Properties

Label 325.3.w.e.249.10
Level $325$
Weight $3$
Character 325.249
Analytic conductor $8.856$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,3,Mod(24,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 325.w (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.85560859171\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 249.10
Character \(\chi\) \(=\) 325.249
Dual form 325.3.w.e.124.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.01171 - 3.77575i) q^{2} +(-0.585883 + 0.338260i) q^{3} +(-9.76865 - 5.63993i) q^{4} +(0.684442 + 2.55437i) q^{6} +(1.21531 + 4.53560i) q^{7} +(-20.1218 + 20.1218i) q^{8} +(-4.27116 + 7.39787i) q^{9} +(1.84474 - 6.88467i) q^{11} +7.63105 q^{12} +(-12.9877 + 0.564752i) q^{13} +18.3548 q^{14} +(33.0579 + 57.2580i) q^{16} +(-9.76038 + 16.9055i) q^{17} +(23.6113 + 23.6113i) q^{18} +(2.43845 + 9.10040i) q^{19} +(-2.24624 - 2.24624i) q^{21} +(-24.1285 - 13.9306i) q^{22} +(-12.1731 - 21.0844i) q^{23} +(4.98264 - 18.5955i) q^{24} +(-11.0074 + 49.6098i) q^{26} -11.8677i q^{27} +(13.7085 - 51.1609i) q^{28} +(0.898827 + 1.55681i) q^{29} +(14.7383 - 14.7383i) q^{31} +(139.689 - 37.4296i) q^{32} +(1.24800 + 4.65762i) q^{33} +(53.9562 + 53.9562i) q^{34} +(83.4469 - 48.1781i) q^{36} +(-57.0299 - 15.2811i) q^{37} +36.8279 q^{38} +(7.41826 - 4.72411i) q^{39} +(-31.5224 - 8.44640i) q^{41} +(-10.7538 + 6.20870i) q^{42} +(-1.78308 + 3.08838i) q^{43} +(-56.8497 + 56.8497i) q^{44} +(-91.9252 + 24.6313i) q^{46} +(-41.9403 + 41.9403i) q^{47} +(-38.7362 - 22.3643i) q^{48} +(23.3406 - 13.4757i) q^{49} -13.2062i q^{51} +(130.058 + 67.7330i) q^{52} +79.2957i q^{53} +(-44.8096 - 12.0067i) q^{54} +(-115.719 - 66.8103i) q^{56} +(-4.50695 - 4.50695i) q^{57} +(6.78750 - 1.81870i) q^{58} +(-42.0377 + 11.2640i) q^{59} +(14.4213 - 24.9784i) q^{61} +(-40.7372 - 70.5588i) q^{62} +(-38.7445 - 10.3816i) q^{63} -300.836i q^{64} +18.8486 q^{66} +(1.43922 - 5.37123i) q^{67} +(190.691 - 110.096i) q^{68} +(14.2640 + 8.23535i) q^{69} +(31.4917 + 117.529i) q^{71} +(-62.9151 - 234.802i) q^{72} +(-22.0244 + 22.0244i) q^{73} +(-115.395 + 199.871i) q^{74} +(27.5053 - 102.651i) q^{76} +33.4680 q^{77} +(-10.3319 - 32.7889i) q^{78} +40.0190 q^{79} +(-34.4261 - 59.6277i) q^{81} +(-63.7830 + 110.475i) q^{82} +(-102.799 - 102.799i) q^{83} +(9.27409 + 34.6114i) q^{84} +(9.85701 + 9.85701i) q^{86} +(-1.05322 - 0.608075i) q^{87} +(101.413 + 175.652i) q^{88} +(16.6664 - 62.1998i) q^{89} +(-18.3456 - 58.2207i) q^{91} +274.622i q^{92} +(-3.64954 + 13.6203i) q^{93} +(115.925 + 200.788i) q^{94} +(-69.1807 + 69.1807i) q^{96} +(-33.3045 + 8.92391i) q^{97} +(-27.2670 - 101.762i) q^{98} +(43.0527 + 43.0527i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 12 q^{3} - 12 q^{6} - 44 q^{7} + 36 q^{8} + 72 q^{9} - 12 q^{11} + 120 q^{12} - 36 q^{13} - 48 q^{14} + 128 q^{16} - 32 q^{17} + 136 q^{18} - 68 q^{19} - 48 q^{21} - 72 q^{22} - 28 q^{23} + 56 q^{24}+ \cdots + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.01171 3.77575i 0.505855 1.88788i 0.0480040 0.998847i \(-0.484714\pi\)
0.457851 0.889029i \(-0.348619\pi\)
\(3\) −0.585883 + 0.338260i −0.195294 + 0.112753i −0.594459 0.804126i \(-0.702634\pi\)
0.399164 + 0.916879i \(0.369300\pi\)
\(4\) −9.76865 5.63993i −2.44216 1.40998i
\(5\) 0 0
\(6\) 0.684442 + 2.55437i 0.114074 + 0.425729i
\(7\) 1.21531 + 4.53560i 0.173616 + 0.647942i 0.996783 + 0.0801440i \(0.0255380\pi\)
−0.823168 + 0.567798i \(0.807795\pi\)
\(8\) −20.1218 + 20.1218i −2.51523 + 2.51523i
\(9\) −4.27116 + 7.39787i −0.474573 + 0.821985i
\(10\) 0 0
\(11\) 1.84474 6.88467i 0.167704 0.625879i −0.829976 0.557799i \(-0.811646\pi\)
0.997680 0.0680801i \(-0.0216873\pi\)
\(12\) 7.63105 0.635921
\(13\) −12.9877 + 0.564752i −0.999056 + 0.0434425i
\(14\) 18.3548 1.31106
\(15\) 0 0
\(16\) 33.0579 + 57.2580i 2.06612 + 3.57862i
\(17\) −9.76038 + 16.9055i −0.574140 + 0.994440i 0.421994 + 0.906598i \(0.361330\pi\)
−0.996134 + 0.0878414i \(0.972003\pi\)
\(18\) 23.6113 + 23.6113i 1.31174 + 1.31174i
\(19\) 2.43845 + 9.10040i 0.128339 + 0.478969i 0.999937 0.0112537i \(-0.00358225\pi\)
−0.871597 + 0.490222i \(0.836916\pi\)
\(20\) 0 0
\(21\) −2.24624 2.24624i −0.106964 0.106964i
\(22\) −24.1285 13.9306i −1.09675 0.633208i
\(23\) −12.1731 21.0844i −0.529265 0.916714i −0.999417 0.0341290i \(-0.989134\pi\)
0.470152 0.882585i \(-0.344199\pi\)
\(24\) 4.98264 18.5955i 0.207610 0.774811i
\(25\) 0 0
\(26\) −11.0074 + 49.6098i −0.423363 + 1.90807i
\(27\) 11.8677i 0.439546i
\(28\) 13.7085 51.1609i 0.489590 1.82718i
\(29\) 0.898827 + 1.55681i 0.0309940 + 0.0536833i 0.881106 0.472918i \(-0.156799\pi\)
−0.850112 + 0.526601i \(0.823466\pi\)
\(30\) 0 0
\(31\) 14.7383 14.7383i 0.475428 0.475428i −0.428238 0.903666i \(-0.640866\pi\)
0.903666 + 0.428238i \(0.140866\pi\)
\(32\) 139.689 37.4296i 4.36529 1.16968i
\(33\) 1.24800 + 4.65762i 0.0378183 + 0.141140i
\(34\) 53.9562 + 53.9562i 1.58695 + 1.58695i
\(35\) 0 0
\(36\) 83.4469 48.1781i 2.31797 1.33828i
\(37\) −57.0299 15.2811i −1.54135 0.413003i −0.614647 0.788802i \(-0.710702\pi\)
−0.926701 + 0.375799i \(0.877368\pi\)
\(38\) 36.8279 0.969154
\(39\) 7.41826 4.72411i 0.190212 0.121131i
\(40\) 0 0
\(41\) −31.5224 8.44640i −0.768839 0.206010i −0.146981 0.989139i \(-0.546955\pi\)
−0.621859 + 0.783130i \(0.713622\pi\)
\(42\) −10.7538 + 6.20870i −0.256043 + 0.147826i
\(43\) −1.78308 + 3.08838i −0.0414669 + 0.0718228i −0.886014 0.463659i \(-0.846536\pi\)
0.844547 + 0.535481i \(0.179870\pi\)
\(44\) −56.8497 + 56.8497i −1.29204 + 1.29204i
\(45\) 0 0
\(46\) −91.9252 + 24.6313i −1.99837 + 0.535463i
\(47\) −41.9403 + 41.9403i −0.892348 + 0.892348i −0.994744 0.102396i \(-0.967349\pi\)
0.102396 + 0.994744i \(0.467349\pi\)
\(48\) −38.7362 22.3643i −0.807004 0.465924i
\(49\) 23.3406 13.4757i 0.476338 0.275014i
\(50\) 0 0
\(51\) 13.2062i 0.258945i
\(52\) 130.058 + 67.7330i 2.50111 + 1.30256i
\(53\) 79.2957i 1.49615i 0.663617 + 0.748073i \(0.269021\pi\)
−0.663617 + 0.748073i \(0.730979\pi\)
\(54\) −44.8096 12.0067i −0.829808 0.222346i
\(55\) 0 0
\(56\) −115.719 66.8103i −2.06641 1.19304i
\(57\) −4.50695 4.50695i −0.0790693 0.0790693i
\(58\) 6.78750 1.81870i 0.117026 0.0313570i
\(59\) −42.0377 + 11.2640i −0.712504 + 0.190915i −0.596825 0.802372i \(-0.703571\pi\)
−0.115680 + 0.993287i \(0.536905\pi\)
\(60\) 0 0
\(61\) 14.4213 24.9784i 0.236414 0.409481i −0.723269 0.690567i \(-0.757361\pi\)
0.959683 + 0.281085i \(0.0906944\pi\)
\(62\) −40.7372 70.5588i −0.657051 1.13805i
\(63\) −38.7445 10.3816i −0.614992 0.164787i
\(64\) 300.836i 4.70057i
\(65\) 0 0
\(66\) 18.8486 0.285585
\(67\) 1.43922 5.37123i 0.0214809 0.0801676i −0.954353 0.298680i \(-0.903454\pi\)
0.975834 + 0.218512i \(0.0701204\pi\)
\(68\) 190.691 110.096i 2.80429 1.61906i
\(69\) 14.2640 + 8.23535i 0.206725 + 0.119353i
\(70\) 0 0
\(71\) 31.4917 + 117.529i 0.443545 + 1.65533i 0.719750 + 0.694234i \(0.244257\pi\)
−0.276205 + 0.961099i \(0.589077\pi\)
\(72\) −62.9151 234.802i −0.873821 3.26114i
\(73\) −22.0244 + 22.0244i −0.301704 + 0.301704i −0.841680 0.539976i \(-0.818433\pi\)
0.539976 + 0.841680i \(0.318433\pi\)
\(74\) −115.395 + 199.871i −1.55940 + 2.70095i
\(75\) 0 0
\(76\) 27.5053 102.651i 0.361912 1.35067i
\(77\) 33.4680 0.434650
\(78\) −10.3319 32.7889i −0.132461 0.420371i
\(79\) 40.0190 0.506569 0.253285 0.967392i \(-0.418489\pi\)
0.253285 + 0.967392i \(0.418489\pi\)
\(80\) 0 0
\(81\) −34.4261 59.6277i −0.425013 0.736144i
\(82\) −63.7830 + 110.475i −0.777842 + 1.34726i
\(83\) −102.799 102.799i −1.23855 1.23855i −0.960595 0.277952i \(-0.910344\pi\)
−0.277952 0.960595i \(-0.589656\pi\)
\(84\) 9.27409 + 34.6114i 0.110406 + 0.412040i
\(85\) 0 0
\(86\) 9.85701 + 9.85701i 0.114616 + 0.114616i
\(87\) −1.05322 0.608075i −0.0121059 0.00698936i
\(88\) 101.413 + 175.652i 1.15242 + 1.99604i
\(89\) 16.6664 62.1998i 0.187263 0.698874i −0.806872 0.590726i \(-0.798841\pi\)
0.994135 0.108148i \(-0.0344919\pi\)
\(90\) 0 0
\(91\) −18.3456 58.2207i −0.201600 0.639788i
\(92\) 274.622i 2.98502i
\(93\) −3.64954 + 13.6203i −0.0392423 + 0.146454i
\(94\) 115.925 + 200.788i 1.23324 + 2.13604i
\(95\) 0 0
\(96\) −69.1807 + 69.1807i −0.720632 + 0.720632i
\(97\) −33.3045 + 8.92391i −0.343345 + 0.0919990i −0.426371 0.904548i \(-0.640208\pi\)
0.0830260 + 0.996547i \(0.473542\pi\)
\(98\) −27.2670 101.762i −0.278234 1.03839i
\(99\) 43.0527 + 43.0527i 0.434876 + 0.434876i
\(100\) 0 0
\(101\) −11.5913 + 6.69225i −0.114766 + 0.0662599i −0.556284 0.830992i \(-0.687773\pi\)
0.441518 + 0.897252i \(0.354440\pi\)
\(102\) −49.8633 13.3608i −0.488856 0.130989i
\(103\) −28.4963 −0.276663 −0.138332 0.990386i \(-0.544174\pi\)
−0.138332 + 0.990386i \(0.544174\pi\)
\(104\) 249.973 272.701i 2.40359 2.62212i
\(105\) 0 0
\(106\) 299.401 + 80.2242i 2.82454 + 0.756832i
\(107\) −60.5676 + 34.9687i −0.566052 + 0.326811i −0.755571 0.655067i \(-0.772641\pi\)
0.189519 + 0.981877i \(0.439307\pi\)
\(108\) −66.9332 + 115.932i −0.619752 + 1.07344i
\(109\) −8.24515 + 8.24515i −0.0756436 + 0.0756436i −0.743916 0.668273i \(-0.767034\pi\)
0.668273 + 0.743916i \(0.267034\pi\)
\(110\) 0 0
\(111\) 38.5819 10.3380i 0.347584 0.0931349i
\(112\) −219.524 + 219.524i −1.96003 + 1.96003i
\(113\) 48.8736 + 28.2172i 0.432510 + 0.249710i 0.700415 0.713736i \(-0.252998\pi\)
−0.267906 + 0.963445i \(0.586332\pi\)
\(114\) −21.5768 + 12.4574i −0.189271 + 0.109275i
\(115\) 0 0
\(116\) 20.2773i 0.174804i
\(117\) 51.2947 98.4936i 0.438416 0.841826i
\(118\) 170.120i 1.44169i
\(119\) −88.5383 23.7238i −0.744019 0.199359i
\(120\) 0 0
\(121\) 60.7935 + 35.0991i 0.502425 + 0.290075i
\(122\) −79.7220 79.7220i −0.653459 0.653459i
\(123\) 21.3255 5.71416i 0.173378 0.0464566i
\(124\) −227.096 + 60.8501i −1.83142 + 0.490726i
\(125\) 0 0
\(126\) −78.3964 + 135.787i −0.622194 + 1.07767i
\(127\) 52.1117 + 90.2601i 0.410328 + 0.710709i 0.994926 0.100614i \(-0.0320808\pi\)
−0.584597 + 0.811324i \(0.698747\pi\)
\(128\) −577.127 154.641i −4.50880 1.20813i
\(129\) 2.41258i 0.0187021i
\(130\) 0 0
\(131\) −171.159 −1.30656 −0.653278 0.757118i \(-0.726607\pi\)
−0.653278 + 0.757118i \(0.726607\pi\)
\(132\) 14.0773 52.5373i 0.106646 0.398010i
\(133\) −38.3123 + 22.1196i −0.288062 + 0.166313i
\(134\) −18.8244 10.8683i −0.140480 0.0811064i
\(135\) 0 0
\(136\) −143.773 536.566i −1.05715 3.94534i
\(137\) −30.2634 112.945i −0.220901 0.824414i −0.984005 0.178139i \(-0.942992\pi\)
0.763104 0.646275i \(-0.223674\pi\)
\(138\) 45.5257 45.5257i 0.329896 0.329896i
\(139\) 23.7650 41.1622i 0.170971 0.296131i −0.767788 0.640703i \(-0.778643\pi\)
0.938760 + 0.344573i \(0.111976\pi\)
\(140\) 0 0
\(141\) 10.3854 38.7589i 0.0736554 0.274886i
\(142\) 475.619 3.34943
\(143\) −20.0709 + 90.4580i −0.140356 + 0.632574i
\(144\) −564.783 −3.92210
\(145\) 0 0
\(146\) 60.8764 + 105.441i 0.416962 + 0.722199i
\(147\) −9.11657 + 15.7904i −0.0620175 + 0.107417i
\(148\) 470.920 + 470.920i 3.18189 + 3.18189i
\(149\) −66.2437 247.225i −0.444588 1.65923i −0.717021 0.697052i \(-0.754495\pi\)
0.272433 0.962175i \(-0.412172\pi\)
\(150\) 0 0
\(151\) 107.425 + 107.425i 0.711427 + 0.711427i 0.966834 0.255407i \(-0.0822094\pi\)
−0.255407 + 0.966834i \(0.582209\pi\)
\(152\) −232.183 134.051i −1.52752 0.881914i
\(153\) −83.3763 144.412i −0.544943 0.943869i
\(154\) 33.8599 126.367i 0.219870 0.820565i
\(155\) 0 0
\(156\) −99.1100 + 4.30965i −0.635321 + 0.0276260i
\(157\) 59.4781i 0.378841i −0.981896 0.189421i \(-0.939339\pi\)
0.981896 0.189421i \(-0.0606610\pi\)
\(158\) 40.4876 151.102i 0.256250 0.956340i
\(159\) −26.8226 46.4580i −0.168695 0.292189i
\(160\) 0 0
\(161\) 80.8364 80.8364i 0.502089 0.502089i
\(162\) −259.969 + 69.6584i −1.60474 + 0.429990i
\(163\) 17.4271 + 65.0388i 0.106915 + 0.399011i 0.998555 0.0537328i \(-0.0171119\pi\)
−0.891641 + 0.452744i \(0.850445\pi\)
\(164\) 260.294 + 260.294i 1.58716 + 1.58716i
\(165\) 0 0
\(166\) −492.148 + 284.142i −2.96475 + 1.71170i
\(167\) 193.429 + 51.8291i 1.15826 + 0.310354i 0.786270 0.617883i \(-0.212010\pi\)
0.371988 + 0.928238i \(0.378676\pi\)
\(168\) 90.3970 0.538078
\(169\) 168.362 14.6697i 0.996226 0.0868029i
\(170\) 0 0
\(171\) −77.7386 20.8300i −0.454611 0.121813i
\(172\) 34.8365 20.1129i 0.202538 0.116935i
\(173\) 79.4314 137.579i 0.459141 0.795256i −0.539775 0.841810i \(-0.681491\pi\)
0.998916 + 0.0465536i \(0.0148238\pi\)
\(174\) −3.36149 + 3.36149i −0.0193189 + 0.0193189i
\(175\) 0 0
\(176\) 455.186 121.967i 2.58628 0.692992i
\(177\) 20.8191 20.8191i 0.117622 0.117622i
\(178\) −217.989 125.856i −1.22466 0.707057i
\(179\) −6.29150 + 3.63240i −0.0351481 + 0.0202927i −0.517471 0.855701i \(-0.673126\pi\)
0.482323 + 0.875993i \(0.339793\pi\)
\(180\) 0 0
\(181\) 40.6680i 0.224685i 0.993670 + 0.112343i \(0.0358354\pi\)
−0.993670 + 0.112343i \(0.964165\pi\)
\(182\) −238.388 + 10.3659i −1.30982 + 0.0569557i
\(183\) 19.5126i 0.106626i
\(184\) 669.203 + 179.312i 3.63697 + 0.974524i
\(185\) 0 0
\(186\) 47.7345 + 27.5595i 0.256637 + 0.148169i
\(187\) 98.3833 + 98.3833i 0.526114 + 0.526114i
\(188\) 646.241 173.160i 3.43745 0.921063i
\(189\) 53.8272 14.4230i 0.284800 0.0763120i
\(190\) 0 0
\(191\) 50.3575 87.2217i 0.263652 0.456658i −0.703558 0.710638i \(-0.748406\pi\)
0.967210 + 0.253980i \(0.0817397\pi\)
\(192\) 101.761 + 176.255i 0.530005 + 0.917995i
\(193\) 48.2157 + 12.9194i 0.249822 + 0.0669396i 0.381557 0.924345i \(-0.375388\pi\)
−0.131735 + 0.991285i \(0.542055\pi\)
\(194\) 134.778i 0.694731i
\(195\) 0 0
\(196\) −304.008 −1.55106
\(197\) 31.6818 118.238i 0.160821 0.600194i −0.837715 0.546108i \(-0.816109\pi\)
0.998536 0.0540858i \(-0.0172244\pi\)
\(198\) 206.113 118.999i 1.04098 0.601007i
\(199\) −240.233 138.699i −1.20720 0.696979i −0.245056 0.969509i \(-0.578806\pi\)
−0.962147 + 0.272530i \(0.912140\pi\)
\(200\) 0 0
\(201\) 0.973659 + 3.63375i 0.00484408 + 0.0180783i
\(202\) 13.5412 + 50.5366i 0.0670358 + 0.250181i
\(203\) −5.96873 + 5.96873i −0.0294026 + 0.0294026i
\(204\) −74.4820 + 129.007i −0.365108 + 0.632385i
\(205\) 0 0
\(206\) −28.8300 + 107.595i −0.139951 + 0.522306i
\(207\) 207.973 1.00470
\(208\) −461.684 724.982i −2.21963 3.48549i
\(209\) 67.1516 0.321299
\(210\) 0 0
\(211\) 5.64470 + 9.77692i 0.0267522 + 0.0463361i 0.879092 0.476653i \(-0.158150\pi\)
−0.852339 + 0.522989i \(0.824817\pi\)
\(212\) 447.222 774.612i 2.10954 3.65383i
\(213\) −58.2057 58.2057i −0.273266 0.273266i
\(214\) 70.7564 + 264.067i 0.330637 + 1.23396i
\(215\) 0 0
\(216\) 238.801 + 238.801i 1.10556 + 1.10556i
\(217\) 84.7583 + 48.9352i 0.390591 + 0.225508i
\(218\) 22.7900 + 39.4734i 0.104541 + 0.181070i
\(219\) 5.45376 20.3537i 0.0249030 0.0929394i
\(220\) 0 0
\(221\) 117.218 225.076i 0.530397 1.01844i
\(222\) 156.135i 0.703309i
\(223\) 54.2514 202.469i 0.243280 0.907932i −0.730961 0.682420i \(-0.760928\pi\)
0.974240 0.225513i \(-0.0724057\pi\)
\(224\) 339.531 + 588.085i 1.51576 + 2.62538i
\(225\) 0 0
\(226\) 155.987 155.987i 0.690208 0.690208i
\(227\) 38.0720 10.2014i 0.167718 0.0449399i −0.173983 0.984749i \(-0.555664\pi\)
0.341701 + 0.939809i \(0.388997\pi\)
\(228\) 18.6079 + 69.4457i 0.0816136 + 0.304586i
\(229\) −198.602 198.602i −0.867260 0.867260i 0.124909 0.992168i \(-0.460136\pi\)
−0.992168 + 0.124909i \(0.960136\pi\)
\(230\) 0 0
\(231\) −19.6084 + 11.3209i −0.0848847 + 0.0490082i
\(232\) −49.4121 13.2399i −0.212983 0.0570686i
\(233\) 20.5995 0.0884099 0.0442049 0.999022i \(-0.485925\pi\)
0.0442049 + 0.999022i \(0.485925\pi\)
\(234\) −319.992 293.323i −1.36749 1.25352i
\(235\) 0 0
\(236\) 474.180 + 127.056i 2.00924 + 0.538374i
\(237\) −23.4464 + 13.5368i −0.0989302 + 0.0571174i
\(238\) −179.150 + 310.297i −0.752732 + 1.30377i
\(239\) −102.578 + 102.578i −0.429198 + 0.429198i −0.888355 0.459157i \(-0.848151\pi\)
0.459157 + 0.888355i \(0.348151\pi\)
\(240\) 0 0
\(241\) 21.0941 5.65216i 0.0875275 0.0234529i −0.214790 0.976660i \(-0.568907\pi\)
0.302317 + 0.953207i \(0.402240\pi\)
\(242\) 194.031 194.031i 0.801781 0.801781i
\(243\) 132.839 + 76.6947i 0.546663 + 0.315616i
\(244\) −281.753 + 162.670i −1.15472 + 0.666680i
\(245\) 0 0
\(246\) 86.3010i 0.350817i
\(247\) −36.8093 116.816i −0.149026 0.472941i
\(248\) 593.122i 2.39162i
\(249\) 95.0014 + 25.4556i 0.381532 + 0.102231i
\(250\) 0 0
\(251\) −317.484 183.299i −1.26488 0.730276i −0.290862 0.956765i \(-0.593942\pi\)
−0.974014 + 0.226489i \(0.927275\pi\)
\(252\) 319.930 + 319.930i 1.26956 + 1.26956i
\(253\) −167.616 + 44.9125i −0.662512 + 0.177520i
\(254\) 393.522 105.444i 1.54930 0.415133i
\(255\) 0 0
\(256\) −566.097 + 980.509i −2.21132 + 3.83011i
\(257\) 148.790 + 257.712i 0.578949 + 1.00277i 0.995600 + 0.0937031i \(0.0298705\pi\)
−0.416651 + 0.909067i \(0.636796\pi\)
\(258\) −9.10929 2.44083i −0.0353073 0.00946057i
\(259\) 277.236i 1.07041i
\(260\) 0 0
\(261\) −15.3561 −0.0588358
\(262\) −173.163 + 646.253i −0.660927 + 2.46661i
\(263\) 2.13671 1.23363i 0.00812437 0.00469061i −0.495932 0.868361i \(-0.665174\pi\)
0.504057 + 0.863671i \(0.331840\pi\)
\(264\) −118.832 68.6077i −0.450121 0.259878i
\(265\) 0 0
\(266\) 44.7573 + 167.036i 0.168260 + 0.627956i
\(267\) 11.2751 + 42.0794i 0.0422290 + 0.157601i
\(268\) −44.3526 + 44.3526i −0.165495 + 0.165495i
\(269\) −9.39160 + 16.2667i −0.0349130 + 0.0604711i −0.882954 0.469460i \(-0.844449\pi\)
0.848041 + 0.529931i \(0.177782\pi\)
\(270\) 0 0
\(271\) −81.2004 + 303.044i −0.299633 + 1.11824i 0.637835 + 0.770173i \(0.279830\pi\)
−0.937468 + 0.348071i \(0.886837\pi\)
\(272\) −1290.63 −4.74497
\(273\) 30.4421 + 27.9050i 0.111510 + 0.102216i
\(274\) −457.069 −1.66814
\(275\) 0 0
\(276\) −92.8936 160.896i −0.336571 0.582958i
\(277\) −145.427 + 251.886i −0.525006 + 0.909337i 0.474570 + 0.880218i \(0.342604\pi\)
−0.999576 + 0.0291194i \(0.990730\pi\)
\(278\) −131.375 131.375i −0.472572 0.472572i
\(279\) 46.0822 + 171.981i 0.165169 + 0.616420i
\(280\) 0 0
\(281\) 52.7748 + 52.7748i 0.187811 + 0.187811i 0.794749 0.606938i \(-0.207602\pi\)
−0.606938 + 0.794749i \(0.707602\pi\)
\(282\) −135.837 78.4255i −0.481691 0.278105i
\(283\) 175.204 + 303.462i 0.619095 + 1.07230i 0.989651 + 0.143494i \(0.0458339\pi\)
−0.370556 + 0.928810i \(0.620833\pi\)
\(284\) 355.222 1325.71i 1.25078 4.66798i
\(285\) 0 0
\(286\) 321.241 + 167.300i 1.12322 + 0.584965i
\(287\) 153.238i 0.533930i
\(288\) −319.736 + 1193.27i −1.11019 + 4.14330i
\(289\) −46.0301 79.7265i −0.159274 0.275870i
\(290\) 0 0
\(291\) 16.4939 16.4939i 0.0566802 0.0566802i
\(292\) 339.365 90.9326i 1.16221 0.311413i
\(293\) 32.6677 + 121.918i 0.111494 + 0.416101i 0.999001 0.0446937i \(-0.0142312\pi\)
−0.887507 + 0.460794i \(0.847565\pi\)
\(294\) 50.3972 + 50.3972i 0.171419 + 0.171419i
\(295\) 0 0
\(296\) 1455.03 840.062i 4.91564 2.83805i
\(297\) −81.7054 21.8929i −0.275102 0.0737135i
\(298\) −1000.48 −3.35731
\(299\) 170.008 + 266.964i 0.568590 + 0.892856i
\(300\) 0 0
\(301\) −16.1746 4.33398i −0.0537364 0.0143986i
\(302\) 514.295 296.929i 1.70296 0.983207i
\(303\) 4.52744 7.84176i 0.0149421 0.0258804i
\(304\) −440.461 + 440.461i −1.44888 + 1.44888i
\(305\) 0 0
\(306\) −629.617 + 168.705i −2.05757 + 0.551324i
\(307\) 379.492 379.492i 1.23613 1.23613i 0.274560 0.961570i \(-0.411468\pi\)
0.961570 0.274560i \(-0.0885321\pi\)
\(308\) −326.937 188.757i −1.06148 0.612848i
\(309\) 16.6955 9.63916i 0.0540308 0.0311947i
\(310\) 0 0
\(311\) 384.559i 1.23652i 0.785972 + 0.618262i \(0.212163\pi\)
−0.785972 + 0.618262i \(0.787837\pi\)
\(312\) −54.2114 + 244.327i −0.173754 + 0.783099i
\(313\) 50.9420i 0.162754i 0.996683 + 0.0813770i \(0.0259318\pi\)
−0.996683 + 0.0813770i \(0.974068\pi\)
\(314\) −224.574 60.1746i −0.715205 0.191639i
\(315\) 0 0
\(316\) −390.931 225.704i −1.23712 0.714254i
\(317\) −401.507 401.507i −1.26658 1.26658i −0.947842 0.318740i \(-0.896740\pi\)
−0.318740 0.947842i \(-0.603260\pi\)
\(318\) −202.551 + 54.2733i −0.636952 + 0.170671i
\(319\) 12.3763 3.31621i 0.0387971 0.0103956i
\(320\) 0 0
\(321\) 23.6570 40.9752i 0.0736980 0.127649i
\(322\) −223.435 387.001i −0.693898 1.20187i
\(323\) −177.647 47.6003i −0.549990 0.147369i
\(324\) 776.643i 2.39704i
\(325\) 0 0
\(326\) 263.201 0.807366
\(327\) 2.04169 7.61971i 0.00624371 0.0233019i
\(328\) 804.246 464.332i 2.45197 1.41565i
\(329\) −241.195 139.254i −0.733115 0.423264i
\(330\) 0 0
\(331\) 127.416 + 475.521i 0.384941 + 1.43662i 0.838260 + 0.545271i \(0.183573\pi\)
−0.453318 + 0.891349i \(0.649760\pi\)
\(332\) 424.430 + 1583.99i 1.27840 + 4.77106i
\(333\) 356.631 356.631i 1.07097 1.07097i
\(334\) 391.388 677.904i 1.17182 2.02965i
\(335\) 0 0
\(336\) 54.3592 202.871i 0.161783 0.603784i
\(337\) −440.453 −1.30698 −0.653492 0.756934i \(-0.726697\pi\)
−0.653492 + 0.756934i \(0.726697\pi\)
\(338\) 114.944 650.535i 0.340072 1.92466i
\(339\) −38.1790 −0.112622
\(340\) 0 0
\(341\) −74.2798 128.656i −0.217829 0.377291i
\(342\) −157.298 + 272.448i −0.459935 + 0.796631i
\(343\) 252.180 + 252.180i 0.735220 + 0.735220i
\(344\) −26.2651 98.0228i −0.0763521 0.284950i
\(345\) 0 0
\(346\) −439.104 439.104i −1.26909 1.26909i
\(347\) 89.8817 + 51.8932i 0.259025 + 0.149548i 0.623890 0.781512i \(-0.285551\pi\)
−0.364865 + 0.931061i \(0.618885\pi\)
\(348\) 6.85900 + 11.8801i 0.0197098 + 0.0341383i
\(349\) −107.471 + 401.086i −0.307939 + 1.14924i 0.622447 + 0.782662i \(0.286138\pi\)
−0.930386 + 0.366581i \(0.880528\pi\)
\(350\) 0 0
\(351\) 6.70233 + 154.135i 0.0190949 + 0.439131i
\(352\) 1030.76i 2.92830i
\(353\) −14.3072 + 53.3953i −0.0405304 + 0.151261i −0.983226 0.182394i \(-0.941615\pi\)
0.942695 + 0.333655i \(0.108282\pi\)
\(354\) −57.5448 99.6705i −0.162556 0.281555i
\(355\) 0 0
\(356\) −513.610 + 513.610i −1.44273 + 1.44273i
\(357\) 59.8979 16.0496i 0.167781 0.0449569i
\(358\) 7.34987 + 27.4301i 0.0205304 + 0.0766204i
\(359\) 220.652 + 220.652i 0.614630 + 0.614630i 0.944149 0.329519i \(-0.106886\pi\)
−0.329519 + 0.944149i \(0.606886\pi\)
\(360\) 0 0
\(361\) 235.764 136.118i 0.653085 0.377059i
\(362\) 153.552 + 41.1442i 0.424178 + 0.113658i
\(363\) −47.4905 −0.130828
\(364\) −149.149 + 672.206i −0.409751 + 1.84672i
\(365\) 0 0
\(366\) 73.6746 + 19.7410i 0.201297 + 0.0539373i
\(367\) −498.267 + 287.675i −1.35768 + 0.783854i −0.989310 0.145827i \(-0.953416\pi\)
−0.368365 + 0.929681i \(0.620082\pi\)
\(368\) 804.835 1394.01i 2.18705 3.78808i
\(369\) 197.123 197.123i 0.534208 0.534208i
\(370\) 0 0
\(371\) −359.653 + 96.3688i −0.969416 + 0.259754i
\(372\) 112.468 112.468i 0.302334 0.302334i
\(373\) 161.923 + 93.4865i 0.434111 + 0.250634i 0.701097 0.713066i \(-0.252694\pi\)
−0.266985 + 0.963701i \(0.586028\pi\)
\(374\) 471.006 271.936i 1.25937 0.727100i
\(375\) 0 0
\(376\) 1687.83i 4.48892i
\(377\) −12.5529 19.7119i −0.0332969 0.0522861i
\(378\) 217.830i 0.576270i
\(379\) 589.586 + 157.979i 1.55564 + 0.416832i 0.931279 0.364307i \(-0.118694\pi\)
0.624358 + 0.781139i \(0.285361\pi\)
\(380\) 0 0
\(381\) −61.0628 35.2546i −0.160270 0.0925318i
\(382\) −278.381 278.381i −0.728745 0.728745i
\(383\) −20.2953 + 5.43811i −0.0529904 + 0.0141987i −0.285217 0.958463i \(-0.592066\pi\)
0.232226 + 0.972662i \(0.425399\pi\)
\(384\) 390.438 104.618i 1.01677 0.272441i
\(385\) 0 0
\(386\) 97.5605 168.980i 0.252748 0.437772i
\(387\) −15.2316 26.3820i −0.0393582 0.0681704i
\(388\) 375.670 + 100.660i 0.968221 + 0.259434i
\(389\) 426.740i 1.09702i 0.836145 + 0.548509i \(0.184804\pi\)
−0.836145 + 0.548509i \(0.815196\pi\)
\(390\) 0 0
\(391\) 475.256 1.21549
\(392\) −198.500 + 740.812i −0.506377 + 1.88983i
\(393\) 100.279 57.8962i 0.255163 0.147318i
\(394\) −414.385 239.245i −1.05174 0.607222i
\(395\) 0 0
\(396\) −177.752 663.381i −0.448869 1.67520i
\(397\) 47.3096 + 176.562i 0.119168 + 0.444740i 0.999565 0.0294969i \(-0.00939053\pi\)
−0.880397 + 0.474237i \(0.842724\pi\)
\(398\) −766.739 + 766.739i −1.92648 + 1.92648i
\(399\) 14.9644 25.9190i 0.0375047 0.0649600i
\(400\) 0 0
\(401\) 75.7220 282.598i 0.188833 0.704734i −0.804945 0.593350i \(-0.797805\pi\)
0.993777 0.111384i \(-0.0355283\pi\)
\(402\) 14.7052 0.0365801
\(403\) −183.093 + 199.740i −0.454325 + 0.495632i
\(404\) 150.975 0.373701
\(405\) 0 0
\(406\) 16.4978 + 28.5751i 0.0406350 + 0.0703819i
\(407\) −210.411 + 364.442i −0.516980 + 0.895435i
\(408\) 265.733 + 265.733i 0.651306 + 0.651306i
\(409\) 159.847 + 596.557i 0.390824 + 1.45857i 0.828779 + 0.559577i \(0.189036\pi\)
−0.437955 + 0.898997i \(0.644297\pi\)
\(410\) 0 0
\(411\) 55.9355 + 55.9355i 0.136096 + 0.136096i
\(412\) 278.370 + 160.717i 0.675656 + 0.390090i
\(413\) −102.178 176.977i −0.247404 0.428516i
\(414\) 210.408 785.255i 0.508233 1.89675i
\(415\) 0 0
\(416\) −1793.11 + 565.015i −4.31035 + 1.35821i
\(417\) 32.1550i 0.0771103i
\(418\) 67.9379 253.548i 0.162531 0.606574i
\(419\) 145.778 + 252.496i 0.347920 + 0.602615i 0.985880 0.167455i \(-0.0535548\pi\)
−0.637960 + 0.770070i \(0.720221\pi\)
\(420\) 0 0
\(421\) 541.067 541.067i 1.28519 1.28519i 0.347523 0.937672i \(-0.387023\pi\)
0.937672 0.347523i \(-0.112977\pi\)
\(422\) 42.6260 11.4216i 0.101010 0.0270654i
\(423\) −131.135 489.403i −0.310012 1.15698i
\(424\) −1595.58 1595.58i −3.76315 3.76315i
\(425\) 0 0
\(426\) −278.658 + 160.883i −0.654126 + 0.377660i
\(427\) 130.818 + 35.0526i 0.306366 + 0.0820904i
\(428\) 788.885 1.84319
\(429\) −18.8391 59.7870i −0.0439141 0.139364i
\(430\) 0 0
\(431\) −609.389 163.285i −1.41390 0.378852i −0.530581 0.847634i \(-0.678026\pi\)
−0.883314 + 0.468782i \(0.844693\pi\)
\(432\) 679.522 392.322i 1.57297 0.908154i
\(433\) −190.701 + 330.304i −0.440419 + 0.762828i −0.997720 0.0674824i \(-0.978503\pi\)
0.557302 + 0.830310i \(0.311837\pi\)
\(434\) 270.518 270.518i 0.623314 0.623314i
\(435\) 0 0
\(436\) 127.046 34.0419i 0.291390 0.0780778i
\(437\) 162.193 162.193i 0.371152 0.371152i
\(438\) −71.3330 41.1841i −0.162861 0.0940277i
\(439\) −620.437 + 358.209i −1.41330 + 0.815966i −0.995697 0.0926655i \(-0.970461\pi\)
−0.417598 + 0.908632i \(0.637128\pi\)
\(440\) 0 0
\(441\) 230.227i 0.522058i
\(442\) −731.241 670.297i −1.65439 1.51651i
\(443\) 463.386i 1.04602i −0.852327 0.523010i \(-0.824809\pi\)
0.852327 0.523010i \(-0.175191\pi\)
\(444\) −435.198 116.611i −0.980176 0.262637i
\(445\) 0 0
\(446\) −709.586 409.680i −1.59100 0.918564i
\(447\) 122.437 + 122.437i 0.273909 + 0.273909i
\(448\) 1364.47 365.609i 3.04570 0.816092i
\(449\) −672.899 + 180.303i −1.49866 + 0.401565i −0.912651 0.408739i \(-0.865969\pi\)
−0.586010 + 0.810304i \(0.699302\pi\)
\(450\) 0 0
\(451\) −116.301 + 201.440i −0.257874 + 0.446652i
\(452\) −318.286 551.287i −0.704172 1.21966i
\(453\) −99.2765 26.6011i −0.219154 0.0587220i
\(454\) 154.071i 0.339364i
\(455\) 0 0
\(456\) 181.376 0.397755
\(457\) 16.1775 60.3753i 0.0353994 0.132112i −0.945965 0.324269i \(-0.894882\pi\)
0.981364 + 0.192157i \(0.0615483\pi\)
\(458\) −950.802 + 548.946i −2.07599 + 1.19857i
\(459\) 200.630 + 115.834i 0.437102 + 0.252361i
\(460\) 0 0
\(461\) −87.7005 327.303i −0.190240 0.709985i −0.993448 0.114286i \(-0.963542\pi\)
0.803208 0.595699i \(-0.203125\pi\)
\(462\) 22.9069 + 85.4898i 0.0495821 + 0.185043i
\(463\) 108.625 108.625i 0.234612 0.234612i −0.580003 0.814615i \(-0.696948\pi\)
0.814615 + 0.580003i \(0.196948\pi\)
\(464\) −59.4267 + 102.930i −0.128075 + 0.221832i
\(465\) 0 0
\(466\) 20.8407 77.7786i 0.0447226 0.166907i
\(467\) 20.6180 0.0441499 0.0220749 0.999756i \(-0.492973\pi\)
0.0220749 + 0.999756i \(0.492973\pi\)
\(468\) −1056.58 + 672.851i −2.25764 + 1.43772i
\(469\) 26.1108 0.0556734
\(470\) 0 0
\(471\) 20.1191 + 34.8472i 0.0427156 + 0.0739856i
\(472\) 619.225 1072.53i 1.31192 2.27231i
\(473\) 17.9732 + 17.9732i 0.0379983 + 0.0379983i
\(474\) 27.3907 + 102.223i 0.0577862 + 0.215661i
\(475\) 0 0
\(476\) 731.099 + 731.099i 1.53592 + 1.53592i
\(477\) −586.619 338.685i −1.22981 0.710031i
\(478\) 283.531 + 491.090i 0.593161 + 1.02738i
\(479\) −172.750 + 644.710i −0.360646 + 1.34595i 0.512581 + 0.858639i \(0.328689\pi\)
−0.873228 + 0.487312i \(0.837977\pi\)
\(480\) 0 0
\(481\) 749.319 + 166.259i 1.55783 + 0.345653i
\(482\) 85.3646i 0.177105i
\(483\) −20.0170 + 74.7044i −0.0414430 + 0.154668i
\(484\) −395.913 685.742i −0.818003 1.41682i
\(485\) 0 0
\(486\) 423.975 423.975i 0.872376 0.872376i
\(487\) 235.454 63.0896i 0.483478 0.129548i −0.00884365 0.999961i \(-0.502815\pi\)
0.492322 + 0.870413i \(0.336148\pi\)
\(488\) 212.428 + 792.793i 0.435304 + 1.62458i
\(489\) −32.2103 32.2103i −0.0658696 0.0658696i
\(490\) 0 0
\(491\) −708.021 + 408.776i −1.44200 + 0.832538i −0.997983 0.0634815i \(-0.979780\pi\)
−0.444015 + 0.896019i \(0.646446\pi\)
\(492\) −240.549 64.4549i −0.488921 0.131006i
\(493\) −35.0916 −0.0711797
\(494\) −478.310 + 20.7986i −0.968239 + 0.0421025i
\(495\) 0 0
\(496\) 1331.10 + 356.667i 2.68367 + 0.719086i
\(497\) −494.790 + 285.667i −0.995554 + 0.574783i
\(498\) 192.228 332.948i 0.385999 0.668571i
\(499\) 152.575 152.575i 0.305761 0.305761i −0.537501 0.843263i \(-0.680632\pi\)
0.843263 + 0.537501i \(0.180632\pi\)
\(500\) 0 0
\(501\) −130.859 + 35.0634i −0.261195 + 0.0699869i
\(502\) −1013.29 + 1013.29i −2.01851 + 2.01851i
\(503\) 229.662 + 132.595i 0.456585 + 0.263609i 0.710607 0.703589i \(-0.248420\pi\)
−0.254022 + 0.967198i \(0.581754\pi\)
\(504\) 988.508 570.715i 1.96132 1.13237i
\(505\) 0 0
\(506\) 678.313i 1.34054i
\(507\) −93.6784 + 65.5449i −0.184770 + 0.129280i
\(508\) 1175.63i 2.31422i
\(509\) 10.9516 + 2.93446i 0.0215158 + 0.00576515i 0.269561 0.962983i \(-0.413121\pi\)
−0.248045 + 0.968748i \(0.579788\pi\)
\(510\) 0 0
\(511\) −126.660 73.1274i −0.247868 0.143106i
\(512\) 1439.49 + 1439.49i 2.81150 + 2.81150i
\(513\) 108.001 28.9388i 0.210529 0.0564109i
\(514\) 1123.59 301.065i 2.18597 0.585729i
\(515\) 0 0
\(516\) −13.6068 + 23.5676i −0.0263697 + 0.0456737i
\(517\) 211.376 + 366.115i 0.408852 + 0.708152i
\(518\) −1046.77 280.482i −2.02080 0.541471i
\(519\) 107.474i 0.207079i
\(520\) 0 0
\(521\) −578.575 −1.11051 −0.555255 0.831680i \(-0.687379\pi\)
−0.555255 + 0.831680i \(0.687379\pi\)
\(522\) −15.5360 + 57.9810i −0.0297624 + 0.111075i
\(523\) −555.704 + 320.836i −1.06253 + 0.613453i −0.926132 0.377200i \(-0.876887\pi\)
−0.136401 + 0.990654i \(0.543553\pi\)
\(524\) 1671.99 + 965.324i 3.19082 + 1.84222i
\(525\) 0 0
\(526\) −2.49615 9.31576i −0.00474553 0.0177106i
\(527\) 105.306 + 393.008i 0.199822 + 0.745746i
\(528\) −225.429 + 225.429i −0.426950 + 0.426950i
\(529\) −31.8688 + 55.1984i −0.0602435 + 0.104345i
\(530\) 0 0
\(531\) 96.2205 359.100i 0.181206 0.676271i
\(532\) 499.012 0.937993
\(533\) 414.174 + 91.8972i 0.777063 + 0.172415i
\(534\) 170.288 0.318892
\(535\) 0 0
\(536\) 79.1194 + 137.039i 0.147611 + 0.255669i
\(537\) 2.45739 4.25633i 0.00457615 0.00792612i
\(538\) 51.9175 + 51.9175i 0.0965010 + 0.0965010i
\(539\) −49.7183 185.551i −0.0922418 0.344251i
\(540\) 0 0
\(541\) 540.347 + 540.347i 0.998792 + 0.998792i 0.999999 0.00120694i \(-0.000384180\pi\)
−0.00120694 + 0.999999i \(0.500384\pi\)
\(542\) 1062.07 + 613.186i 1.95954 + 1.13134i
\(543\) −13.7564 23.8267i −0.0253340 0.0438798i
\(544\) −730.655 + 2726.84i −1.34312 + 5.01257i
\(545\) 0 0
\(546\) 136.161 86.7102i 0.249379 0.158810i
\(547\) 566.490i 1.03563i 0.855492 + 0.517816i \(0.173255\pi\)
−0.855492 + 0.517816i \(0.826745\pi\)
\(548\) −341.368 + 1274.00i −0.622933 + 2.32482i
\(549\) 123.191 + 213.373i 0.224392 + 0.388658i
\(550\) 0 0
\(551\) −11.9759 + 11.9759i −0.0217348 + 0.0217348i
\(552\) −452.729 + 121.308i −0.820162 + 0.219762i
\(553\) 48.6354 + 181.510i 0.0879483 + 0.328228i
\(554\) 803.931 + 803.931i 1.45114 + 1.45114i
\(555\) 0 0
\(556\) −464.304 + 268.066i −0.835079 + 0.482133i
\(557\) −390.869 104.733i −0.701740 0.188031i −0.109730 0.993961i \(-0.534999\pi\)
−0.592010 + 0.805931i \(0.701665\pi\)
\(558\) 695.980 1.24728
\(559\) 21.4140 41.1181i 0.0383076 0.0735565i
\(560\) 0 0
\(561\) −90.9202 24.3620i −0.162068 0.0434260i
\(562\) 252.658 145.872i 0.449569 0.259559i
\(563\) 217.275 376.332i 0.385924 0.668441i −0.605973 0.795486i \(-0.707216\pi\)
0.991897 + 0.127045i \(0.0405492\pi\)
\(564\) −320.049 + 320.049i −0.567463 + 0.567463i
\(565\) 0 0
\(566\) 1323.05 354.511i 2.33755 0.626345i
\(567\) 228.609 228.609i 0.403190 0.403190i
\(568\) −2998.56 1731.22i −5.27916 3.04793i
\(569\) 868.478 501.416i 1.52632 0.881223i 0.526811 0.849982i \(-0.323387\pi\)
0.999512 0.0312407i \(-0.00994585\pi\)
\(570\) 0 0
\(571\) 900.202i 1.57654i 0.615332 + 0.788268i \(0.289022\pi\)
−0.615332 + 0.788268i \(0.710978\pi\)
\(572\) 706.242 770.454i 1.23469 1.34695i
\(573\) 68.1357i 0.118910i
\(574\) −578.588 155.032i −1.00799 0.270091i
\(575\) 0 0
\(576\) 2225.55 + 1284.92i 3.86380 + 2.23076i
\(577\) −707.660 707.660i −1.22645 1.22645i −0.965298 0.261149i \(-0.915898\pi\)
−0.261149 0.965298i \(-0.584102\pi\)
\(578\) −347.597 + 93.1383i −0.601378 + 0.161139i
\(579\) −32.6189 + 8.74020i −0.0563366 + 0.0150953i
\(580\) 0 0
\(581\) 341.324 591.190i 0.587476 1.01754i
\(582\) −45.5899 78.9641i −0.0783332 0.135677i
\(583\) 545.925 + 146.280i 0.936406 + 0.250909i
\(584\) 886.344i 1.51771i
\(585\) 0 0
\(586\) 493.381 0.841946
\(587\) 114.520 427.394i 0.195094 0.728099i −0.797149 0.603783i \(-0.793659\pi\)
0.992243 0.124317i \(-0.0396738\pi\)
\(588\) 178.113 102.834i 0.302914 0.174887i
\(589\) 170.063 + 98.1856i 0.288731 + 0.166699i
\(590\) 0 0
\(591\) 21.4334 + 79.9905i 0.0362663 + 0.135348i
\(592\) −1010.32 3770.58i −1.70663 6.36922i
\(593\) 69.9257 69.9257i 0.117919 0.117919i −0.645685 0.763604i \(-0.723428\pi\)
0.763604 + 0.645685i \(0.223428\pi\)
\(594\) −165.324 + 286.350i −0.278324 + 0.482071i
\(595\) 0 0
\(596\) −747.219 + 2788.66i −1.25372 + 4.67896i
\(597\) 187.665 0.314347
\(598\) 1179.99 371.819i 1.97323 0.621772i
\(599\) −817.519 −1.36481 −0.682403 0.730976i \(-0.739065\pi\)
−0.682403 + 0.730976i \(0.739065\pi\)
\(600\) 0 0
\(601\) −454.343 786.945i −0.755978 1.30939i −0.944887 0.327398i \(-0.893828\pi\)
0.188909 0.981995i \(-0.439505\pi\)
\(602\) −32.7281 + 56.6867i −0.0543656 + 0.0941640i
\(603\) 33.5885 + 33.5885i 0.0557024 + 0.0557024i
\(604\) −443.529 1655.27i −0.734320 2.74052i
\(605\) 0 0
\(606\) −25.0281 25.0281i −0.0413005 0.0413005i
\(607\) −695.997 401.834i −1.14662 0.662000i −0.198557 0.980089i \(-0.563625\pi\)
−0.948061 + 0.318089i \(0.896959\pi\)
\(608\) 681.249 + 1179.96i 1.12048 + 1.94072i
\(609\) 1.47800 5.51596i 0.00242693 0.00905741i
\(610\) 0 0
\(611\) 521.024 568.396i 0.852740 0.930271i
\(612\) 1880.95i 3.07344i
\(613\) −198.988 + 742.633i −0.324613 + 1.21147i 0.590087 + 0.807340i \(0.299094\pi\)
−0.914700 + 0.404134i \(0.867573\pi\)
\(614\) −1048.93 1816.80i −1.70836 2.95896i
\(615\) 0 0
\(616\) −673.438 + 673.438i −1.09324 + 1.09324i
\(617\) 210.145 56.3082i 0.340592 0.0912613i −0.0844690 0.996426i \(-0.526919\pi\)
0.425061 + 0.905165i \(0.360253\pi\)
\(618\) −19.5041 72.7902i −0.0315600 0.117783i
\(619\) 86.7747 + 86.7747i 0.140185 + 0.140185i 0.773717 0.633532i \(-0.218395\pi\)
−0.633532 + 0.773717i \(0.718395\pi\)
\(620\) 0 0
\(621\) −250.224 + 144.467i −0.402938 + 0.232636i
\(622\) 1452.00 + 389.062i 2.33441 + 0.625502i
\(623\) 302.368 0.485342
\(624\) 515.725 + 268.586i 0.826483 + 0.430426i
\(625\) 0 0
\(626\) 192.344 + 51.5385i 0.307259 + 0.0823299i
\(627\) −39.3430 + 22.7147i −0.0627480 + 0.0362276i
\(628\) −335.452 + 581.020i −0.534160 + 0.925192i
\(629\) 814.968 814.968i 1.29566 1.29566i
\(630\) 0 0
\(631\) −425.593 + 114.037i −0.674473 + 0.180725i −0.579769 0.814781i \(-0.696857\pi\)
−0.0947043 + 0.995505i \(0.530191\pi\)
\(632\) −805.255 + 805.255i −1.27414 + 1.27414i
\(633\) −6.61428 3.81876i −0.0104491 0.00603279i
\(634\) −1922.20 + 1109.78i −3.03186 + 1.75044i
\(635\) 0 0
\(636\) 605.110i 0.951430i
\(637\) −295.531 + 188.200i −0.463941 + 0.295448i
\(638\) 50.0847i 0.0785027i
\(639\) −1003.97 269.012i −1.57115 0.420989i
\(640\) 0 0
\(641\) −221.018 127.605i −0.344801 0.199071i 0.317592 0.948227i \(-0.397126\pi\)
−0.662393 + 0.749156i \(0.730459\pi\)
\(642\) −130.778 130.778i −0.203704 0.203704i
\(643\) −714.403 + 191.424i −1.11105 + 0.297704i −0.767255 0.641342i \(-0.778378\pi\)
−0.343792 + 0.939046i \(0.611711\pi\)
\(644\) −1245.57 + 333.750i −1.93412 + 0.518246i
\(645\) 0 0
\(646\) −359.454 + 622.593i −0.556430 + 0.963766i
\(647\) 454.333 + 786.928i 0.702215 + 1.21627i 0.967687 + 0.252154i \(0.0811389\pi\)
−0.265472 + 0.964119i \(0.585528\pi\)
\(648\) 1892.54 + 507.103i 2.92058 + 0.782567i
\(649\) 310.195i 0.477959i
\(650\) 0 0
\(651\) −66.2113 −0.101707
\(652\) 196.575 733.628i 0.301496 1.12520i
\(653\) 569.971 329.073i 0.872850 0.503940i 0.00455590 0.999990i \(-0.498550\pi\)
0.868294 + 0.496049i \(0.165216\pi\)
\(654\) −26.7045 15.4179i −0.0408326 0.0235747i
\(655\) 0 0
\(656\) −558.441 2084.13i −0.851282 3.17703i
\(657\) −68.8639 257.003i −0.104816 0.391177i
\(658\) −769.808 + 769.808i −1.16992 + 1.16992i
\(659\) 102.040 176.739i 0.154841 0.268193i −0.778160 0.628066i \(-0.783847\pi\)
0.933001 + 0.359873i \(0.117180\pi\)
\(660\) 0 0
\(661\) 96.1350 358.781i 0.145439 0.542785i −0.854297 0.519786i \(-0.826012\pi\)
0.999735 0.0229993i \(-0.00732154\pi\)
\(662\) 1924.36 2.90689
\(663\) 7.45822 + 171.518i 0.0112492 + 0.258700i
\(664\) 4137.03 6.23046
\(665\) 0 0
\(666\) −985.744 1707.36i −1.48010 2.56360i
\(667\) 21.8830 37.9025i 0.0328081 0.0568254i
\(668\) −1597.23 1597.23i −2.39106 2.39106i
\(669\) 36.7021 + 136.974i 0.0548612 + 0.204745i
\(670\) 0 0
\(671\) −145.364 145.364i −0.216638 0.216638i
\(672\) −397.851 229.700i −0.592041 0.341815i
\(673\) −280.318 485.525i −0.416520 0.721434i 0.579067 0.815280i \(-0.303417\pi\)
−0.995587 + 0.0938462i \(0.970084\pi\)
\(674\) −445.611 + 1663.04i −0.661144 + 2.46742i
\(675\) 0 0
\(676\) −1727.41 806.248i −2.55533 1.19267i
\(677\) 255.729i 0.377739i −0.982002 0.188869i \(-0.939518\pi\)
0.982002 0.188869i \(-0.0604823\pi\)
\(678\) −38.6260 + 144.154i −0.0569705 + 0.212617i
\(679\) −80.9505 140.210i −0.119220 0.206495i
\(680\) 0 0
\(681\) −18.8550 + 18.8550i −0.0276873 + 0.0276873i
\(682\) −560.924 + 150.299i −0.822469 + 0.220380i
\(683\) −135.545 505.862i −0.198456 0.740648i −0.991345 0.131282i \(-0.958091\pi\)
0.792889 0.609366i \(-0.208576\pi\)
\(684\) 641.921 + 641.921i 0.938481 + 0.938481i
\(685\) 0 0
\(686\) 1207.30 697.037i 1.75992 1.01609i
\(687\) 183.537 + 49.1786i 0.267157 + 0.0715846i
\(688\) −235.779 −0.342703
\(689\) −44.7824 1029.87i −0.0649963 1.49473i
\(690\) 0 0
\(691\) 949.409 + 254.393i 1.37396 + 0.368152i 0.868925 0.494944i \(-0.164812\pi\)
0.505039 + 0.863097i \(0.331478\pi\)
\(692\) −1551.88 + 895.976i −2.24259 + 1.29476i
\(693\) −142.947 + 247.592i −0.206273 + 0.357276i
\(694\) 286.870 286.870i 0.413358 0.413358i
\(695\) 0 0
\(696\) 33.4282 8.95707i 0.0480291 0.0128694i
\(697\) 450.461 450.461i 0.646286 0.646286i
\(698\) 1405.67 + 811.565i 2.01386 + 1.16270i
\(699\) −12.0689 + 6.96799i −0.0172660 + 0.00996851i
\(700\) 0 0
\(701\) 741.124i 1.05724i 0.848859 + 0.528619i \(0.177290\pi\)
−0.848859 + 0.528619i \(0.822710\pi\)
\(702\) 588.756 + 130.633i 0.838683 + 0.186087i
\(703\) 556.257i 0.791262i
\(704\) −2071.16 554.965i −2.94199 0.788303i
\(705\) 0 0
\(706\) 187.133 + 108.041i 0.265060 + 0.153033i
\(707\) −44.4404 44.4404i −0.0628577 0.0628577i
\(708\) −320.792 + 85.9560i −0.453096 + 0.121407i
\(709\) −84.1747 + 22.5545i −0.118723 + 0.0318118i −0.317691 0.948194i \(-0.602908\pi\)
0.198968 + 0.980006i \(0.436241\pi\)
\(710\) 0 0
\(711\) −170.927 + 296.055i −0.240404 + 0.416392i
\(712\) 916.216 + 1586.93i 1.28682 + 2.22884i
\(713\) −490.158 131.337i −0.687459 0.184204i
\(714\) 242.397i 0.339492i
\(715\) 0 0
\(716\) 81.9460 0.114450
\(717\) 25.4008 94.7971i 0.0354265 0.132213i
\(718\) 1056.36 609.892i 1.47126 0.849432i
\(719\) −49.3722 28.5050i −0.0686678 0.0396454i 0.465273 0.885167i \(-0.345956\pi\)
−0.533941 + 0.845522i \(0.679289\pi\)
\(720\) 0 0
\(721\) −34.6318 129.248i −0.0480331 0.179262i
\(722\) −275.424 1027.90i −0.381474 1.42368i
\(723\) −10.4468 + 10.4468i −0.0144492 + 0.0144492i
\(724\) 229.365 397.272i 0.316802 0.548718i
\(725\) 0 0
\(726\) −48.0466 + 179.312i −0.0661799 + 0.246987i
\(727\) 1250.81 1.72051 0.860255 0.509864i \(-0.170304\pi\)
0.860255 + 0.509864i \(0.170304\pi\)
\(728\) 1540.66 + 802.362i 2.11629 + 1.10215i
\(729\) 515.898 0.707679
\(730\) 0 0
\(731\) −34.8071 60.2876i −0.0476157 0.0824728i
\(732\) 110.049 190.611i 0.150341 0.260398i
\(733\) 146.502 + 146.502i 0.199866 + 0.199866i 0.799942 0.600077i \(-0.204863\pi\)
−0.600077 + 0.799942i \(0.704863\pi\)
\(734\) 582.086 + 2172.38i 0.793033 + 2.95964i
\(735\) 0 0
\(736\) −2489.63 2489.63i −3.38265 3.38265i
\(737\) −34.3242 19.8171i −0.0465728 0.0268888i
\(738\) −544.855 943.717i −0.738286 1.27875i
\(739\) 49.5739 185.012i 0.0670825 0.250355i −0.924239 0.381814i \(-0.875299\pi\)
0.991322 + 0.131459i \(0.0419661\pi\)
\(740\) 0 0
\(741\) 61.0803 + 55.9897i 0.0824296 + 0.0755596i
\(742\) 1455.46i 1.96154i
\(743\) 99.4369 371.104i 0.133832 0.499466i −0.866168 0.499752i \(-0.833424\pi\)
1.00000 0.000285925i \(9.10129e-5\pi\)
\(744\) −200.629 347.500i −0.269663 0.467070i
\(745\) 0 0
\(746\) 516.802 516.802i 0.692764 0.692764i
\(747\) 1199.57 321.424i 1.60585 0.430286i
\(748\) −406.197 1515.95i −0.543043 2.02667i
\(749\) −232.212 232.212i −0.310030 0.310030i
\(750\) 0 0
\(751\) −745.376 + 430.343i −0.992511 + 0.573027i −0.906024 0.423226i \(-0.860898\pi\)
−0.0864874 + 0.996253i \(0.527564\pi\)
\(752\) −3787.88 1014.96i −5.03708 1.34968i
\(753\) 248.011 0.329364
\(754\) −87.1271 + 27.4541i −0.115553 + 0.0364113i
\(755\) 0 0
\(756\) −607.164 162.689i −0.803127 0.215197i
\(757\) 841.775 485.999i 1.11199 0.642007i 0.172645 0.984984i \(-0.444769\pi\)
0.939344 + 0.342977i \(0.111435\pi\)
\(758\) 1192.98 2066.30i 1.57385 2.72599i
\(759\) 83.0111 83.0111i 0.109369 0.109369i
\(760\) 0 0
\(761\) −8.15865 + 2.18610i −0.0107210 + 0.00287267i −0.264176 0.964475i \(-0.585100\pi\)
0.253455 + 0.967347i \(0.418433\pi\)
\(762\) −194.890 + 194.890i −0.255762 + 0.255762i
\(763\) −47.4171 27.3763i −0.0621456 0.0358798i
\(764\) −983.849 + 568.026i −1.28776 + 0.743489i
\(765\) 0 0
\(766\) 82.1319i 0.107222i
\(767\) 539.613 170.034i 0.703538 0.221688i
\(768\) 765.952i 0.997333i
\(769\) −114.329 30.6343i −0.148672 0.0398366i 0.183715 0.982979i \(-0.441188\pi\)
−0.332388 + 0.943143i \(0.607854\pi\)
\(770\) 0 0
\(771\) −174.347 100.659i −0.226131 0.130557i
\(772\) −398.138 398.138i −0.515722 0.515722i
\(773\) 423.077 113.363i 0.547319 0.146654i 0.0254447 0.999676i \(-0.491900\pi\)
0.521874 + 0.853023i \(0.325233\pi\)
\(774\) −115.022 + 30.8200i −0.148607 + 0.0398191i
\(775\) 0 0
\(776\) 490.582 849.713i 0.632193 1.09499i
\(777\) 93.7778 + 162.428i 0.120692 + 0.209045i
\(778\) 1611.26 + 431.737i 2.07103 + 0.554932i
\(779\) 307.463i 0.394689i
\(780\) 0 0
\(781\) 867.240 1.11042
\(782\) 480.822 1794.45i 0.614861 2.29469i
\(783\) 18.4759 10.6670i 0.0235962 0.0136233i
\(784\) 1543.18 + 890.957i 1.96834 + 1.13642i
\(785\) 0 0
\(786\) −117.148 437.203i −0.149044 0.556238i
\(787\) 180.053 + 671.967i 0.228784 + 0.853833i 0.980853 + 0.194749i \(0.0623892\pi\)
−0.752069 + 0.659084i \(0.770944\pi\)
\(788\) −976.343 + 976.343i −1.23901 + 1.23901i
\(789\) −0.834575 + 1.44553i −0.00105776 + 0.00183210i
\(790\) 0 0
\(791\) −68.5852 + 255.963i −0.0867070 + 0.323595i
\(792\) −1732.60 −2.18763
\(793\) −173.193 + 332.557i −0.218402 + 0.419365i
\(794\) 714.518 0.899896
\(795\) 0 0
\(796\) 1564.50 + 2709.80i 1.96546 + 3.40427i
\(797\) −774.868 + 1342.11i −0.972230 + 1.68395i −0.283443 + 0.958989i \(0.591477\pi\)
−0.688787 + 0.724963i \(0.741857\pi\)
\(798\) −82.7243 82.7243i −0.103664 0.103664i
\(799\) −299.668 1118.38i −0.375054 1.39972i
\(800\) 0 0
\(801\) 388.961 + 388.961i 0.485594 + 0.485594i
\(802\) −990.412 571.815i −1.23493 0.712986i
\(803\) 111.001 + 192.260i 0.138233 + 0.239427i
\(804\) 10.9827 40.9881i 0.0136601 0.0509803i
\(805\) 0 0
\(806\) 568.931 + 893.393i 0.705870 + 1.10843i
\(807\) 12.7072i 0.0157462i
\(808\) 98.5783 367.899i 0.122003 0.455321i
\(809\) −251.626 435.829i −0.311034 0.538726i 0.667553 0.744562i \(-0.267342\pi\)
−0.978586 + 0.205836i \(0.934009\pi\)
\(810\) 0 0
\(811\) 1082.95 1082.95i 1.33533 1.33533i 0.434796 0.900529i \(-0.356820\pi\)
0.900529 0.434796i \(-0.143180\pi\)
\(812\) 91.9696 24.6432i 0.113263 0.0303488i
\(813\) −54.9337 205.015i −0.0675692 0.252172i
\(814\) 1163.17 + 1163.17i 1.42895 + 1.42895i
\(815\) 0 0
\(816\) 756.160 436.569i 0.926666 0.535011i
\(817\) −32.4535 8.69588i −0.0397227 0.0106437i
\(818\) 2414.17 2.95131
\(819\) 509.066 + 112.952i 0.621571 + 0.137914i
\(820\) 0 0
\(821\) −1078.26 288.919i −1.31335 0.351911i −0.466866 0.884328i \(-0.654617\pi\)
−0.846482 + 0.532417i \(0.821284\pi\)
\(822\) 267.789 154.608i 0.325778 0.188088i
\(823\) −521.053 + 902.490i −0.633114 + 1.09659i 0.353797 + 0.935322i \(0.384890\pi\)
−0.986911 + 0.161264i \(0.948443\pi\)
\(824\) 573.398 573.398i 0.695872 0.695872i
\(825\) 0 0
\(826\) −771.596 + 206.748i −0.934135 + 0.250301i
\(827\) 596.084 596.084i 0.720779 0.720779i −0.247985 0.968764i \(-0.579768\pi\)
0.968764 + 0.247985i \(0.0797684\pi\)
\(828\) −2031.62 1172.95i −2.45364 1.41661i
\(829\) 330.908 191.050i 0.399165 0.230458i −0.286959 0.957943i \(-0.592644\pi\)
0.686124 + 0.727485i \(0.259311\pi\)
\(830\) 0 0
\(831\) 196.768i 0.236785i
\(832\) 169.898 + 3907.18i 0.204204 + 4.69613i
\(833\) 526.112i 0.631587i
\(834\) 121.409 + 32.5315i 0.145575 + 0.0390066i
\(835\) 0 0
\(836\) −655.980 378.730i −0.784665 0.453027i
\(837\) −174.910 174.910i −0.208972 0.208972i
\(838\) 1100.85 294.971i 1.31366 0.351994i
\(839\) −748.130 + 200.461i −0.891692 + 0.238928i −0.675445 0.737410i \(-0.736048\pi\)
−0.216247 + 0.976339i \(0.569382\pi\)
\(840\) 0 0
\(841\) 418.884 725.529i 0.498079 0.862698i
\(842\) −1495.53 2590.34i −1.77617 3.07641i
\(843\) −48.7715 13.0683i −0.0578547 0.0155021i
\(844\) 127.343i 0.150880i
\(845\) 0 0
\(846\) −1980.54 −2.34106
\(847\) −85.3126 + 318.391i −0.100723 + 0.375904i
\(848\) −4540.31 + 2621.35i −5.35414 + 3.09122i
\(849\) −205.298 118.529i −0.241812 0.139610i
\(850\) 0 0
\(851\) 372.037 + 1388.46i 0.437176 + 1.63156i
\(852\) 240.315 + 896.867i 0.282060 + 1.05266i
\(853\) 12.0307 12.0307i 0.0141040 0.0141040i −0.700020 0.714124i \(-0.746825\pi\)
0.714124 + 0.700020i \(0.246825\pi\)
\(854\) 264.700 458.474i 0.309953 0.536854i
\(855\) 0 0
\(856\) 515.097 1922.37i 0.601749 2.24576i
\(857\) 702.817 0.820090 0.410045 0.912065i \(-0.365513\pi\)
0.410045 + 0.912065i \(0.365513\pi\)
\(858\) −244.801 + 10.6448i −0.285316 + 0.0124065i
\(859\) −151.163 −0.175976 −0.0879879 0.996122i \(-0.528044\pi\)
−0.0879879 + 0.996122i \(0.528044\pi\)
\(860\) 0 0
\(861\) 51.8342 + 89.7796i 0.0602024 + 0.104274i
\(862\) −1233.05 + 2135.70i −1.43045 + 2.47762i
\(863\) 427.277 + 427.277i 0.495107 + 0.495107i 0.909911 0.414804i \(-0.136150\pi\)
−0.414804 + 0.909911i \(0.636150\pi\)
\(864\) −444.205 1657.79i −0.514126 1.91874i
\(865\) 0 0
\(866\) 1054.21 + 1054.21i 1.21734 + 1.21734i
\(867\) 53.9366 + 31.1403i 0.0622106 + 0.0359173i
\(868\) −551.983 956.062i −0.635925 1.10145i
\(869\) 73.8246 275.517i 0.0849536 0.317051i
\(870\) 0 0
\(871\) −15.6587 + 70.5729i −0.0179779 + 0.0810251i
\(872\) 331.815i 0.380522i
\(873\) 76.2309 284.497i 0.0873206 0.325885i
\(874\) −448.309 776.495i −0.512940 0.888438i
\(875\) 0 0
\(876\) −168.069 + 168.069i −0.191860 + 0.191860i
\(877\) 1035.18 277.375i 1.18036 0.316277i 0.385291 0.922795i \(-0.374101\pi\)
0.795069 + 0.606519i \(0.207434\pi\)
\(878\) 724.808 + 2705.02i 0.825521 + 3.08089i
\(879\) −60.3793 60.3793i −0.0686909 0.0686909i
\(880\) 0 0
\(881\) −142.992 + 82.5567i −0.162307 + 0.0937079i −0.578953 0.815361i \(-0.696539\pi\)
0.416646 + 0.909069i \(0.363205\pi\)
\(882\) 869.282 + 232.923i 0.985580 + 0.264085i
\(883\) −413.168 −0.467914 −0.233957 0.972247i \(-0.575167\pi\)
−0.233957 + 0.972247i \(0.575167\pi\)
\(884\) −2414.47 + 1537.59i −2.73130 + 1.73935i
\(885\) 0 0
\(886\) −1749.63 468.813i −1.97475 0.529134i
\(887\) −1107.73 + 639.547i −1.24885 + 0.721023i −0.970880 0.239567i \(-0.922994\pi\)
−0.277969 + 0.960590i \(0.589661\pi\)
\(888\) −568.319 + 984.357i −0.639999 + 1.10851i
\(889\) −346.052 + 346.052i −0.389259 + 0.389259i
\(890\) 0 0
\(891\) −474.024 + 127.014i −0.532014 + 0.142553i
\(892\) −1671.87 + 1671.87i −1.87430 + 1.87430i
\(893\) −483.943 279.405i −0.541930 0.312883i
\(894\) 586.164 338.422i 0.655664 0.378548i
\(895\) 0 0
\(896\) 2805.55i 3.13120i
\(897\) −189.908 98.9028i −0.211715 0.110260i
\(898\) 2723.11i 3.03242i
\(899\) 36.1919 + 9.69759i 0.0402579 + 0.0107871i
\(900\) 0 0
\(901\) −1340.53 773.956i −1.48783 0.858997i
\(902\) 642.924 + 642.924i 0.712776 + 0.712776i
\(903\) 10.9425 2.93203i 0.0121179 0.00324698i
\(904\) −1551.21 + 415.645i −1.71594 + 0.459784i
\(905\) 0 0
\(906\) −200.878 + 347.931i −0.221720 + 0.384030i
\(907\) −106.588 184.616i −0.117517 0.203546i 0.801266 0.598308i \(-0.204160\pi\)
−0.918783 + 0.394762i \(0.870827\pi\)
\(908\) −429.447 115.070i −0.472959 0.126729i
\(909\) 114.335i 0.125781i
\(910\) 0 0
\(911\) 1073.07 1.17791 0.588954 0.808167i \(-0.299540\pi\)
0.588954 + 0.808167i \(0.299540\pi\)
\(912\) 109.068 407.049i 0.119593 0.446326i
\(913\) −897.379 + 518.102i −0.982890 + 0.567472i
\(914\) −211.595 122.165i −0.231505 0.133659i
\(915\) 0 0
\(916\) 819.973 + 3060.18i 0.895167 + 3.34081i
\(917\) −208.011 776.307i −0.226838 0.846573i
\(918\) 640.338 640.338i 0.697536 0.697536i
\(919\) 468.990 812.315i 0.510327 0.883912i −0.489601 0.871946i \(-0.662858\pi\)
0.999928 0.0119659i \(-0.00380894\pi\)
\(920\) 0 0
\(921\) −93.9711 + 350.705i −0.102032 + 0.380787i
\(922\) −1324.54 −1.43660
\(923\) −475.380 1508.64i −0.515038 1.63450i
\(924\) 255.396 0.276403
\(925\) 0 0
\(926\) −300.245 520.040i −0.324239 0.561598i
\(927\) 121.712 210.812i 0.131297 0.227413i
\(928\) 183.827 + 183.827i 0.198090 + 0.198090i
\(929\) −201.792 753.099i −0.217215 0.810656i −0.985375 0.170399i \(-0.945494\pi\)
0.768161 0.640257i \(-0.221172\pi\)
\(930\) 0 0
\(931\) 179.549 + 179.549i 0.192856 + 0.192856i
\(932\) −201.229 116.180i −0.215911 0.124656i
\(933\) −130.081 225.307i −0.139422 0.241487i
\(934\) 20.8594 77.8485i 0.0223334 0.0833495i
\(935\) 0 0
\(936\) 949.729 + 3014.02i 1.01467 + 3.22010i
\(937\) 1369.92i 1.46203i −0.682360 0.731016i \(-0.739046\pi\)
0.682360 0.731016i \(-0.260954\pi\)
\(938\) 26.4166 98.5880i 0.0281627 0.105105i
\(939\) −17.2316 29.8461i −0.0183511 0.0317850i
\(940\) 0 0
\(941\) 50.0032 50.0032i 0.0531384 0.0531384i −0.680038 0.733177i \(-0.738037\pi\)
0.733177 + 0.680038i \(0.238037\pi\)
\(942\) 151.929 40.7093i 0.161284 0.0432158i
\(943\) 205.638 + 767.451i 0.218068 + 0.813840i
\(944\) −2034.63 2034.63i −2.15533 2.15533i
\(945\) 0 0
\(946\) 86.0459 49.6786i 0.0909576 0.0525144i
\(947\) −1252.54 335.616i −1.32264 0.354400i −0.472672 0.881238i \(-0.656710\pi\)
−0.849965 + 0.526839i \(0.823377\pi\)
\(948\) 305.387 0.322138
\(949\) 273.609 298.485i 0.288313 0.314526i
\(950\) 0 0
\(951\) 371.050 + 99.4224i 0.390168 + 0.104545i
\(952\) 2258.92 1304.19i 2.37282 1.36995i
\(953\) 552.713 957.326i 0.579971 1.00454i −0.415511 0.909588i \(-0.636397\pi\)
0.995482 0.0949514i \(-0.0302696\pi\)
\(954\) −1872.28 + 1872.28i −1.96256 + 1.96256i
\(955\) 0 0
\(956\) 1580.59 423.517i 1.65333 0.443009i
\(957\) −6.12931 + 6.12931i −0.00640471 + 0.00640471i
\(958\) 2259.49 + 1304.52i 2.35855 + 1.36171i
\(959\) 475.492 274.526i 0.495821 0.286262i
\(960\) 0 0
\(961\) 526.568i 0.547937i
\(962\) 1385.85 2661.04i 1.44059 2.76615i
\(963\) 597.428i 0.620382i
\(964\) −237.939 63.7555i −0.246825 0.0661364i
\(965\) 0 0
\(966\) 261.814 + 151.158i 0.271029 + 0.156479i
\(967\) 347.232 + 347.232i 0.359082 + 0.359082i 0.863474 0.504393i \(-0.168284\pi\)
−0.504393 + 0.863474i \(0.668284\pi\)
\(968\) −1929.54 + 517.018i −1.99332 + 0.534109i
\(969\) 120.182 32.2026i 0.124026 0.0332328i
\(970\) 0 0
\(971\) 708.181 1226.60i 0.729331 1.26324i −0.227835 0.973700i \(-0.573165\pi\)
0.957166 0.289539i \(-0.0935020\pi\)
\(972\) −865.106 1498.41i −0.890026 1.54157i
\(973\) 215.577 + 57.7637i 0.221559 + 0.0593666i
\(974\) 952.844i 0.978279i
\(975\) 0 0
\(976\) 1906.95 1.95384
\(977\) −273.859 + 1022.06i −0.280306 + 1.04612i 0.671896 + 0.740646i \(0.265480\pi\)
−0.952202 + 0.305470i \(0.901186\pi\)
\(978\) −154.205 + 89.0305i −0.157674 + 0.0910332i
\(979\) −397.480 229.485i −0.406006 0.234408i
\(980\) 0 0
\(981\) −25.7802 96.2129i −0.0262795 0.0980764i
\(982\) 827.126 + 3086.87i 0.842287 + 3.14346i
\(983\) −1144.87 + 1144.87i −1.16467 + 1.16467i −0.181223 + 0.983442i \(0.558006\pi\)
−0.983442 + 0.181223i \(0.941994\pi\)
\(984\) −314.130 + 544.089i −0.319238 + 0.552936i
\(985\) 0 0
\(986\) −35.5025 + 132.497i −0.0360066 + 0.134378i
\(987\) 188.416 0.190898
\(988\) −299.259 + 1348.74i −0.302894 + 1.36512i
\(989\) 86.8224 0.0877880
\(990\) 0 0
\(991\) −469.824 813.760i −0.474091 0.821150i 0.525469 0.850813i \(-0.323890\pi\)
−0.999560 + 0.0296628i \(0.990557\pi\)
\(992\) 1507.13 2610.42i 1.51928 2.63147i
\(993\) −235.500 235.500i −0.237161 0.237161i
\(994\) 578.025 + 2157.22i 0.581514 + 2.17024i
\(995\) 0 0
\(996\) −784.468 784.468i −0.787618 0.787618i
\(997\) 1024.76 + 591.647i 1.02785 + 0.593427i 0.916367 0.400340i \(-0.131108\pi\)
0.111479 + 0.993767i \(0.464441\pi\)
\(998\) −421.724 730.447i −0.422569 0.731911i
\(999\) −181.352 + 676.815i −0.181534 + 0.677493i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.3.w.e.249.10 40
5.2 odd 4 325.3.t.d.301.10 40
5.3 odd 4 65.3.p.a.41.1 40
5.4 even 2 325.3.w.f.249.1 40
13.7 odd 12 325.3.w.f.124.1 40
65.7 even 12 325.3.t.d.176.10 40
65.33 even 12 65.3.p.a.46.1 yes 40
65.59 odd 12 inner 325.3.w.e.124.10 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.3.p.a.41.1 40 5.3 odd 4
65.3.p.a.46.1 yes 40 65.33 even 12
325.3.t.d.176.10 40 65.7 even 12
325.3.t.d.301.10 40 5.2 odd 4
325.3.w.e.124.10 40 65.59 odd 12 inner
325.3.w.e.249.10 40 1.1 even 1 trivial
325.3.w.f.124.1 40 13.7 odd 12
325.3.w.f.249.1 40 5.4 even 2