Properties

Label 325.3
Level 325
Weight 3
Dimension 7424
Nonzero newspaces 16
Newform subspaces 42
Sturm bound 25200
Trace bound 6

Downloads

Learn more

Defining parameters

Level: N N = 325=5213 325 = 5^{2} \cdot 13
Weight: k k = 3 3
Nonzero newspaces: 16 16
Newform subspaces: 42 42
Sturm bound: 2520025200
Trace bound: 66

Dimensions

The following table gives the dimensions of various subspaces of M3(Γ1(325))M_{3}(\Gamma_1(325)).

Total New Old
Modular forms 8736 7876 860
Cusp forms 8064 7424 640
Eisenstein series 672 452 220

Trace form

7424q58q258q358q476q590q648q722q834q976q1084q1152q1280q13160q1476q15298q16204q17322q18++288q99+O(q100) 7424 q - 58 q^{2} - 58 q^{3} - 58 q^{4} - 76 q^{5} - 90 q^{6} - 48 q^{7} - 22 q^{8} - 34 q^{9} - 76 q^{10} - 84 q^{11} - 52 q^{12} - 80 q^{13} - 160 q^{14} - 76 q^{15} - 298 q^{16} - 204 q^{17} - 322 q^{18}+ \cdots + 288 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(Γ1(325))S_{3}^{\mathrm{new}}(\Gamma_1(325))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
325.3.g χ325(99,)\chi_{325}(99, \cdot) 325.3.g.a 4 2
325.3.g.b 4
325.3.g.c 16
325.3.g.d 16
325.3.g.e 20
325.3.g.f 20
325.3.h χ325(168,)\chi_{325}(168, \cdot) 325.3.h.a 16 2
325.3.h.b 24
325.3.h.c 40
325.3.i χ325(118,)\chi_{325}(118, \cdot) 325.3.i.a 16 2
325.3.i.b 24
325.3.i.c 32
325.3.j χ325(151,)\chi_{325}(151, \cdot) 325.3.j.a 4 2
325.3.j.b 16
325.3.j.c 20
325.3.j.d 20
325.3.j.e 24
325.3.t χ325(76,)\chi_{325}(76, \cdot) 325.3.t.a 4 4
325.3.t.b 36
325.3.t.c 36
325.3.t.d 40
325.3.t.e 48
325.3.u χ325(68,)\chi_{325}(68, \cdot) 325.3.u.a 40 4
325.3.u.b 48
325.3.u.c 72
325.3.v χ325(43,)\chi_{325}(43, \cdot) 325.3.v.a 40 4
325.3.v.b 48
325.3.v.c 72
325.3.w χ325(24,)\chi_{325}(24, \cdot) 325.3.w.a 4 4
325.3.w.b 4
325.3.w.c 36
325.3.w.d 36
325.3.w.e 40
325.3.w.f 40
325.3.ba χ325(21,)\chi_{325}(21, \cdot) 325.3.ba.a 544 8
325.3.bb χ325(27,)\chi_{325}(27, \cdot) 325.3.bb.a 480 8
325.3.bc χ325(12,)\chi_{325}(12, \cdot) 325.3.bc.a 544 8
325.3.bd χ325(34,)\chi_{325}(34, \cdot) 325.3.bd.a 544 8
325.3.bj χ325(19,)\chi_{325}(19, \cdot) 325.3.bj.a 1088 16
325.3.bk χ325(17,)\chi_{325}(17, \cdot) 325.3.bk.a 1088 16
325.3.bl χ325(3,)\chi_{325}(3, \cdot) 325.3.bl.a 1088 16
325.3.bm χ325(6,)\chi_{325}(6, \cdot) 325.3.bm.a 1088 16

Decomposition of S3old(Γ1(325))S_{3}^{\mathrm{old}}(\Gamma_1(325)) into lower level spaces

S3old(Γ1(325)) S_{3}^{\mathrm{old}}(\Gamma_1(325)) \cong S3new(Γ1(1))S_{3}^{\mathrm{new}}(\Gamma_1(1))6^{\oplus 6}\oplusS3new(Γ1(5))S_{3}^{\mathrm{new}}(\Gamma_1(5))4^{\oplus 4}\oplusS3new(Γ1(13))S_{3}^{\mathrm{new}}(\Gamma_1(13))3^{\oplus 3}\oplusS3new(Γ1(25))S_{3}^{\mathrm{new}}(\Gamma_1(25))2^{\oplus 2}\oplusS3new(Γ1(65))S_{3}^{\mathrm{new}}(\Gamma_1(65))2^{\oplus 2}