Newspace parameters
Level: | \( N \) | \(=\) | \( 325 = 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 325.w (of order \(12\), degree \(4\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(8.85560859171\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{12})\) |
Twist minimal: | no (minimal twist has level 65) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
24.1 | −3.30742 | − | 0.886220i | 0.0285599 | − | 0.0164891i | 6.68953 | + | 3.86220i | 0 | −0.109072 | + | 0.0292259i | 0.692695 | − | 0.185607i | −9.01754 | − | 9.01754i | −4.49946 | + | 7.79329i | 0 | ||||
24.2 | −2.72224 | − | 0.729421i | −4.15192 | + | 2.39711i | 3.41442 | + | 1.97132i | 0 | 13.0510 | − | 3.49701i | −4.75472 | + | 1.27402i | 0.114321 | + | 0.114321i | 6.99232 | − | 12.1111i | 0 | ||||
24.3 | −2.66986 | − | 0.715386i | 3.65949 | − | 2.11281i | 3.15226 | + | 1.81996i | 0 | −11.2818 | + | 3.02294i | 3.52221 | − | 0.943772i | 0.703773 | + | 0.703773i | 4.42790 | − | 7.66935i | 0 | ||||
24.4 | −1.16577 | − | 0.312366i | −2.06426 | + | 1.19180i | −2.20266 | − | 1.27171i | 0 | 2.77872 | − | 0.744556i | 7.49531 | − | 2.00836i | 5.58415 | + | 5.58415i | −1.65922 | + | 2.87385i | 0 | ||||
24.5 | −0.401493 | − | 0.107580i | 3.61165 | − | 2.08519i | −3.31448 | − | 1.91361i | 0 | −1.67438 | + | 0.448649i | −10.0361 | + | 2.68917i | 2.30053 | + | 2.30053i | 4.19603 | − | 7.26773i | 0 | ||||
24.6 | −0.346703 | − | 0.0928988i | 0.511202 | − | 0.295143i | −3.35253 | − | 1.93558i | 0 | −0.204654 | + | 0.0548368i | −0.327396 | + | 0.0877254i | 1.99774 | + | 1.99774i | −4.32578 | + | 7.49247i | 0 | ||||
24.7 | 1.14195 | + | 0.305985i | −3.98555 | + | 2.30106i | −2.25367 | − | 1.30116i | 0 | −5.25539 | + | 1.40818i | −11.4086 | + | 3.05692i | −5.51932 | − | 5.51932i | 6.08971 | − | 10.5477i | 0 | ||||
24.8 | 2.20214 | + | 0.590063i | −1.83281 | + | 1.05817i | 1.03716 | + | 0.598805i | 0 | −4.66050 | + | 1.24878i | −1.17338 | + | 0.314408i | −4.51768 | − | 4.51768i | −2.26053 | + | 3.91536i | 0 | ||||
24.9 | 3.53665 | + | 0.947644i | 4.05506 | − | 2.34119i | 8.14580 | + | 4.70298i | 0 | 16.5600 | − | 4.43723i | −10.5506 | + | 2.82701i | 13.9961 | + | 13.9961i | 6.46235 | − | 11.1931i | 0 | ||||
24.10 | 3.73273 | + | 1.00018i | −2.83142 | + | 1.63472i | 9.46878 | + | 5.46680i | 0 | −12.2039 | + | 3.27004i | 8.61234 | − | 2.30767i | 18.9464 | + | 18.9464i | 0.844632 | − | 1.46295i | 0 | ||||
124.1 | −0.974678 | − | 3.63755i | −4.47773 | − | 2.58522i | −8.81765 | + | 5.09087i | 0 | −5.03951 | + | 18.8077i | −0.239364 | + | 0.893318i | 16.4612 | + | 16.4612i | 8.86671 | + | 15.3576i | 0 | ||||
124.2 | −0.749686 | − | 2.79787i | 0.461903 | + | 0.266680i | −3.80193 | + | 2.19504i | 0 | 0.399852 | − | 1.49227i | −2.69020 | + | 10.0400i | 0.798969 | + | 0.798969i | −4.35776 | − | 7.54787i | 0 | ||||
124.3 | −0.624525 | − | 2.33076i | 1.82226 | + | 1.05208i | −1.57831 | + | 0.911238i | 0 | 1.31411 | − | 4.90432i | 0.565655 | − | 2.11105i | −3.71537 | − | 3.71537i | −2.28624 | − | 3.95988i | 0 | ||||
124.4 | −0.340684 | − | 1.27145i | −3.38958 | − | 1.95698i | 1.96358 | − | 1.13368i | 0 | −1.33342 | + | 4.97639i | 2.05866 | − | 7.68303i | −5.83343 | − | 5.83343i | 3.15951 | + | 5.47243i | 0 | ||||
124.5 | −0.206966 | − | 0.772409i | 5.13291 | + | 2.96349i | 2.91032 | − | 1.68027i | 0 | 1.22668 | − | 4.57805i | 0.592215 | − | 2.21018i | −4.16197 | − | 4.16197i | 13.0645 | + | 22.6284i | 0 | ||||
124.6 | −0.0113525 | − | 0.0423683i | −2.77843 | − | 1.60413i | 3.46244 | − | 1.99904i | 0 | −0.0364219 | + | 0.135928i | −2.16799 | + | 8.09104i | −0.248066 | − | 0.248066i | 0.646457 | + | 1.11970i | 0 | ||||
124.7 | 0.598846 | + | 2.23492i | 3.51738 | + | 2.03076i | −1.17216 | + | 0.676749i | 0 | −2.43222 | + | 9.07719i | −2.56698 | + | 9.58012i | 4.32988 | + | 4.32988i | 3.74797 | + | 6.49168i | 0 | ||||
124.8 | 0.614128 | + | 2.29196i | 1.05591 | + | 0.609633i | −1.41181 | + | 0.815107i | 0 | −0.748785 | + | 2.79450i | 1.33475 | − | 4.98135i | 3.97609 | + | 3.97609i | −3.75670 | − | 6.50679i | 0 | ||||
124.9 | 0.683209 | + | 2.54977i | −3.75874 | − | 2.17011i | −2.57045 | + | 1.48405i | 0 | 2.96528 | − | 11.0666i | −2.17385 | + | 8.11293i | 1.92611 | + | 1.92611i | 4.91876 | + | 8.51954i | 0 | ||||
124.10 | 1.01171 | + | 3.77575i | −0.585883 | − | 0.338260i | −9.76865 | + | 5.63993i | 0 | 0.684442 | − | 2.55437i | 1.21531 | − | 4.53560i | −20.1218 | − | 20.1218i | −4.27116 | − | 7.39787i | 0 | ||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
65.s | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 325.3.w.e | 40 | |
5.b | even | 2 | 1 | 325.3.w.f | 40 | ||
5.c | odd | 4 | 1 | 65.3.p.a | ✓ | 40 | |
5.c | odd | 4 | 1 | 325.3.t.d | 40 | ||
13.f | odd | 12 | 1 | 325.3.w.f | 40 | ||
65.o | even | 12 | 1 | 65.3.p.a | ✓ | 40 | |
65.s | odd | 12 | 1 | inner | 325.3.w.e | 40 | |
65.t | even | 12 | 1 | 325.3.t.d | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
65.3.p.a | ✓ | 40 | 5.c | odd | 4 | 1 | |
65.3.p.a | ✓ | 40 | 65.o | even | 12 | 1 | |
325.3.t.d | 40 | 5.c | odd | 4 | 1 | ||
325.3.t.d | 40 | 65.t | even | 12 | 1 | ||
325.3.w.e | 40 | 1.a | even | 1 | 1 | trivial | |
325.3.w.e | 40 | 65.s | odd | 12 | 1 | inner | |
325.3.w.f | 40 | 5.b | even | 2 | 1 | ||
325.3.w.f | 40 | 13.f | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{40} - 12 T_{2}^{37} - 336 T_{2}^{36} - 132 T_{2}^{35} + 72 T_{2}^{34} + 5796 T_{2}^{33} + \cdots + 158986881 \)
acting on \(S_{3}^{\mathrm{new}}(325, [\chi])\).