L(s) = 1 | + (−0.707 − 0.707i)3-s + (−0.414 − 0.414i)7-s + 1.00i·9-s + (−3.18 − 0.941i)11-s + (3.69 − 3.69i)13-s + (0.270 + 0.270i)17-s + 7.48·19-s + 0.586i·21-s + (1.83 + 1.83i)23-s + (0.707 − 0.707i)27-s − 5.90·29-s − 1.59·31-s + (1.58 + 2.91i)33-s + (6.85 − 6.85i)37-s − 5.21·39-s + ⋯ |
L(s) = 1 | + (−0.408 − 0.408i)3-s + (−0.156 − 0.156i)7-s + 0.333i·9-s + (−0.958 − 0.283i)11-s + (1.02 − 1.02i)13-s + (0.0657 + 0.0657i)17-s + 1.71·19-s + 0.127i·21-s + (0.382 + 0.382i)23-s + (0.136 − 0.136i)27-s − 1.09·29-s − 0.286·31-s + (0.275 + 0.507i)33-s + (1.12 − 1.12i)37-s − 0.835·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.155 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.155 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.311023703\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.311023703\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (3.18 + 0.941i)T \) |
good | 7 | \( 1 + (0.414 + 0.414i)T + 7iT^{2} \) |
| 13 | \( 1 + (-3.69 + 3.69i)T - 13iT^{2} \) |
| 17 | \( 1 + (-0.270 - 0.270i)T + 17iT^{2} \) |
| 19 | \( 1 - 7.48T + 19T^{2} \) |
| 23 | \( 1 + (-1.83 - 1.83i)T + 23iT^{2} \) |
| 29 | \( 1 + 5.90T + 29T^{2} \) |
| 31 | \( 1 + 1.59T + 31T^{2} \) |
| 37 | \( 1 + (-6.85 + 6.85i)T - 37iT^{2} \) |
| 41 | \( 1 - 9.62iT - 41T^{2} \) |
| 43 | \( 1 + (8.26 - 8.26i)T - 43iT^{2} \) |
| 47 | \( 1 + (-2.66 + 2.66i)T - 47iT^{2} \) |
| 53 | \( 1 + (-5.53 - 5.53i)T + 53iT^{2} \) |
| 59 | \( 1 + 1.32iT - 59T^{2} \) |
| 61 | \( 1 + 4.30iT - 61T^{2} \) |
| 67 | \( 1 + (-7.04 + 7.04i)T - 67iT^{2} \) |
| 71 | \( 1 + 13.1T + 71T^{2} \) |
| 73 | \( 1 + (-1.83 + 1.83i)T - 73iT^{2} \) |
| 79 | \( 1 + 7.46T + 79T^{2} \) |
| 83 | \( 1 + (-9.58 + 9.58i)T - 83iT^{2} \) |
| 89 | \( 1 + 16.4iT - 89T^{2} \) |
| 97 | \( 1 + (-8.42 + 8.42i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.177996395105467004020034890967, −7.71786388316088886269813821250, −7.06041001724323644266640384747, −5.91261573790515539096280316419, −5.63289449117300952527786667120, −4.76178758613370115851500856541, −3.48349505271097835489640775653, −2.93279925147679233208567061875, −1.53786441695754269304344250153, −0.49650448539230289547493487174,
1.09610186382678043017118425504, 2.36945151633437943877130034110, 3.42450813028045203126274679563, 4.16575179868679175448907150744, 5.21161841029814296141321289306, 5.60693262387483956477934304960, 6.61722166788715237314027283216, 7.27536137937722865401103369441, 8.104952424956833388086960301850, 9.018491914563853120596847024232