L(s) = 1 | + (1.01 − 3.77i)2-s + (−0.585 + 0.338i)3-s + (−9.76 − 5.63i)4-s + (0.684 + 2.55i)6-s + (1.21 + 4.53i)7-s + (−20.1 + 20.1i)8-s + (−4.27 + 7.39i)9-s + (1.84 − 6.88i)11-s + 7.63·12-s + (−12.9 + 0.564i)13-s + 18.3·14-s + (33.0 + 57.2i)16-s + (−9.76 + 16.9i)17-s + (23.6 + 23.6i)18-s + (2.43 + 9.10i)19-s + ⋯ |
L(s) = 1 | + (0.505 − 1.88i)2-s + (−0.195 + 0.112i)3-s + (−2.44 − 1.40i)4-s + (0.114 + 0.425i)6-s + (0.173 + 0.647i)7-s + (−2.51 + 2.51i)8-s + (−0.474 + 0.821i)9-s + (0.167 − 0.625i)11-s + 0.635·12-s + (−0.999 + 0.0434i)13-s + 1.31·14-s + (2.06 + 3.57i)16-s + (−0.574 + 0.994i)17-s + (1.31 + 1.31i)18-s + (0.128 + 0.478i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.824 - 0.565i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.824 - 0.565i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.268601 + 0.0832671i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.268601 + 0.0832671i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (12.9 - 0.564i)T \) |
good | 2 | \( 1 + (-1.01 + 3.77i)T + (-3.46 - 2i)T^{2} \) |
| 3 | \( 1 + (0.585 - 0.338i)T + (4.5 - 7.79i)T^{2} \) |
| 7 | \( 1 + (-1.21 - 4.53i)T + (-42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (-1.84 + 6.88i)T + (-104. - 60.5i)T^{2} \) |
| 17 | \( 1 + (9.76 - 16.9i)T + (-144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (-2.43 - 9.10i)T + (-312. + 180.5i)T^{2} \) |
| 23 | \( 1 + (12.1 + 21.0i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (-0.898 - 1.55i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-14.7 + 14.7i)T - 961iT^{2} \) |
| 37 | \( 1 + (57.0 + 15.2i)T + (1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (31.5 + 8.44i)T + (1.45e3 + 840.5i)T^{2} \) |
| 43 | \( 1 + (1.78 - 3.08i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (41.9 - 41.9i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 - 79.2iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (42.0 - 11.2i)T + (3.01e3 - 1.74e3i)T^{2} \) |
| 61 | \( 1 + (-14.4 + 24.9i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-1.43 + 5.37i)T + (-3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (-31.4 - 117. i)T + (-4.36e3 + 2.52e3i)T^{2} \) |
| 73 | \( 1 + (22.0 - 22.0i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 40.0T + 6.24e3T^{2} \) |
| 83 | \( 1 + (102. + 102. i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (-16.6 + 62.1i)T + (-6.85e3 - 3.96e3i)T^{2} \) |
| 97 | \( 1 + (33.3 - 8.92i)T + (8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.54753431709504045615484999116, −10.68094222567914589038828962445, −10.09610426012929159441075628906, −8.922395102976894295514565678021, −8.238489039215163818830951745071, −6.01120503153922633149743664618, −5.14734028059471037325886732616, −4.17446105625026437496820816513, −2.82359884548956394528349685702, −1.87755919681963080915543206485,
0.11209150320318364341623166483, 3.41821714805497743589977208826, 4.65165718493420206309245678183, 5.36902659656449375389732855095, 6.75615981255466651826878386710, 7.03719631065362051279678697360, 8.118854107929678311469076559011, 9.163571057059933478095075433506, 9.905342275655087762689057941717, 11.73825320645029140326498959747