| L(s) = 1 | + (0.707 − 0.707i)3-s + (3.37 − 3.37i)7-s − 1.00i·9-s + (−3.25 − 0.626i)11-s + (1.72 + 1.72i)13-s + (0.580 − 0.580i)17-s − 4.50·19-s − 4.77i·21-s + (3.65 − 3.65i)23-s + (−0.707 − 0.707i)27-s + 0.725·29-s + 6.16·31-s + (−2.74 + 1.86i)33-s + (0.978 + 0.978i)37-s + 2.43·39-s + ⋯ |
| L(s) = 1 | + (0.408 − 0.408i)3-s + (1.27 − 1.27i)7-s − 0.333i·9-s + (−0.982 − 0.188i)11-s + (0.477 + 0.477i)13-s + (0.140 − 0.140i)17-s − 1.03·19-s − 1.04i·21-s + (0.761 − 0.761i)23-s + (−0.136 − 0.136i)27-s + 0.134·29-s + 1.10·31-s + (−0.477 + 0.323i)33-s + (0.160 + 0.160i)37-s + 0.390·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.315 + 0.948i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.315 + 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.190533538\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.190533538\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (3.25 + 0.626i)T \) |
| good | 7 | \( 1 + (-3.37 + 3.37i)T - 7iT^{2} \) |
| 13 | \( 1 + (-1.72 - 1.72i)T + 13iT^{2} \) |
| 17 | \( 1 + (-0.580 + 0.580i)T - 17iT^{2} \) |
| 19 | \( 1 + 4.50T + 19T^{2} \) |
| 23 | \( 1 + (-3.65 + 3.65i)T - 23iT^{2} \) |
| 29 | \( 1 - 0.725T + 29T^{2} \) |
| 31 | \( 1 - 6.16T + 31T^{2} \) |
| 37 | \( 1 + (-0.978 - 0.978i)T + 37iT^{2} \) |
| 41 | \( 1 + 8.99iT - 41T^{2} \) |
| 43 | \( 1 + (-0.936 - 0.936i)T + 43iT^{2} \) |
| 47 | \( 1 + (8.25 + 8.25i)T + 47iT^{2} \) |
| 53 | \( 1 + (0.742 - 0.742i)T - 53iT^{2} \) |
| 59 | \( 1 + 9.89iT - 59T^{2} \) |
| 61 | \( 1 - 14.4iT - 61T^{2} \) |
| 67 | \( 1 + (1.66 + 1.66i)T + 67iT^{2} \) |
| 71 | \( 1 - 4.84T + 71T^{2} \) |
| 73 | \( 1 + (-8.52 - 8.52i)T + 73iT^{2} \) |
| 79 | \( 1 + 8.00T + 79T^{2} \) |
| 83 | \( 1 + (8.89 + 8.89i)T + 83iT^{2} \) |
| 89 | \( 1 + 12.7iT - 89T^{2} \) |
| 97 | \( 1 + (1.29 + 1.29i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.408521314860562640939528049053, −7.71271589688001183891059668479, −7.05617837437956464457091578626, −6.36332919427928653619910768683, −5.19359742118743753661592406015, −4.52184620363733712789410538760, −3.77343779301106092944732902822, −2.62331259348746764099643842825, −1.68266045584175801443959965857, −0.63218683115640202015513868136,
1.46775741956784080573290421953, 2.45514355700487180551069693202, 3.11470350224142173604964896121, 4.41664866120266358864814483536, 5.00537463837637992227574622514, 5.65731873820794547841572358757, 6.50693865964880509958726317613, 7.87346162278694477954416105762, 8.049524200648732542638603563975, 8.732853035704359779454095428119