Defining parameters
Level: | \( N \) | \(=\) | \( 325 = 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 325.w (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 65 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(105\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(325, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 304 | 176 | 128 |
Cusp forms | 256 | 160 | 96 |
Eisenstein series | 48 | 16 | 32 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(325, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
325.3.w.a | $4$ | $8.856$ | \(\Q(\zeta_{12})\) | None | \(-4\) | \(-6\) | \(0\) | \(-20\) | \(q+(-1+\zeta_{12})q^{2}+(-2+\zeta_{12}+\zeta_{12}^{2}+\cdots)q^{3}+\cdots\) |
325.3.w.b | $4$ | $8.856$ | \(\Q(\zeta_{12})\) | None | \(4\) | \(6\) | \(0\) | \(20\) | \(q+(1-\zeta_{12})q^{2}+(2-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{3}+\cdots\) |
325.3.w.c | $36$ | $8.856$ | None | \(0\) | \(-6\) | \(0\) | \(-12\) | ||
325.3.w.d | $36$ | $8.856$ | None | \(0\) | \(6\) | \(0\) | \(12\) | ||
325.3.w.e | $40$ | $8.856$ | None | \(0\) | \(-12\) | \(0\) | \(-44\) | ||
325.3.w.f | $40$ | $8.856$ | None | \(0\) | \(12\) | \(0\) | \(44\) |
Decomposition of \(S_{3}^{\mathrm{old}}(325, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(325, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)