.52297 8.52297i −0.997538 0.997538i 0.00245880 0.999997i \(-0.499217\pi\)
−0.999997 + 0.00245880i \(0.999217\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.88251 13.1097i 1.01226 1.49399i
\(78\) 0 0
\(79\) 8.00257 0.900360 0.450180 0.892938i \(-0.351360\pi\)
0.450180 + 0.892938i \(0.351360\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 8.89853 + 8.89853i 0.976741 + 0.976741i 0.999736 0.0229948i \(-0.00732012\pi\)
−0.0229948 + 0.999736i \(0.507320\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −0.513027 + 0.513027i −0.0550023 + 0.0550023i
\(88\) 0 0
\(89\) 12.7467i 1.35115i −0.737293 0.675574i \(-0.763896\pi\)
0.737293 0.675574i \(-0.236104\pi\)
\(90\) 0 0
\(91\) 11.6304 1.21919
\(92\) 0 0
\(93\) 4.36020 4.36020i 0.452131 0.452131i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.29533 1.29533i −0.131520 0.131520i 0.638282 0.769802i \(-0.279645\pi\)
−0.769802 + 0.638282i \(0.779645\pi\)
\(98\) 0 0
\(99\) 0.626035 + 3.25700i 0.0629189 + 0.327341i
\(100\) 0 0
\(101\) 14.0065i 1.39370i −0.717216 0.696851i \(-0.754584\pi\)
0.717216 0.696851i \(-0.245416\pi\)
\(102\) 0 0
\(103\) 1.03528 1.03528i 0.102009 0.102009i −0.654260 0.756269i \(-0.727020\pi\)
0.756269 + 0.654260i \(0.227020\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.43322 + 4.43322i −0.428576 + 0.428576i −0.888143 0.459567i \(-0.848005\pi\)
0.459567 + 0.888143i \(0.348005\pi\)
\(108\) 0 0
\(109\) −8.89982 −0.852448 −0.426224 0.904618i \(-0.640156\pi\)
−0.426224 + 0.904618i \(0.640156\pi\)
\(110\) 0 0
\(111\) 1.38429 0.131391
\(112\) 0 0
\(113\) −5.64138 + 5.64138i −0.530696 + 0.530696i −0.920780 0.390083i \(-0.872446\pi\)
0.390083 + 0.920780i \(0.372446\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1.72243 + 1.72243i −0.159239 + 0.159239i
\(118\) 0 0
\(119\) 3.92019i 0.359363i
\(120\) 0 0
\(121\) 10.2162 4.07800i 0.928742 0.370727i
\(122\) 0 0
\(123\) 6.35948 + 6.35948i 0.573415 + 0.573415i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 12.3253 12.3253i 1.09369 1.09369i 0.0985630 0.995131i \(-0.468575\pi\)
0.995131 0.0985630i \(-0.0314246\pi\)
\(128\) 0 0
\(129\) −1.32491 −0.116651
\(130\) 0 0
\(131\) 8.96807i 0.783544i −0.920062 0.391772i \(-0.871862\pi\)
0.920062 0.391772i \(-0.128138\pi\)
\(132\) 0 0
\(133\) −15.2231 + 15.2231i −1.32001 + 1.32001i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.7124 12.7124i −1.08610 1.08610i −0.995926 0.0901711i \(-0.971259\pi\)
−0.0901711 0.995926i \(-0.528741\pi\)
\(138\) 0 0
\(139\) 9.54916 0.809949 0.404975 0.914328i \(-0.367280\pi\)
0.404975 + 0.914328i \(0.367280\pi\)
\(140\) 0 0
\(141\) −11.6803 −0.983655
\(142\) 0 0
\(143\) 6.68828 + 4.53167i 0.559302 + 0.378958i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −11.1699 11.1699i −0.921277 0.921277i
\(148\) 0 0
\(149\) 3.83513 0.314186 0.157093 0.987584i \(-0.449788\pi\)
0.157093 + 0.987584i \(0.449788\pi\)
\(150\) 0 0
\(151\) 13.4282i 1.09277i 0.837535 + 0.546384i \(0.183996\pi\)
−0.837535 + 0.546384i \(0.816004\pi\)
\(152\) 0 0
\(153\) 0.580573 + 0.580573i 0.0469366 + 0.0469366i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 7.43922 + 7.43922i 0.593714 + 0.593714i 0.938633 0.344918i \(-0.112093\pi\)
−0.344918 + 0.938633i \(0.612093\pi\)
\(158\) 0 0
\(159\) 1.04991i 0.0832631i
\(160\) 0 0
\(161\) 24.6667i 1.94401i
\(162\) 0 0
\(163\) 2.69539 2.69539i 0.211119 0.211119i −0.593624 0.804743i \(-0.702303\pi\)
0.804743 + 0.593624i \(0.202303\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.22436 7.22436i 0.559038 0.559038i −0.369996 0.929033i \(-0.620641\pi\)
0.929033 + 0.369996i \(0.120641\pi\)
\(168\) 0 0
\(169\) 7.06644i 0.543572i
\(170\) 0 0
\(171\) 4.50902i 0.344813i
\(172\) 0 0
\(173\) −6.40893 6.40893i −0.487262 0.487262i 0.420179 0.907441i \(-0.361967\pi\)
−0.907441 + 0.420179i \(0.861967\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −6.99916 6.99916i −0.526089 0.526089i
\(178\) 0 0
\(179\) 9.54391i 0.713345i 0.934229 + 0.356673i \(0.116089\pi\)
−0.934229 + 0.356673i \(0.883911\pi\)
\(180\) 0 0
\(181\) 20.9562 1.55766 0.778832 0.627233i \(-0.215813\pi\)
0.778832 + 0.627233i \(0.215813\pi\)
\(182\) 0 0
\(183\) −10.2486 10.2486i −0.757602 0.757602i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.52747 2.25439i 0.111700 0.164857i
\(188\) 0 0
\(189\) 4.77458 0.347300
\(190\) 0 0
\(191\) 11.2028 0.810605 0.405303 0.914183i \(-0.367166\pi\)
0.405303 + 0.914183i \(0.367166\pi\)
\(192\) 0 0
\(193\) 6.90591 + 6.90591i 0.497098 + 0.497098i 0.910534 0.413435i \(-0.135671\pi\)
−0.413435 + 0.910534i \(0.635671\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.01380 + 5.01380i −0.357218 + 0.357218i −0.862787 0.505568i \(-0.831283\pi\)
0.505568 + 0.862787i \(0.331283\pi\)
\(198\) 0 0
\(199\) 14.5586i 1.03203i −0.856580 0.516014i \(-0.827415\pi\)
0.856580 0.516014i \(-0.172585\pi\)
\(200\) 0 0
\(201\) −2.34776 −0.165598
\(202\) 0 0
\(203\) 2.44949 2.44949i 0.171920 0.171920i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −3.65309 3.65309i −0.253907 0.253907i
\(208\) 0 0
\(209\) −14.6859 + 2.82280i −1.01584 + 0.195257i
\(210\) 0 0
\(211\) 6.72323i 0.462846i 0.972853 + 0.231423i \(0.0743382\pi\)
−0.972853 + 0.231423i \(0.925662\pi\)
\(212\) 0 0
\(213\) 3.42833 3.42833i 0.234905 0.234905i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −20.8181 + 20.8181i −1.41323 + 1.41323i
\(218\) 0 0
\(219\) −12.0533 −0.814487
\(220\) 0 0
\(221\) 2.00000 0.134535
\(222\) 0 0
\(223\) −4.27414 + 4.27414i −0.286218 + 0.286218i −0.835583 0.549365i \(-0.814870\pi\)
0.549365 + 0.835583i \(0.314870\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −18.3125 + 18.3125i −1.21544 + 1.21544i −0.246229 + 0.969212i \(0.579192\pi\)
−0.969212 + 0.246229i \(0.920808\pi\)
\(228\) 0 0
\(229\) 10.9402i 0.722949i −0.932382 0.361474i \(-0.882274\pi\)
0.932382 0.361474i \(-0.117726\pi\)
\(230\) 0 0
\(231\) −2.98906 15.5508i −0.196665 1.02317i
\(232\) 0 0
\(233\) −14.5572 14.5572i −0.953674 0.953674i 0.0452992 0.998973i \(-0.485576\pi\)
−0.998973 + 0.0452992i \(0.985576\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 5.65867 5.65867i 0.367570 0.367570i
\(238\) 0 0
\(239\) 16.0097 1.03558 0.517792 0.855507i \(-0.326754\pi\)
0.517792 + 0.855507i \(0.326754\pi\)
\(240\) 0 0
\(241\) 23.4573i 1.51101i 0.655140 + 0.755507i \(0.272610\pi\)
−0.655140 + 0.755507i \(0.727390\pi\)
\(242\) 0 0
\(243\) −0.707107 + 0.707107i −0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −7.76649 7.76649i −0.494170 0.494170i
\(248\) 0 0
\(249\) 12.5844 0.797506
\(250\) 0 0
\(251\) −5.10971 −0.322522 −0.161261 0.986912i \(-0.551556\pi\)
−0.161261 + 0.986912i \(0.551556\pi\)
\(252\) 0 0
\(253\) −9.61117 + 14.1851i −0.604249 + 0.891810i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.20035 4.20035i −0.262011 0.262011i 0.563860 0.825871i \(-0.309316\pi\)
−0.825871 + 0.563860i \(0.809316\pi\)
\(258\) 0 0
\(259\) −6.60942 −0.410689
\(260\) 0 0
\(261\) 0.725530i 0.0449092i
\(262\) 0 0
\(263\) −19.5089 19.5089i −1.20297 1.20297i −0.973258 0.229715i \(-0.926221\pi\)
−0.229715 0.973258i \(-0.573779\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −9.01328 9.01328i −0.551604 0.551604i
\(268\) 0 0
\(269\) 8.29249i 0.505602i −0.967518 0.252801i \(-0.918648\pi\)
0.967518 0.252801i \(-0.0813518\pi\)
\(270\) 0 0
\(271\) 25.8442i 1.56993i 0.619543 + 0.784963i \(0.287318\pi\)
−0.619543 + 0.784963i \(0.712682\pi\)
\(272\) 0 0
\(273\) 8.22390 8.22390i 0.497733 0.497733i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7.69150 7.69150i 0.462137 0.462137i −0.437218 0.899355i \(-0.644036\pi\)
0.899355 + 0.437218i \(0.144036\pi\)
\(278\) 0 0
\(279\) 6.16625i 0.369164i
\(280\) 0 0
\(281\) 15.1675i 0.904816i −0.891811 0.452408i \(-0.850565\pi\)
0.891811 0.452408i \(-0.149435\pi\)
\(282\) 0 0
\(283\) −5.32287 5.32287i −0.316412 0.316412i 0.530975 0.847387i \(-0.321826\pi\)
−0.847387 + 0.530975i \(0.821826\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −30.3638 30.3638i −1.79232 1.79232i
\(288\) 0 0
\(289\) 16.3259i 0.960345i
\(290\) 0 0
\(291\) −1.83187 −0.107386
\(292\) 0 0
\(293\) 4.80866 + 4.80866i 0.280925 + 0.280925i 0.833478 0.552553i \(-0.186346\pi\)
−0.552553 + 0.833478i \(0.686346\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2.74572 + 1.86038i 0.159323 + 0.107950i
\(298\) 0 0
\(299\) −12.5844 −0.727776
\(300\) 0 0
\(301\) 6.32587 0.364617
\(302\) 0 0
\(303\) −9.90411 9.90411i −0.568977 0.568977i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 7.92959 7.92959i 0.452566 0.452566i −0.443639 0.896205i \(-0.646313\pi\)
0.896205 + 0.443639i \(0.146313\pi\)
\(308\) 0 0
\(309\) 1.46410i 0.0832898i
\(310\) 0 0
\(311\) 2.43608 0.138138 0.0690688 0.997612i \(-0.477997\pi\)
0.0690688 + 0.997612i \(0.477997\pi\)
\(312\) 0 0
\(313\) −22.5292 + 22.5292i −1.27343 + 1.27343i −0.329151 + 0.944277i \(0.606762\pi\)
−0.944277 + 0.329151i \(0.893238\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.0914 + 13.0914i 0.735285 + 0.735285i 0.971662 0.236376i \(-0.0759598\pi\)
−0.236376 + 0.971662i \(0.575960\pi\)
\(318\) 0 0
\(319\) 2.36306 0.454208i 0.132306 0.0254307i
\(320\) 0 0
\(321\) 6.26952i 0.349931i
\(322\) 0 0
\(323\) −2.61782 + 2.61782i −0.145659 + 0.145659i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −6.29312 + 6.29312i −0.348010 + 0.348010i
\(328\) 0 0
\(329\) 55.7683 3.07461
\(330\) 0 0
\(331\) 33.7528 1.85522 0.927612 0.373546i \(-0.121858\pi\)
0.927612 + 0.373546i \(0.121858\pi\)
\(332\) 0 0
\(333\) 0.978843 0.978843i 0.0536403 0.0536403i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −13.2803 + 13.2803i −0.723421 + 0.723421i −0.969301 0.245879i \(-0.920923\pi\)
0.245879 + 0.969301i \(0.420923\pi\)
\(338\) 0 0
\(339\) 7.97811i 0.433312i
\(340\) 0 0
\(341\) −20.0835 + 3.86029i −1.08758 + 0.209047i
\(342\) 0 0
\(343\) 29.6985 + 29.6985i 1.60357 + 1.60357i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 23.9389 23.9389i 1.28511 1.28511i 0.347387 0.937722i \(-0.387069\pi\)
0.937722 0.347387i \(-0.112931\pi\)
\(348\) 0 0
\(349\) −9.54916 −0.511155 −0.255577 0.966789i \(-0.582266\pi\)
−0.255577 + 0.966789i \(0.582266\pi\)
\(350\) 0 0
\(351\) 2.43589i 0.130018i
\(352\) 0 0
\(353\) −14.4901 + 14.4901i −0.771231 + 0.771231i −0.978322 0.207091i \(-0.933600\pi\)
0.207091 + 0.978322i \(0.433600\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −2.77199 2.77199i −0.146709 0.146709i
\(358\) 0 0
\(359\) −30.5172 −1.61064 −0.805318 0.592843i \(-0.798006\pi\)
−0.805318 + 0.592843i \(0.798006\pi\)
\(360\) 0 0
\(361\) 1.33123 0.0700647
\(362\) 0 0
\(363\) 4.34033 10.1075i 0.227808 0.530506i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 19.6444 + 19.6444i 1.02543 + 1.02543i 0.999668 + 0.0257602i \(0.00820063\pi\)
0.0257602 + 0.999668i \(0.491799\pi\)
\(368\) 0 0
\(369\) 8.99367 0.468192
\(370\) 0 0
\(371\) 5.01287i 0.260255i
\(372\) 0 0
\(373\) 13.3212 + 13.3212i 0.689745 + 0.689745i 0.962176 0.272430i \(-0.0878274\pi\)
−0.272430 + 0.962176i \(0.587827\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.24968 + 1.24968i 0.0643617 + 0.0643617i
\(378\) 0 0
\(379\) 12.3857i 0.636209i −0.948056 0.318105i \(-0.896954\pi\)
0.948056 0.318105i \(-0.103046\pi\)
\(380\) 0 0
\(381\) 17.4306i 0.892997i
\(382\) 0 0
\(383\) 25.5739 25.5739i 1.30677 1.30677i 0.383033 0.923735i \(-0.374880\pi\)
0.923735 0.383033i \(-0.125120\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.936850 + 0.936850i −0.0476228 + 0.0476228i
\(388\) 0 0
\(389\) 16.5140i 0.837294i −0.908149 0.418647i \(-0.862505\pi\)
0.908149 0.418647i \(-0.137495\pi\)
\(390\) 0 0
\(391\) 4.24178i 0.214516i
\(392\) 0 0
\(393\) −6.34138 6.34138i −0.319880 0.319880i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 6.68134 + 6.68134i 0.335327 + 0.335327i 0.854605 0.519278i \(-0.173799\pi\)
−0.519278 + 0.854605i \(0.673799\pi\)
\(398\) 0 0
\(399\) 21.5287i 1.07778i
\(400\) 0 0
\(401\) −22.4542 −1.12131 −0.560655 0.828050i \(-0.689451\pi\)
−0.560655 + 0.828050i \(0.689451\pi\)
\(402\) 0 0
\(403\) −10.6210 10.6210i −0.529068 0.529068i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.80089 2.57531i −0.188403 0.127653i
\(408\) 0 0
\(409\) −30.3079 −1.49863 −0.749314 0.662215i \(-0.769617\pi\)
−0.749314 + 0.662215i \(0.769617\pi\)
\(410\) 0 0
\(411\) −17.9781 −0.886795
\(412\) 0 0
\(413\) 33.4180 + 33.4180i 1.64439 + 1.64439i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 6.75227 6.75227i 0.330660 0.330660i
\(418\) 0 0
\(419\) 23.6570i 1.15572i 0.816136 + 0.577860i \(0.196112\pi\)
−0.816136 + 0.577860i \(0.803888\pi\)
\(420\) 0 0
\(421\) −13.2991 −0.648160 −0.324080 0.946030i \(-0.605055\pi\)
−0.324080 + 0.946030i \(0.605055\pi\)
\(422\) 0 0
\(423\) −8.25919 + 8.25919i −0.401576 + 0.401576i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 48.9330 + 48.9330i 2.36803 + 2.36803i
\(428\) 0 0
\(429\) 7.93371 1.52495i 0.383043 0.0736255i
\(430\) 0 0
\(431\) 36.5579i 1.76093i −0.474110 0.880466i \(-0.657230\pi\)
0.474110 0.880466i \(-0.342770\pi\)
\(432\) 0 0
\(433\) −7.43922 + 7.43922i −0.357506 + 0.357506i −0.862893 0.505387i \(-0.831350\pi\)
0.505387 + 0.862893i \(0.331350\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 16.4718 16.4718i 0.787955 0.787955i
\(438\) 0 0
\(439\) −13.8638 −0.661682 −0.330841 0.943687i \(-0.607332\pi\)
−0.330841 + 0.943687i \(0.607332\pi\)
\(440\) 0 0
\(441\) −15.7966 −0.752219
\(442\) 0 0
\(443\) 18.1870 18.1870i 0.864090 0.864090i −0.127721 0.991810i \(-0.540766\pi\)
0.991810 + 0.127721i \(0.0407661\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 2.71184 2.71184i 0.128266 0.128266i
\(448\) 0 0
\(449\) 18.2487i 0.861210i 0.902541 + 0.430605i \(0.141700\pi\)
−0.902541 + 0.430605i \(0.858300\pi\)
\(450\) 0 0
\(451\) −5.63035 29.2924i −0.265123 1.37933i
\(452\) 0 0
\(453\) 9.49515 + 9.49515i 0.446121 + 0.446121i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2.18072 + 2.18072i −0.102010 + 0.102010i −0.756270 0.654260i \(-0.772980\pi\)
0.654260 + 0.756270i \(0.272980\pi\)
\(458\) 0 0
\(459\) 0.821055 0.0383236
\(460\) 0 0
\(461\) 39.3942i 1.83477i −0.398002 0.917384i \(-0.630296\pi\)
0.398002 0.917384i \(-0.369704\pi\)
\(462\) 0 0
\(463\) 16.5184 16.5184i 0.767674 0.767674i −0.210022 0.977697i \(-0.567354\pi\)
0.977697 + 0.210022i \(0.0673536\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14.2361 14.2361i −0.658768 0.658768i 0.296321 0.955088i \(-0.404240\pi\)
−0.955088 + 0.296321i \(0.904240\pi\)
\(468\) 0 0
\(469\) 11.2096 0.517609
\(470\) 0 0
\(471\) 10.5206 0.484766
\(472\) 0 0
\(473\) 3.63783 + 2.46482i 0.167267 + 0.113333i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.742397 + 0.742397i 0.0339920 + 0.0339920i
\(478\) 0 0
\(479\) −14.4709 −0.661192 −0.330596 0.943772i \(-0.607250\pi\)
−0.330596 + 0.943772i \(0.607250\pi\)
\(480\) 0 0
\(481\) 3.37199i 0.153749i
\(482\) 0 0
\(483\) 17.4420 + 17.4420i 0.793637 + 0.793637i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 11.6113 + 11.6113i 0.526157 + 0.526157i 0.919424 0.393267i \(-0.128655\pi\)
−0.393267 + 0.919424i \(0.628655\pi\)
\(488\) 0 0
\(489\) 3.81186i 0.172378i
\(490\) 0 0
\(491\) 35.8369i 1.61730i 0.588291 + 0.808649i \(0.299801\pi\)
−0.588291 + 0.808649i \(0.700199\pi\)
\(492\) 0 0
\(493\) 0.421224 0.421224i 0.0189710 0.0189710i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −16.3688 + 16.3688i −0.734243 + 0.734243i
\(498\) 0 0
\(499\) 4.23932i 0.189778i 0.995488 + 0.0948890i \(0.0302496\pi\)
−0.995488 + 0.0948890i \(0.969750\pi\)
\(500\) 0 0
\(501\) 10.2168i 0.456452i
\(502\) 0 0
\(503\) −14.7655 14.7655i −0.658359 0.658359i 0.296632 0.954992i \(-0.404136\pi\)
−0.954992 + 0.296632i \(0.904136\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −4.99672 4.99672i −0.221912 0.221912i
\(508\) 0 0
\(509\) 0.613825i 0.0272073i −0.999907 0.0136037i \(-0.995670\pi\)
0.999907 0.0136037i \(-0.00433031\pi\)
\(510\) 0 0
\(511\) 57.5494 2.54584
\(512\) 0 0
\(513\) −3.18836 3.18836i −0.140769 0.140769i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 32.0708 + 21.7297i 1.41047 + 0.955670i
\(518\) 0 0
\(519\) −9.06359 −0.397848
\(520\) 0 0
\(521\) −11.9695 −0.524393 −0.262196 0.965015i \(-0.584447\pi\)
−0.262196 + 0.965015i \(0.584447\pi\)
\(522\) 0 0
\(523\) −31.8513 31.8513i −1.39276 1.39276i −0.819080 0.573680i \(-0.805515\pi\)
−0.573680 0.819080i \(-0.694485\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.57996 + 3.57996i −0.155946 + 0.155946i
\(528\) 0 0
\(529\) 3.69015i 0.160442i
\(530\) 0 0
\(531\) −9.89830 −0.429550
\(532\) 0 0
\(533\) 15.4910 15.4910i 0.670990 0.670990i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 6.74856 + 6.74856i 0.291222 + 0.291222i
\(538\) 0 0
\(539\) 9.88923 + 51.4496i 0.425959 + 2.21609i
\(540\) 0 0
\(541\) 12.0716i 0.518998i 0.965743 + 0.259499i \(0.0835574\pi\)
−0.965743 + 0.259499i \(0.916443\pi\)
\(542\) 0 0
\(543\) 14.8183 14.8183i 0.635914 0.635914i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 9.15947 9.15947i 0.391631 0.391631i −0.483638 0.875268i \(-0.660685\pi\)
0.875268 + 0.483638i \(0.160685\pi\)
\(548\) 0 0
\(549\) −14.4938 −0.618579
\(550\) 0 0
\(551\) −3.27143 −0.139368
\(552\) 0 0
\(553\) −27.0178 + 27.0178i −1.14891 + 1.14891i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.54989 9.54989i 0.404642 0.404642i −0.475223 0.879865i \(-0.657633\pi\)
0.879865 + 0.475223i \(0.157633\pi\)
\(558\) 0 0
\(559\) 3.22733i 0.136501i
\(560\) 0 0
\(561\) −0.514009 2.67418i −0.0217015 0.112904i
\(562\) 0 0
\(563\) −0.279041 0.279041i −0.0117602 0.0117602i 0.701202 0.712962i \(-0.252647\pi\)
−0.712962 + 0.701202i \(0.752647\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.37614 3.37614i 0.141784 0.141784i
\(568\) 0 0
\(569\) −12.9988 −0.544939 −0.272470 0.962164i \(-0.587840\pi\)
−0.272470 + 0.962164i \(0.587840\pi\)
\(570\) 0 0
\(571\) 10.9606i 0.458687i 0.973346 + 0.229343i \(0.0736579\pi\)
−0.973346 + 0.229343i \(0.926342\pi\)
\(572\) 0 0
\(573\) 7.92157 7.92157i 0.330928 0.330928i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 4.63627 + 4.63627i 0.193010 + 0.193010i 0.796996 0.603985i \(-0.206421\pi\)
−0.603985 + 0.796996i \(0.706421\pi\)
\(578\) 0 0
\(579\) 9.76644 0.405879
\(580\) 0 0
\(581\) −60.0853 −2.49276
\(582\) 0 0
\(583\) 1.95322 2.88276i 0.0808943 0.119392i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.2005 + 13.2005i 0.544841 + 0.544841i 0.924944 0.380103i \(-0.124111\pi\)
−0.380103 + 0.924944i \(0.624111\pi\)
\(588\) 0 0
\(589\) 27.8037 1.14563
\(590\) 0 0
\(591\) 7.09058i 0.291667i
\(592\) 0 0
\(593\) −14.5659 14.5659i −0.598151 0.598151i 0.341669 0.939820i \(-0.389008\pi\)
−0.939820 + 0.341669i \(0.889008\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −10.2945 10.2945i −0.421324 0.421324i
\(598\) 0 0
\(599\) 38.2249i 1.56183i −0.624638 0.780914i \(-0.714754\pi\)
0.624638 0.780914i \(-0.285246\pi\)
\(600\) 0 0
\(601\) 36.3360i 1.48218i −0.671407 0.741089i \(-0.734310\pi\)
0.671407 0.741089i \(-0.265690\pi\)
\(602\) 0 0
\(603\) −1.66012 + 1.66012i −0.0676051 + 0.0676051i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −5.21319 + 5.21319i −0.211597 + 0.211597i −0.804946 0.593349i \(-0.797806\pi\)
0.593349 + 0.804946i \(0.297806\pi\)
\(608\) 0 0
\(609\) 3.46410i 0.140372i
\(610\) 0 0
\(611\) 28.4518i 1.15104i
\(612\) 0 0
\(613\) −7.08689 7.08689i −0.286237 0.286237i 0.549353 0.835590i \(-0.314874\pi\)
−0.835590 + 0.549353i \(0.814874\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 19.3159 + 19.3159i 0.777627 + 0.777627i 0.979427 0.201800i \(-0.0646790\pi\)
−0.201800 + 0.979427i \(0.564679\pi\)
\(618\) 0 0
\(619\) 23.6634i 0.951113i 0.879685 + 0.475556i \(0.157753\pi\)
−0.879685 + 0.475556i \(0.842247\pi\)
\(620\) 0 0
\(621\) −5.16625 −0.207315
\(622\) 0 0
\(623\) 43.0346 + 43.0346i 1.72414 + 1.72414i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −8.38847 + 12.3805i −0.335003 + 0.494430i
\(628\) 0 0
\(629\) −1.13658 −0.0453184
\(630\) 0 0
\(631\) 3.73017 0.148496 0.0742478 0.997240i \(-0.476344\pi\)
0.0742478 + 0.997240i \(0.476344\pi\)
\(632\) 0 0
\(633\) 4.75404 + 4.75404i 0.188956 + 0.188956i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −27.2086 + 27.2086i −1.07804 + 1.07804i
\(638\) 0 0
\(639\) 4.84839i 0.191800i
\(640\) 0 0
\(641\) −19.1988 −0.758307 −0.379154 0.925334i \(-0.623785\pi\)
−0.379154 + 0.925334i \(0.623785\pi\)
\(642\) 0 0
\(643\) 23.5162 23.5162i 0.927389 0.927389i −0.0701478 0.997537i \(-0.522347\pi\)
0.997537 + 0.0701478i \(0.0223471\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.53754 5.53754i −0.217703 0.217703i 0.589827 0.807530i \(-0.299196\pi\)
−0.807530 + 0.589827i \(0.799196\pi\)
\(648\) 0 0
\(649\) 6.19669 + 32.2388i 0.243241 + 1.26548i
\(650\) 0 0
\(651\) 29.4413i 1.15389i
\(652\) 0 0
\(653\) 19.0350 19.0350i 0.744898 0.744898i −0.228618 0.973516i \(-0.573421\pi\)
0.973516 + 0.228618i \(0.0734208\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −8.52297 + 8.52297i −0.332513 + 0.332513i
\(658\) 0 0
\(659\) −15.3342 −0.597334 −0.298667 0.954357i \(-0.596542\pi\)
−0.298667 + 0.954357i \(0.596542\pi\)
\(660\) 0 0
\(661\) −1.77522 −0.0690481 −0.0345240 0.999404i \(-0.510992\pi\)
−0.0345240 + 0.999404i \(0.510992\pi\)
\(662\) 0 0
\(663\) 1.41421 1.41421i 0.0549235 0.0549235i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.65043 + 2.65043i −0.102625 + 0.102625i
\(668\) 0 0
\(669\) 6.04455i 0.233696i
\(670\) 0 0
\(671\) 9.07362 + 47.2063i 0.350283 + 1.82238i
\(672\) 0 0
\(673\) −24.4078 24.4078i −0.940850 0.940850i 0.0574956 0.998346i \(-0.481688\pi\)
−0.998346 + 0.0574956i \(0.981688\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −24.8887 + 24.8887i −0.956551 + 0.956551i −0.999095 0.0425440i \(-0.986454\pi\)
0.0425440 + 0.999095i \(0.486454\pi\)
\(678\) 0 0
\(679\) 8.74639 0.335656
\(680\) 0 0
\(681\) 25.8977i 0.992403i
\(682\) 0 0
\(683\) −15.6593 + 15.6593i −0.599188 + 0.599188i −0.940096 0.340909i \(-0.889265\pi\)
0.340909 + 0.940096i \(0.389265\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −7.73589 7.73589i −0.295143 0.295143i
\(688\) 0 0
\(689\) 2.55746 0.0974315
\(690\) 0 0
\(691\) −30.5812 −1.16336 −0.581682 0.813416i \(-0.697605\pi\)
−0.581682 + 0.813416i \(0.697605\pi\)
\(692\) 0 0
\(693\) −13.1097 8.88251i −0.497995 0.337419i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −5.22148 5.22148i −0.197778 0.197778i
\(698\) 0 0
\(699\) −20.5870 −0.778672
\(700\) 0 0
\(701\) 1.76677i 0.0667299i 0.999443 + 0.0333650i \(0.0106224\pi\)
−0.999443 + 0.0333650i \(0.989378\pi\)
\(702\) 0 0
\(703\) 4.41362 + 4.41362i 0.166463 + 0.166463i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 47.2880 + 47.2880i 1.77845 + 1.77845i
\(708\) 0 0
\(709\) 13.8444i 0.519938i −0.965617 0.259969i \(-0.916288\pi\)
0.965617 0.259969i \(-0.0837123\pi\)
\(710\) 0 0
\(711\) 8.00257i 0.300120i
\(712\) 0 0
\(713\) 22.5259 22.5259i 0.843601 0.843601i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 11.3206 11.3206i 0.422775 0.422775i
\(718\) 0 0
\(719\) 39.2569i 1.46404i 0.681285 + 0.732018i \(0.261422\pi\)
−0.681285 + 0.732018i \(0.738578\pi\)
\(720\) 0 0
\(721\) 6.99047i 0.260339i
\(722\) 0 0
\(723\) 16.5868 + 16.5868i 0.616869 + 0.616869i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −0.319144 0.319144i −0.0118364 0.0118364i 0.701164 0.713000i \(-0.252664\pi\)
−0.713000 + 0.701164i \(0.752664\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 1.08782 0.0402345
\(732\) 0 0
\(733\) −9.07457 9.07457i −0.335177 0.335177i 0.519372 0.854548i \(-0.326166\pi\)
−0.854548 + 0.519372i \(0.826166\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.44630 + 4.36771i 0.237452 + 0.160887i
\(738\) 0 0
\(739\) 40.3688 1.48499 0.742496 0.669851i \(-0.233642\pi\)
0.742496 + 0.669851i \(0.233642\pi\)
\(740\) 0 0
\(741\) −10.9835 −0.403488
\(742\) 0 0
\(743\) −28.6094 28.6094i −1.04958 1.04958i −0.998705 0.0508708i \(-0.983800\pi\)
−0.0508708 0.998705i \(-0.516200\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 8.89853 8.89853i 0.325580 0.325580i
\(748\) 0 0
\(749\) 29.9343i 1.09378i
\(750\) 0 0
\(751\) 16.3325 0.595982 0.297991 0.954569i \(-0.403684\pi\)
0.297991 + 0.954569i \(0.403684\pi\)
\(752\) 0 0
\(753\) −3.61311 + 3.61311i −0.131669 + 0.131669i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 35.1913 + 35.1913i 1.27905 + 1.27905i 0.941199 + 0.337852i \(0.109700\pi\)
0.337852 + 0.941199i \(0.390300\pi\)
\(758\) 0 0
\(759\) 3.23426 + 16.8265i 0.117396 + 0.610763i
\(760\) 0 0
\(761\) 0.642348i 0.0232851i 0.999932 + 0.0116425i \(0.00370602\pi\)
−0.999932 + 0.0116425i \(0.996294\pi\)
\(762\) 0 0
\(763\) 30.0470 30.0470i 1.08777 1.08777i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −17.0492 + 17.0492i −0.615610 + 0.615610i
\(768\) 0 0
\(769\) 20.3400 0.733481 0.366740 0.930323i \(-0.380474\pi\)
0.366740 + 0.930323i \(0.380474\pi\)
\(770\) 0 0
\(771\) −5.94020 −0.213931
\(772\) 0 0
\(773\) −36.5793 + 36.5793i −1.31567 + 1.31567i −0.398496 + 0.917170i \(0.630468\pi\)
−0.917170 + 0.398496i \(0.869532\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −4.67356 + 4.67356i −0.167663 + 0.167663i
\(778\) 0 0
\(779\) 40.5526i 1.45295i
\(780\) 0 0
\(781\) −15.7912 + 3.03527i −0.565055 + 0.108610i
\(782\) 0 0
\(783\) 0.513027 + 0.513027i 0.0183341 + 0.0183341i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −33.9266 + 33.9266i −1.20935 + 1.20935i −0.238117 + 0.971236i \(0.576530\pi\)
−0.971236 + 0.238117i \(0.923470\pi\)
\(788\) 0 0
\(789\) −27.5898 −0.982223
\(790\) 0 0
\(791\) 38.0921i 1.35440i
\(792\) 0 0
\(793\) −24.9646 + 24.9646i −0.886518 + 0.886518i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −33.4607 33.4607i −1.18524 1.18524i −0.978369 0.206868i \(-0.933673\pi\)
−0.206868 0.978369i \(-0.566327\pi\)
\(798\) 0 0
\(799\) 9.59014 0.339275
\(800\) 0 0
\(801\) −12.7467 −0.450382
\(802\) 0 0
\(803\) 33.0950 + 22.4237i 1.16790 + 0.791314i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −5.86368 5.86368i −0.206411 0.206411i
\(808\) 0 0
\(809\) −31.0715 −1.09241 −0.546207 0.837650i \(-0.683929\pi\)
−0.546207 + 0.837650i \(0.683929\pi\)
\(810\) 0 0
\(811\) 29.8391i 1.04779i −0.851783 0.523895i \(-0.824478\pi\)
0.851783 0.523895i \(-0.175522\pi\)
\(812\) 0 0
\(813\) 18.2746 + 18.2746i 0.640919 + 0.640919i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −4.22427 4.22427i −0.147789 0.147789i
\(818\) 0 0
\(819\) 11.6304i 0.406397i
\(820\) 0 0
\(821\) 1.73200i 0.0604474i 0.999543 + 0.0302237i \(0.00962196\pi\)
−0.999543 + 0.0302237i \(0.990378\pi\)
\(822\) 0 0
\(823\) −5.48153 + 5.48153i −0.191074 + 0.191074i −0.796160 0.605086i \(-0.793139\pi\)
0.605086 + 0.796160i \(0.293139\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −11.7909 + 11.7909i −0.410011 + 0.410011i −0.881742 0.471731i \(-0.843629\pi\)
0.471731 + 0.881742i \(0.343629\pi\)
\(828\) 0 0
\(829\) 12.4323i 0.431792i −0.976416 0.215896i \(-0.930733\pi\)
0.976416 0.215896i \(-0.0692673\pi\)
\(830\) 0 0
\(831\) 10.8774i 0.377334i
\(832\) 0 0
\(833\) 9.17109 + 9.17109i 0.317759 + 0.317759i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −4.36020 4.36020i −0.150710 0.150710i
\(838\) 0 0
\(839\) 51.0135i 1.76118i 0.473876 + 0.880591i \(0.342854\pi\)
−0.473876 + 0.880591i \(0.657146\pi\)
\(840\) 0 0
\(841\) −28.4736 −0.981848
\(842\) 0 0
\(843\) −10.7250 10.7250i −0.369390 0.369390i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −20.7233 + 48.2590i −0.712060 + 1.65820i
\(848\) 0 0
\(849\) −7.52767 −0.258349
\(850\) 0 0
\(851\) 7.15161 0.245154
\(852\) 0 0
\(853\) −5.71242 5.71242i −0.195590 0.195590i 0.602517 0.798106i \(-0.294165\pi\)
−0.798106 + 0.602517i \(0.794165\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −0.401296 + 0.401296i −0.0137080 + 0.0137080i −0.713928 0.700220i \(-0.753085\pi\)
0.700220 + 0.713928i \(0.253085\pi\)
\(858\) 0 0
\(859\) 0.216664i 0.00739247i 0.999993 + 0.00369623i \(0.00117655\pi\)
−0.999993 + 0.00369623i \(0.998823\pi\)
\(860\) 0 0
\(861\) −42.9410 −1.46342
\(862\) 0 0
\(863\) −6.01688 + 6.01688i −0.204817 + 0.204817i −0.802060 0.597243i \(-0.796263\pi\)
0.597243 + 0.802060i \(0.296263\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 11.5441 + 11.5441i 0.392059 + 0.392059i
\(868\) 0 0
\(869\) −26.0644 + 5.00989i −0.884175 + 0.169949i
\(870\) 0 0
\(871\) 5.71888i 0.193777i
\(872\) 0 0
\(873\) −1.29533 + 1.29533i −0.0438401 + 0.0438401i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 29.5816 29.5816i 0.998898 0.998898i −0.00110139 0.999999i \(-0.500351\pi\)
0.999999 + 0.00110139i \(0.000350584\pi\)
\(878\) 0 0
\(879\) 6.80047 0.229374
\(880\) 0 0
\(881\) 24.9063 0.839115 0.419558 0.907729i \(-0.362185\pi\)
0.419558 + 0.907729i \(0.362185\pi\)
\(882\) 0 0
\(883\) 14.6232 14.6232i 0.492108 0.492108i −0.416862 0.908970i \(-0.636870\pi\)
0.908970 + 0.416862i \(0.136870\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 36.4810 36.4810i 1.22491 1.22491i 0.259047 0.965865i \(-0.416592\pi\)
0.965865 0.259047i \(-0.0834083\pi\)
\(888\) 0 0
\(889\) 83.2238i 2.79124i
\(890\) 0 0
\(891\) 3.25700 0.626035i 0.109114 0.0209730i
\(892\) 0 0
\(893\) −37.2408 37.2408i −1.24622 1.24622i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −8.89853 + 8.89853i −0.297113 + 0.297113i
\(898\) 0 0
\(899\) −4.47380 −0.149210
\(900\) 0 0
\(901\) 0.862032i 0.0287184i
\(902\) 0 0
\(903\) 4.47306 4.47306i 0.148854 0.148854i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 33.0998 + 33.0998i 1.09906 + 1.09906i 0.994521 + 0.104539i \(0.0333367\pi\)
0.104539 + 0.994521i \(0.466663\pi\)
\(908\) 0 0
\(909\) −14.0065 −0.464567
\(910\) 0 0
\(911\) −37.0971 −1.22908 −0.614541 0.788885i \(-0.710659\pi\)
−0.614541 + 0.788885i \(0.710659\pi\)
\(912\) 0 0
\(913\) −34.5534 23.4118i −1.14355 0.774816i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 30.2774 + 30.2774i 0.999849 + 0.999849i
\(918\) 0 0
\(919\) −32.9167 −1.08582 −0.542911 0.839790i \(-0.682678\pi\)
−0.542911 + 0.839790i \(0.682678\pi\)
\(920\) 0 0
\(921\) 11.2141i 0.369518i
\(922\) 0 0
\(923\) −8.35104 8.35104i −0.274878 0.274878i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −1.03528 1.03528i −0.0340029 0.0340029i
\(928\) 0 0
\(929\) 19.8943i 0.652711i −0.945247 0.326356i \(-0.894179\pi\)
0.945247 0.326356i \(-0.105821\pi\)
\(930\) 0 0
\(931\) 71.2272i 2.33438i
\(932\) 0 0
\(933\) 1.72257 1.72257i 0.0563944 0.0563944i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 29.9868 29.9868i 0.979627 0.979627i −0.0201696 0.999797i \(-0.506421\pi\)
0.999797 + 0.0201696i \(0.00642062\pi\)
\(938\) 0 0
\(939\) 31.8612i 1.03975i
\(940\) 0 0
\(941\) 39.6233i 1.29168i 0.763471 + 0.645842i \(0.223493\pi\)
−0.763471 + 0.645842i \(0.776507\pi\)
\(942\) 0 0
\(943\) 32.8547 + 32.8547i 1.06990 + 1.06990i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −12.8680 12.8680i −0.418152 0.418152i 0.466414 0.884566i \(-0.345546\pi\)
−0.884566 + 0.466414i \(0.845546\pi\)
\(948\) 0 0
\(949\) 29.3605i 0.953083i
\(950\) 0 0
\(951\) 18.5140 0.600358
\(952\) 0 0
\(953\) 25.7516 + 25.7516i 0.834175 + 0.834175i 0.988085 0.153910i \(-0.0491866\pi\)
−0.153910 + 0.988085i \(0.549187\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.34976 1.99211i 0.0436315 0.0643956i
\(958\) 0 0
\(959\) 85.8379 2.77185
\(960\) 0 0
\(961\) 7.02266 0.226537
\(962\) 0 0
\(963\) 4.43322 + 4.43322i 0.142859 + 0.142859i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 10.3322 10.3322i 0.332262 0.332262i −0.521183 0.853445i \(-0.674509\pi\)
0.853445 + 0.521183i \(0.174509\pi\)
\(968\) 0 0
\(969\) 3.70215i 0.118930i
\(970\) 0 0
\(971\) 36.9482 1.18572 0.592862 0.805304i \(-0.297998\pi\)
0.592862 + 0.805304i \(0.297998\pi\)
\(972\) 0 0
\(973\) −32.2393 + 32.2393i −1.03354 + 1.03354i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 22.5851 + 22.5851i 0.722562 + 0.722562i 0.969126 0.246564i \(-0.0793016\pi\)
−0.246564 + 0.969126i \(0.579302\pi\)
\(978\) 0 0
\(979\) 7.97988 + 41.5161i 0.255038 + 1.32686i
\(980\) 0 0
\(981\) 8.89982i 0.284149i
\(982\) 0 0
\(983\) −19.0373 + 19.0373i −0.607196 + 0.607196i −0.942212 0.335016i \(-0.891258\pi\)
0.335016 + 0.942212i \(0.391258\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 39.4342 39.4342i 1.25520 1.25520i
\(988\) 0 0
\(989\) −6.84480 −0.217652
\(990\) 0 0
\(991\) 25.8791 0.822076 0.411038 0.911618i \(-0.365166\pi\)
0.411038 + 0.911618i \(0.365166\pi\)
\(992\) 0 0
\(993\) 23.8669 23.8669i 0.757392 0.757392i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 33.6498 33.6498i 1.06570 1.06570i 0.0680146 0.997684i \(-0.478334\pi\)
0.997684 0.0680146i \(-0.0216664\pi\)
\(998\) 0 0
\(999\) 1.38429i 0.0437971i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3300.2.x.d.1957.13 yes 32
5.2 odd 4 inner 3300.2.x.d.1693.1 32
5.3 odd 4 inner 3300.2.x.d.1693.14 yes 32
5.4 even 2 inner 3300.2.x.d.1957.2 yes 32
11.10 odd 2 inner 3300.2.x.d.1957.14 yes 32
55.32 even 4 inner 3300.2.x.d.1693.2 yes 32
55.43 even 4 inner 3300.2.x.d.1693.13 yes 32
55.54 odd 2 inner 3300.2.x.d.1957.1 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3300.2.x.d.1693.1 32 5.2 odd 4 inner
3300.2.x.d.1693.2 yes 32 55.32 even 4 inner
3300.2.x.d.1693.13 yes 32 55.43 even 4 inner
3300.2.x.d.1693.14 yes 32 5.3 odd 4 inner
3300.2.x.d.1957.1 yes 32 55.54 odd 2 inner
3300.2.x.d.1957.2 yes 32 5.4 even 2 inner
3300.2.x.d.1957.13 yes 32 1.1 even 1 trivial
3300.2.x.d.1957.14 yes 32 11.10 odd 2 inner