L(s) = 1 | + (0.707 − 0.707i)3-s + (0.256 − 0.256i)7-s − 1.00i·9-s + (0.890 + 3.19i)11-s + (0.580 + 0.580i)13-s + (1.72 − 1.72i)17-s + 3.13·19-s − 0.362i·21-s + (−4.36 + 4.36i)23-s + (−0.707 − 0.707i)27-s + 9.54·29-s − 5.16·31-s + (2.88 + 1.62i)33-s + (−1.16 − 1.16i)37-s + 0.821·39-s + ⋯ |
L(s) = 1 | + (0.408 − 0.408i)3-s + (0.0969 − 0.0969i)7-s − 0.333i·9-s + (0.268 + 0.963i)11-s + (0.161 + 0.161i)13-s + (0.417 − 0.417i)17-s + 0.718·19-s − 0.0791i·21-s + (−0.909 + 0.909i)23-s + (−0.136 − 0.136i)27-s + 1.77·29-s − 0.927·31-s + (0.502 + 0.283i)33-s + (−0.192 − 0.192i)37-s + 0.131·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 - 0.140i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.990 - 0.140i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.275331329\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.275331329\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (-0.890 - 3.19i)T \) |
good | 7 | \( 1 + (-0.256 + 0.256i)T - 7iT^{2} \) |
| 13 | \( 1 + (-0.580 - 0.580i)T + 13iT^{2} \) |
| 17 | \( 1 + (-1.72 + 1.72i)T - 17iT^{2} \) |
| 19 | \( 1 - 3.13T + 19T^{2} \) |
| 23 | \( 1 + (4.36 - 4.36i)T - 23iT^{2} \) |
| 29 | \( 1 - 9.54T + 29T^{2} \) |
| 31 | \( 1 + 5.16T + 31T^{2} \) |
| 37 | \( 1 + (1.16 + 1.16i)T + 37iT^{2} \) |
| 41 | \( 1 + 1.78iT - 41T^{2} \) |
| 43 | \( 1 + (-2.07 - 2.07i)T + 43iT^{2} \) |
| 47 | \( 1 + (-5.62 - 5.62i)T + 47iT^{2} \) |
| 53 | \( 1 + (-5.12 + 5.12i)T - 53iT^{2} \) |
| 59 | \( 1 - 1.43iT - 59T^{2} \) |
| 61 | \( 1 - 11.6iT - 61T^{2} \) |
| 67 | \( 1 + (3.80 + 3.80i)T + 67iT^{2} \) |
| 71 | \( 1 - 1.81T + 71T^{2} \) |
| 73 | \( 1 + (8.52 + 8.52i)T + 73iT^{2} \) |
| 79 | \( 1 - 11.2T + 79T^{2} \) |
| 83 | \( 1 + (-3.57 - 3.57i)T + 83iT^{2} \) |
| 89 | \( 1 - 1.62iT - 89T^{2} \) |
| 97 | \( 1 + (-10.4 - 10.4i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.696438630290792658273094371085, −7.61243281584488710681293814545, −7.45744568277807067252451878095, −6.49345123189531109755788015787, −5.69294581902318273652763858234, −4.75425880025047239123705393708, −3.93141649195529933797294000736, −3.00814362553216410740403727442, −2.02090774039371666811069807018, −1.05474881078796556443174449580,
0.797921497151537257962277502158, 2.12932244976692532769701519833, 3.15928840692937987112919354096, 3.79882659162706177564468538303, 4.73181562811205263876441648826, 5.61291358002711057973814633119, 6.26765155861481543854748648045, 7.19981909081065170826496846846, 8.126040181782419845073068109397, 8.556574921799537123559772183853