Properties

Label 325.3.w
Level $325$
Weight $3$
Character orbit 325.w
Rep. character $\chi_{325}(24,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $160$
Newform subspaces $6$
Sturm bound $105$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 325.w (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 6 \)
Sturm bound: \(105\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(325, [\chi])\).

Total New Old
Modular forms 304 176 128
Cusp forms 256 160 96
Eisenstein series 48 16 32

Trace form

\( 160 q + 12 q^{4} + 8 q^{6} + 220 q^{9} - 16 q^{11} - 16 q^{14} + 348 q^{16} + 60 q^{19} - 40 q^{21} + 68 q^{24} - 124 q^{26} + 76 q^{29} + 80 q^{31} - 176 q^{34} - 96 q^{36} - 64 q^{39} + 340 q^{41} + 40 q^{44}+ \cdots - 1576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(325, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
325.3.w.a 325.w 65.s $4$ $8.856$ \(\Q(\zeta_{12})\) None 13.3.f.a \(-4\) \(-6\) \(0\) \(-20\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-1+\zeta_{12})q^{2}+(-2+\zeta_{12}+\zeta_{12}^{2}+\cdots)q^{3}+\cdots\)
325.3.w.b 325.w 65.s $4$ $8.856$ \(\Q(\zeta_{12})\) None 13.3.f.a \(4\) \(6\) \(0\) \(20\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1-\zeta_{12})q^{2}+(2-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{3}+\cdots\)
325.3.w.c 325.w 65.s $36$ $8.856$ None 325.3.t.b \(0\) \(-6\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{12}]$
325.3.w.d 325.w 65.s $36$ $8.856$ None 325.3.t.b \(0\) \(6\) \(0\) \(12\) $\mathrm{SU}(2)[C_{12}]$
325.3.w.e 325.w 65.s $40$ $8.856$ None 65.3.p.a \(0\) \(-12\) \(0\) \(-44\) $\mathrm{SU}(2)[C_{12}]$
325.3.w.f 325.w 65.s $40$ $8.856$ None 65.3.p.a \(0\) \(12\) \(0\) \(44\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{3}^{\mathrm{old}}(325, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(325, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)