Properties

Label 325.3.w.e.24.8
Level $325$
Weight $3$
Character 325.24
Analytic conductor $8.856$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,3,Mod(24,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 325.w (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.85560859171\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 24.8
Character \(\chi\) \(=\) 325.24
Dual form 325.3.w.e.149.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.20214 + 0.590063i) q^{2} +(-1.83281 + 1.05817i) q^{3} +(1.03716 + 0.598805i) q^{4} +(-4.66050 + 1.24878i) q^{6} +(-1.17338 + 0.314408i) q^{7} +(-4.51768 - 4.51768i) q^{8} +(-2.26053 + 3.91536i) q^{9} +(-13.3250 - 3.57041i) q^{11} -2.53456 q^{12} +(-3.48944 + 12.5229i) q^{13} -2.76948 q^{14} +(-9.67808 - 16.7629i) q^{16} +(4.73592 - 8.20286i) q^{17} +(-7.28833 + 7.28833i) q^{18} +(-23.4493 + 6.28321i) q^{19} +(1.81790 - 1.81790i) q^{21} +(-27.2367 - 15.7251i) q^{22} +(5.80846 + 10.0605i) q^{23} +(13.0606 + 3.49956i) q^{24} +(-15.0736 + 25.5183i) q^{26} -28.6153i q^{27} +(-1.40526 - 0.376537i) q^{28} +(2.30788 + 3.99736i) q^{29} +(-21.8447 - 21.8447i) q^{31} +(-4.80701 - 17.9400i) q^{32} +(28.2003 - 7.55624i) q^{33} +(15.2694 - 15.2694i) q^{34} +(-4.68907 + 2.70724i) q^{36} +(-5.14329 + 19.1950i) q^{37} -55.3461 q^{38} +(-6.85595 - 26.6446i) q^{39} +(-14.6840 + 54.8015i) q^{41} +(5.07594 - 2.93060i) q^{42} +(35.4975 - 61.4835i) q^{43} +(-11.6821 - 11.6821i) q^{44} +(6.85471 + 25.5821i) q^{46} +(22.8093 + 22.8093i) q^{47} +(35.4762 + 20.4822i) q^{48} +(-41.1573 + 23.7622i) q^{49} +20.0457i q^{51} +(-11.1179 + 10.8988i) q^{52} -3.82249i q^{53} +(16.8848 - 63.0150i) q^{54} +(6.72137 + 3.88059i) q^{56} +(36.3294 - 36.3294i) q^{57} +(2.72358 + 10.1645i) q^{58} +(17.8214 + 66.5103i) q^{59} +(20.0377 - 34.7063i) q^{61} +(-35.2155 - 60.9950i) q^{62} +(1.42146 - 5.30495i) q^{63} +35.0818i q^{64} +66.5597 q^{66} +(56.1209 + 15.0375i) q^{67} +(9.82382 - 5.67179i) q^{68} +(-21.2916 - 12.2927i) q^{69} +(-53.0258 + 14.2082i) q^{71} +(27.9007 - 7.47597i) q^{72} +(34.0315 + 34.0315i) q^{73} +(-22.6525 + 39.2354i) q^{74} +(-28.0831 - 7.52483i) q^{76} +16.7579 q^{77} +(0.624199 - 62.7207i) q^{78} +27.0828 q^{79} +(9.93517 + 17.2082i) q^{81} +(-64.6726 + 112.016i) q^{82} +(20.0700 - 20.0700i) q^{83} +(2.97401 - 0.796885i) q^{84} +(114.450 - 114.450i) q^{86} +(-8.45980 - 4.88427i) q^{87} +(44.0679 + 76.3279i) q^{88} +(30.1805 + 8.08684i) q^{89} +(0.157156 - 15.7913i) q^{91} +13.9125i q^{92} +(63.1528 + 16.9217i) q^{93} +(36.7704 + 63.6881i) q^{94} +(27.7940 + 27.7940i) q^{96} +(46.1141 + 172.100i) q^{97} +(-104.655 + 28.0423i) q^{98} +(44.1010 - 44.1010i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 12 q^{3} - 12 q^{6} - 44 q^{7} + 36 q^{8} + 72 q^{9} - 12 q^{11} + 120 q^{12} - 36 q^{13} - 48 q^{14} + 128 q^{16} - 32 q^{17} + 136 q^{18} - 68 q^{19} - 48 q^{21} - 72 q^{22} - 28 q^{23} + 56 q^{24}+ \cdots + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.20214 + 0.590063i 1.10107 + 0.295031i 0.763201 0.646161i \(-0.223627\pi\)
0.337871 + 0.941193i \(0.390293\pi\)
\(3\) −1.83281 + 1.05817i −0.610937 + 0.352725i −0.773332 0.634001i \(-0.781411\pi\)
0.162395 + 0.986726i \(0.448078\pi\)
\(4\) 1.03716 + 0.598805i 0.259290 + 0.149701i
\(5\) 0 0
\(6\) −4.66050 + 1.24878i −0.776751 + 0.208130i
\(7\) −1.17338 + 0.314408i −0.167626 + 0.0449154i −0.341656 0.939825i \(-0.610988\pi\)
0.174030 + 0.984740i \(0.444321\pi\)
\(8\) −4.51768 4.51768i −0.564710 0.564710i
\(9\) −2.26053 + 3.91536i −0.251170 + 0.435040i
\(10\) 0 0
\(11\) −13.3250 3.57041i −1.21136 0.324583i −0.404065 0.914730i \(-0.632403\pi\)
−0.807296 + 0.590147i \(0.799070\pi\)
\(12\) −2.53456 −0.211213
\(13\) −3.48944 + 12.5229i −0.268419 + 0.963302i
\(14\) −2.76948 −0.197820
\(15\) 0 0
\(16\) −9.67808 16.7629i −0.604880 1.04768i
\(17\) 4.73592 8.20286i 0.278584 0.482521i −0.692449 0.721467i \(-0.743468\pi\)
0.971033 + 0.238945i \(0.0768017\pi\)
\(18\) −7.28833 + 7.28833i −0.404907 + 0.404907i
\(19\) −23.4493 + 6.28321i −1.23417 + 0.330695i −0.816203 0.577766i \(-0.803925\pi\)
−0.417969 + 0.908461i \(0.637258\pi\)
\(20\) 0 0
\(21\) 1.81790 1.81790i 0.0865665 0.0865665i
\(22\) −27.2367 15.7251i −1.23803 0.714778i
\(23\) 5.80846 + 10.0605i 0.252542 + 0.437415i 0.964225 0.265085i \(-0.0854002\pi\)
−0.711683 + 0.702501i \(0.752067\pi\)
\(24\) 13.0606 + 3.49956i 0.544190 + 0.145815i
\(25\) 0 0
\(26\) −15.0736 + 25.5183i −0.579753 + 0.981473i
\(27\) 28.6153i 1.05983i
\(28\) −1.40526 0.376537i −0.0501877 0.0134478i
\(29\) 2.30788 + 3.99736i 0.0795819 + 0.137840i 0.903070 0.429494i \(-0.141308\pi\)
−0.823488 + 0.567334i \(0.807975\pi\)
\(30\) 0 0
\(31\) −21.8447 21.8447i −0.704669 0.704669i 0.260740 0.965409i \(-0.416033\pi\)
−0.965409 + 0.260740i \(0.916033\pi\)
\(32\) −4.80701 17.9400i −0.150219 0.560625i
\(33\) 28.2003 7.55624i 0.854554 0.228977i
\(34\) 15.2694 15.2694i 0.449099 0.449099i
\(35\) 0 0
\(36\) −4.68907 + 2.70724i −0.130252 + 0.0752010i
\(37\) −5.14329 + 19.1950i −0.139008 + 0.518785i 0.860941 + 0.508704i \(0.169875\pi\)
−0.999949 + 0.0100804i \(0.996791\pi\)
\(38\) −55.3461 −1.45648
\(39\) −6.85595 26.6446i −0.175794 0.683195i
\(40\) 0 0
\(41\) −14.6840 + 54.8015i −0.358147 + 1.33662i 0.518331 + 0.855180i \(0.326553\pi\)
−0.876478 + 0.481442i \(0.840113\pi\)
\(42\) 5.07594 2.93060i 0.120856 0.0697761i
\(43\) 35.4975 61.4835i 0.825523 1.42985i −0.0759958 0.997108i \(-0.524214\pi\)
0.901519 0.432740i \(-0.142453\pi\)
\(44\) −11.6821 11.6821i −0.265503 0.265503i
\(45\) 0 0
\(46\) 6.85471 + 25.5821i 0.149015 + 0.556133i
\(47\) 22.8093 + 22.8093i 0.485303 + 0.485303i 0.906820 0.421517i \(-0.138502\pi\)
−0.421517 + 0.906820i \(0.638502\pi\)
\(48\) 35.4762 + 20.4822i 0.739088 + 0.426713i
\(49\) −41.1573 + 23.7622i −0.839944 + 0.484942i
\(50\) 0 0
\(51\) 20.0457i 0.393053i
\(52\) −11.1179 + 10.8988i −0.213806 + 0.209592i
\(53\) 3.82249i 0.0721224i −0.999350 0.0360612i \(-0.988519\pi\)
0.999350 0.0360612i \(-0.0114811\pi\)
\(54\) 16.8848 63.0150i 0.312682 1.16694i
\(55\) 0 0
\(56\) 6.72137 + 3.88059i 0.120024 + 0.0692962i
\(57\) 36.3294 36.3294i 0.637357 0.637357i
\(58\) 2.72358 + 10.1645i 0.0469583 + 0.175251i
\(59\) 17.8214 + 66.5103i 0.302057 + 1.12729i 0.935449 + 0.353462i \(0.114996\pi\)
−0.633392 + 0.773831i \(0.718338\pi\)
\(60\) 0 0
\(61\) 20.0377 34.7063i 0.328487 0.568955i −0.653725 0.756732i \(-0.726795\pi\)
0.982212 + 0.187777i \(0.0601281\pi\)
\(62\) −35.2155 60.9950i −0.567992 0.983790i
\(63\) 1.42146 5.30495i 0.0225628 0.0842056i
\(64\) 35.0818i 0.548153i
\(65\) 0 0
\(66\) 66.5597 1.00848
\(67\) 56.1209 + 15.0375i 0.837625 + 0.224441i 0.652038 0.758187i \(-0.273914\pi\)
0.185588 + 0.982628i \(0.440581\pi\)
\(68\) 9.82382 5.67179i 0.144468 0.0834086i
\(69\) −21.2916 12.2927i −0.308574 0.178155i
\(70\) 0 0
\(71\) −53.0258 + 14.2082i −0.746842 + 0.200116i −0.612117 0.790767i \(-0.709682\pi\)
−0.134725 + 0.990883i \(0.543015\pi\)
\(72\) 27.9007 7.47597i 0.387510 0.103833i
\(73\) 34.0315 + 34.0315i 0.466186 + 0.466186i 0.900676 0.434491i \(-0.143072\pi\)
−0.434491 + 0.900676i \(0.643072\pi\)
\(74\) −22.6525 + 39.2354i −0.306115 + 0.530208i
\(75\) 0 0
\(76\) −28.0831 7.52483i −0.369514 0.0990110i
\(77\) 16.7579 0.217635
\(78\) 0.624199 62.7207i 0.00800256 0.804112i
\(79\) 27.0828 0.342821 0.171410 0.985200i \(-0.445168\pi\)
0.171410 + 0.985200i \(0.445168\pi\)
\(80\) 0 0
\(81\) 9.93517 + 17.2082i 0.122656 + 0.212447i
\(82\) −64.6726 + 112.016i −0.788691 + 1.36605i
\(83\) 20.0700 20.0700i 0.241807 0.241807i −0.575790 0.817598i \(-0.695305\pi\)
0.817598 + 0.575790i \(0.195305\pi\)
\(84\) 2.97401 0.796885i 0.0354049 0.00948672i
\(85\) 0 0
\(86\) 114.450 114.450i 1.33081 1.33081i
\(87\) −8.45980 4.88427i −0.0972391 0.0561410i
\(88\) 44.0679 + 76.3279i 0.500772 + 0.867363i
\(89\) 30.1805 + 8.08684i 0.339107 + 0.0908634i 0.424354 0.905496i \(-0.360501\pi\)
−0.0852470 + 0.996360i \(0.527168\pi\)
\(90\) 0 0
\(91\) 0.157156 15.7913i 0.00172699 0.173531i
\(92\) 13.9125i 0.151223i
\(93\) 63.1528 + 16.9217i 0.679063 + 0.181954i
\(94\) 36.7704 + 63.6881i 0.391174 + 0.677533i
\(95\) 0 0
\(96\) 27.7940 + 27.7940i 0.289521 + 0.289521i
\(97\) 46.1141 + 172.100i 0.475403 + 1.77423i 0.619855 + 0.784716i \(0.287191\pi\)
−0.144452 + 0.989512i \(0.546142\pi\)
\(98\) −104.655 + 28.0423i −1.06791 + 0.286146i
\(99\) 44.1010 44.1010i 0.445464 0.445464i
\(100\) 0 0
\(101\) 138.665 80.0583i 1.37292 0.792656i 0.381626 0.924317i \(-0.375364\pi\)
0.991295 + 0.131661i \(0.0420309\pi\)
\(102\) −11.8282 + 44.1436i −0.115963 + 0.432780i
\(103\) −199.397 −1.93589 −0.967946 0.251158i \(-0.919189\pi\)
−0.967946 + 0.251158i \(0.919189\pi\)
\(104\) 72.3388 40.8104i 0.695565 0.392408i
\(105\) 0 0
\(106\) 2.25551 8.41767i 0.0212784 0.0794120i
\(107\) −44.8915 + 25.9181i −0.419547 + 0.242226i −0.694883 0.719122i \(-0.744544\pi\)
0.275337 + 0.961348i \(0.411211\pi\)
\(108\) 17.1350 29.6786i 0.158657 0.274802i
\(109\) −147.687 147.687i −1.35493 1.35493i −0.880051 0.474880i \(-0.842491\pi\)
−0.474880 0.880051i \(-0.657509\pi\)
\(110\) 0 0
\(111\) −10.8850 40.6234i −0.0980631 0.365977i
\(112\) 16.6265 + 16.6265i 0.148451 + 0.148451i
\(113\) −126.033 72.7654i −1.11534 0.643942i −0.175132 0.984545i \(-0.556035\pi\)
−0.940207 + 0.340603i \(0.889369\pi\)
\(114\) 101.439 58.5659i 0.889816 0.513736i
\(115\) 0 0
\(116\) 5.52787i 0.0476540i
\(117\) −41.1438 41.9709i −0.351656 0.358726i
\(118\) 156.981i 1.33035i
\(119\) −2.97802 + 11.1141i −0.0250254 + 0.0933960i
\(120\) 0 0
\(121\) 60.0178 + 34.6513i 0.496015 + 0.286374i
\(122\) 64.6047 64.6047i 0.529547 0.529547i
\(123\) −31.0765 115.979i −0.252654 0.942919i
\(124\) −9.57576 35.7372i −0.0772239 0.288203i
\(125\) 0 0
\(126\) 6.26051 10.8435i 0.0496866 0.0860597i
\(127\) 12.2543 + 21.2251i 0.0964907 + 0.167127i 0.910230 0.414104i \(-0.135905\pi\)
−0.813739 + 0.581230i \(0.802572\pi\)
\(128\) −39.9285 + 149.015i −0.311941 + 1.16418i
\(129\) 150.250i 1.16473i
\(130\) 0 0
\(131\) −192.400 −1.46870 −0.734351 0.678769i \(-0.762514\pi\)
−0.734351 + 0.678769i \(0.762514\pi\)
\(132\) 33.7729 + 9.04943i 0.255855 + 0.0685563i
\(133\) 25.5395 14.7453i 0.192027 0.110867i
\(134\) 114.713 + 66.2297i 0.856068 + 0.494251i
\(135\) 0 0
\(136\) −58.4533 + 15.6625i −0.429803 + 0.115165i
\(137\) −184.009 + 49.3051i −1.34313 + 0.359891i −0.857595 0.514325i \(-0.828043\pi\)
−0.485537 + 0.874216i \(0.661376\pi\)
\(138\) −39.6337 39.6337i −0.287201 0.287201i
\(139\) 59.9212 103.786i 0.431087 0.746665i −0.565880 0.824488i \(-0.691463\pi\)
0.996967 + 0.0778224i \(0.0247967\pi\)
\(140\) 0 0
\(141\) −65.9412 17.6689i −0.467668 0.125311i
\(142\) −125.154 −0.881367
\(143\) 91.2087 154.409i 0.637823 1.07978i
\(144\) 87.5105 0.607712
\(145\) 0 0
\(146\) 54.8616 + 95.0231i 0.375764 + 0.650843i
\(147\) 50.2890 87.1031i 0.342102 0.592538i
\(148\) −16.8285 + 16.8285i −0.113706 + 0.113706i
\(149\) −276.255 + 74.0224i −1.85406 + 0.496795i −0.999737 0.0229414i \(-0.992697\pi\)
−0.854327 + 0.519736i \(0.826030\pi\)
\(150\) 0 0
\(151\) 137.089 137.089i 0.907877 0.907877i −0.0882233 0.996101i \(-0.528119\pi\)
0.996101 + 0.0882233i \(0.0281189\pi\)
\(152\) 134.322 + 77.5507i 0.883696 + 0.510202i
\(153\) 21.4114 + 37.0857i 0.139944 + 0.242390i
\(154\) 36.9033 + 9.88820i 0.239632 + 0.0642091i
\(155\) 0 0
\(156\) 8.84420 31.7401i 0.0566936 0.203462i
\(157\) 8.51422i 0.0542307i 0.999632 + 0.0271153i \(0.00863214\pi\)
−0.999632 + 0.0271153i \(0.991368\pi\)
\(158\) 59.6403 + 15.9806i 0.377470 + 0.101143i
\(159\) 4.04486 + 7.00590i 0.0254394 + 0.0440623i
\(160\) 0 0
\(161\) −9.97867 9.97867i −0.0619793 0.0619793i
\(162\) 11.7247 + 43.7573i 0.0723750 + 0.270107i
\(163\) 188.232 50.4367i 1.15480 0.309427i 0.369912 0.929067i \(-0.379388\pi\)
0.784887 + 0.619639i \(0.212721\pi\)
\(164\) −48.0451 + 48.0451i −0.292958 + 0.292958i
\(165\) 0 0
\(166\) 56.0396 32.3545i 0.337588 0.194907i
\(167\) 36.5920 136.563i 0.219114 0.817744i −0.765564 0.643360i \(-0.777540\pi\)
0.984678 0.174384i \(-0.0557935\pi\)
\(168\) −16.4253 −0.0977699
\(169\) −144.648 87.3961i −0.855903 0.517137i
\(170\) 0 0
\(171\) 28.4068 106.016i 0.166122 0.619975i
\(172\) 73.6332 42.5121i 0.428100 0.247164i
\(173\) 50.9585 88.2627i 0.294558 0.510189i −0.680324 0.732911i \(-0.738161\pi\)
0.974882 + 0.222722i \(0.0714943\pi\)
\(174\) −15.7477 15.7477i −0.0905039 0.0905039i
\(175\) 0 0
\(176\) 69.1095 + 257.920i 0.392668 + 1.46546i
\(177\) −103.043 103.043i −0.582162 0.582162i
\(178\) 61.6901 + 35.6168i 0.346573 + 0.200094i
\(179\) 57.4893 33.1915i 0.321169 0.185427i −0.330744 0.943720i \(-0.607300\pi\)
0.651914 + 0.758293i \(0.273966\pi\)
\(180\) 0 0
\(181\) 116.383i 0.642999i 0.946910 + 0.321499i \(0.104187\pi\)
−0.946910 + 0.321499i \(0.895813\pi\)
\(182\) 9.66395 34.6820i 0.0530986 0.190561i
\(183\) 84.8135i 0.463462i
\(184\) 19.2096 71.6911i 0.104400 0.389625i
\(185\) 0 0
\(186\) 129.087 + 74.5282i 0.694014 + 0.400689i
\(187\) −92.3936 + 92.3936i −0.494083 + 0.494083i
\(188\) 9.99856 + 37.3151i 0.0531838 + 0.198485i
\(189\) 8.99687 + 33.5768i 0.0476025 + 0.177655i
\(190\) 0 0
\(191\) −58.4100 + 101.169i −0.305812 + 0.529681i −0.977442 0.211205i \(-0.932261\pi\)
0.671630 + 0.740887i \(0.265594\pi\)
\(192\) −37.1227 64.2983i −0.193347 0.334887i
\(193\) −58.7574 + 219.285i −0.304442 + 1.13619i 0.628982 + 0.777420i \(0.283472\pi\)
−0.933424 + 0.358774i \(0.883195\pi\)
\(194\) 406.199i 2.09381i
\(195\) 0 0
\(196\) −56.9156 −0.290386
\(197\) 91.5676 + 24.5355i 0.464810 + 0.124545i 0.483621 0.875278i \(-0.339321\pi\)
−0.0188108 + 0.999823i \(0.505988\pi\)
\(198\) 123.139 71.0944i 0.621914 0.359062i
\(199\) −247.382 142.826i −1.24313 0.717719i −0.273396 0.961902i \(-0.588147\pi\)
−0.969729 + 0.244183i \(0.921480\pi\)
\(200\) 0 0
\(201\) −118.771 + 31.8247i −0.590902 + 0.158332i
\(202\) 352.600 94.4788i 1.74554 0.467717i
\(203\) −3.96482 3.96482i −0.0195312 0.0195312i
\(204\) −12.0035 + 20.7906i −0.0588406 + 0.101915i
\(205\) 0 0
\(206\) −439.101 117.657i −2.13156 0.571149i
\(207\) −52.5209 −0.253724
\(208\) 243.692 62.7047i 1.17160 0.301465i
\(209\) 334.894 1.60237
\(210\) 0 0
\(211\) 94.2417 + 163.231i 0.446643 + 0.773609i 0.998165 0.0605518i \(-0.0192860\pi\)
−0.551522 + 0.834160i \(0.685953\pi\)
\(212\) 2.28892 3.96453i 0.0107968 0.0187006i
\(213\) 82.1515 82.1515i 0.385688 0.385688i
\(214\) −114.151 + 30.5866i −0.533415 + 0.142928i
\(215\) 0 0
\(216\) −129.275 + 129.275i −0.598494 + 0.598494i
\(217\) 32.5004 + 18.7641i 0.149772 + 0.0864706i
\(218\) −238.084 412.374i −1.09213 1.89162i
\(219\) −98.3847 26.3621i −0.449245 0.120375i
\(220\) 0 0
\(221\) 86.1981 + 87.9310i 0.390037 + 0.397878i
\(222\) 95.8814i 0.431898i
\(223\) 101.633 + 27.2326i 0.455756 + 0.122119i 0.479391 0.877601i \(-0.340858\pi\)
−0.0236357 + 0.999721i \(0.507524\pi\)
\(224\) 11.2809 + 19.5392i 0.0503613 + 0.0872284i
\(225\) 0 0
\(226\) −234.607 234.607i −1.03809 1.03809i
\(227\) −63.8236 238.193i −0.281161 1.04931i −0.951599 0.307343i \(-0.900560\pi\)
0.670438 0.741966i \(-0.266106\pi\)
\(228\) 59.4336 15.9252i 0.260674 0.0698473i
\(229\) 201.491 201.491i 0.879872 0.879872i −0.113649 0.993521i \(-0.536254\pi\)
0.993521 + 0.113649i \(0.0362540\pi\)
\(230\) 0 0
\(231\) −30.7140 + 17.7328i −0.132961 + 0.0767652i
\(232\) 7.63254 28.4850i 0.0328989 0.122780i
\(233\) −348.962 −1.49769 −0.748846 0.662744i \(-0.769392\pi\)
−0.748846 + 0.662744i \(0.769392\pi\)
\(234\) −65.8390 116.703i −0.281363 0.498732i
\(235\) 0 0
\(236\) −21.3431 + 79.6534i −0.0904367 + 0.337514i
\(237\) −49.6377 + 28.6584i −0.209442 + 0.120921i
\(238\) −13.1161 + 22.7177i −0.0551095 + 0.0954524i
\(239\) −62.2768 62.2768i −0.260572 0.260572i 0.564714 0.825287i \(-0.308986\pi\)
−0.825287 + 0.564714i \(0.808986\pi\)
\(240\) 0 0
\(241\) 48.6035 + 181.391i 0.201674 + 0.752658i 0.990438 + 0.137961i \(0.0440550\pi\)
−0.788763 + 0.614697i \(0.789278\pi\)
\(242\) 111.721 + 111.721i 0.461658 + 0.461658i
\(243\) 186.616 + 107.743i 0.767965 + 0.443385i
\(244\) 41.5646 23.9973i 0.170347 0.0983497i
\(245\) 0 0
\(246\) 273.740i 1.11276i
\(247\) 3.14065 315.578i 0.0127152 1.27765i
\(248\) 197.375i 0.795867i
\(249\) −15.5470 + 58.0221i −0.0624377 + 0.233021i
\(250\) 0 0
\(251\) −266.078 153.620i −1.06007 0.612034i −0.134621 0.990897i \(-0.542982\pi\)
−0.925453 + 0.378864i \(0.876315\pi\)
\(252\) 4.65091 4.65091i 0.0184560 0.0184560i
\(253\) −41.4772 154.795i −0.163942 0.611838i
\(254\) 14.4616 + 53.9715i 0.0569355 + 0.212486i
\(255\) 0 0
\(256\) −105.693 + 183.065i −0.412863 + 0.715100i
\(257\) −15.6861 27.1691i −0.0610353 0.105716i 0.833893 0.551926i \(-0.186107\pi\)
−0.894928 + 0.446210i \(0.852774\pi\)
\(258\) −88.6570 + 330.872i −0.343632 + 1.28245i
\(259\) 24.1403i 0.0932056i
\(260\) 0 0
\(261\) −20.8681 −0.0799545
\(262\) −423.693 113.528i −1.61715 0.433313i
\(263\) −445.357 + 257.127i −1.69337 + 0.977668i −0.741608 + 0.670834i \(0.765936\pi\)
−0.951763 + 0.306834i \(0.900730\pi\)
\(264\) −161.537 93.2631i −0.611881 0.353269i
\(265\) 0 0
\(266\) 64.9423 17.4012i 0.244144 0.0654182i
\(267\) −63.8725 + 17.1146i −0.239223 + 0.0640996i
\(268\) 49.2018 + 49.2018i 0.183589 + 0.183589i
\(269\) −166.095 + 287.685i −0.617454 + 1.06946i 0.372495 + 0.928034i \(0.378502\pi\)
−0.989949 + 0.141427i \(0.954831\pi\)
\(270\) 0 0
\(271\) 59.2685 + 15.8809i 0.218703 + 0.0586013i 0.366507 0.930415i \(-0.380554\pi\)
−0.147804 + 0.989017i \(0.547220\pi\)
\(272\) −183.339 −0.674039
\(273\) 16.4219 + 29.1088i 0.0601536 + 0.106626i
\(274\) −434.308 −1.58506
\(275\) 0 0
\(276\) −14.7219 25.4991i −0.0533402 0.0923879i
\(277\) −131.174 + 227.199i −0.473551 + 0.820214i −0.999542 0.0302764i \(-0.990361\pi\)
0.525991 + 0.850490i \(0.323695\pi\)
\(278\) 193.196 193.196i 0.694948 0.694948i
\(279\) 134.911 36.1492i 0.483551 0.129567i
\(280\) 0 0
\(281\) −43.8112 + 43.8112i −0.155912 + 0.155912i −0.780752 0.624841i \(-0.785164\pi\)
0.624841 + 0.780752i \(0.285164\pi\)
\(282\) −134.786 77.8189i −0.477966 0.275954i
\(283\) −93.6272 162.167i −0.330838 0.573028i 0.651838 0.758358i \(-0.273998\pi\)
−0.982676 + 0.185330i \(0.940665\pi\)
\(284\) −63.5042 17.0159i −0.223606 0.0599151i
\(285\) 0 0
\(286\) 291.966 286.212i 1.02086 1.00074i
\(287\) 68.9200i 0.240139i
\(288\) 81.1079 + 21.7328i 0.281625 + 0.0754611i
\(289\) 99.6421 + 172.585i 0.344782 + 0.597180i
\(290\) 0 0
\(291\) −266.630 266.630i −0.916256 0.916256i
\(292\) 14.9179 + 55.6744i 0.0510888 + 0.190666i
\(293\) 264.910 70.9824i 0.904130 0.242261i 0.223341 0.974740i \(-0.428304\pi\)
0.680789 + 0.732479i \(0.261637\pi\)
\(294\) 162.140 162.140i 0.551496 0.551496i
\(295\) 0 0
\(296\) 109.953 63.4813i 0.371462 0.214464i
\(297\) −102.168 + 381.298i −0.344001 + 1.28383i
\(298\) −652.032 −2.18803
\(299\) −146.256 + 37.6332i −0.489150 + 0.125864i
\(300\) 0 0
\(301\) −22.3214 + 83.3044i −0.0741573 + 0.276759i
\(302\) 382.782 220.999i 1.26749 0.731786i
\(303\) −169.431 + 293.464i −0.559179 + 0.968527i
\(304\) 332.269 + 332.269i 1.09299 + 1.09299i
\(305\) 0 0
\(306\) 25.2682 + 94.3021i 0.0825757 + 0.308177i
\(307\) −116.111 116.111i −0.378211 0.378211i 0.492245 0.870457i \(-0.336176\pi\)
−0.870457 + 0.492245i \(0.836176\pi\)
\(308\) 17.3806 + 10.0347i 0.0564305 + 0.0325802i
\(309\) 365.457 210.997i 1.18271 0.682837i
\(310\) 0 0
\(311\) 419.831i 1.34994i −0.737845 0.674970i \(-0.764157\pi\)
0.737845 0.674970i \(-0.235843\pi\)
\(312\) −89.3989 + 151.345i −0.286535 + 0.485080i
\(313\) 3.61275i 0.0115423i −0.999983 0.00577116i \(-0.998163\pi\)
0.999983 0.00577116i \(-0.00183703\pi\)
\(314\) −5.02392 + 18.7495i −0.0159997 + 0.0597119i
\(315\) 0 0
\(316\) 28.0892 + 16.2173i 0.0888900 + 0.0513207i
\(317\) −353.225 + 353.225i −1.11428 + 1.11428i −0.121710 + 0.992566i \(0.538838\pi\)
−0.992566 + 0.121710i \(0.961162\pi\)
\(318\) 4.77344 + 17.8147i 0.0150108 + 0.0560211i
\(319\) −16.4801 61.5047i −0.0516619 0.192805i
\(320\) 0 0
\(321\) 54.8518 95.0061i 0.170878 0.295969i
\(322\) −16.0864 27.8625i −0.0499578 0.0865295i
\(323\) −59.5136 + 222.108i −0.184253 + 0.687640i
\(324\) 23.7969i 0.0734473i
\(325\) 0 0
\(326\) 444.275 1.36281
\(327\) 426.962 + 114.404i 1.30570 + 0.349860i
\(328\) 313.913 181.238i 0.957053 0.552555i
\(329\) −33.9354 19.5926i −0.103147 0.0595521i
\(330\) 0 0
\(331\) −453.373 + 121.481i −1.36971 + 0.367012i −0.867372 0.497660i \(-0.834193\pi\)
−0.502336 + 0.864673i \(0.667526\pi\)
\(332\) 32.8338 8.79780i 0.0988971 0.0264994i
\(333\) −63.5289 63.5289i −0.190777 0.190777i
\(334\) 161.162 279.140i 0.482520 0.835750i
\(335\) 0 0
\(336\) −48.0670 12.8795i −0.143057 0.0383319i
\(337\) 249.078 0.739104 0.369552 0.929210i \(-0.379511\pi\)
0.369552 + 0.929210i \(0.379511\pi\)
\(338\) −266.966 277.810i −0.789839 0.821923i
\(339\) 307.994 0.908537
\(340\) 0 0
\(341\) 213.086 + 369.075i 0.624884 + 1.08233i
\(342\) 125.112 216.700i 0.365824 0.633626i
\(343\) 82.9122 82.9122i 0.241727 0.241727i
\(344\) −438.129 + 117.396i −1.27363 + 0.341268i
\(345\) 0 0
\(346\) 164.298 164.298i 0.474851 0.474851i
\(347\) 245.742 + 141.879i 0.708190 + 0.408873i 0.810390 0.585890i \(-0.199255\pi\)
−0.102201 + 0.994764i \(0.532588\pi\)
\(348\) −5.84945 10.1315i −0.0168088 0.0291136i
\(349\) 501.328 + 134.330i 1.43647 + 0.384901i 0.891296 0.453423i \(-0.149797\pi\)
0.545173 + 0.838323i \(0.316464\pi\)
\(350\) 0 0
\(351\) 358.347 + 99.8514i 1.02093 + 0.284477i
\(352\) 256.213i 0.727877i
\(353\) 260.425 + 69.7807i 0.737749 + 0.197679i 0.608077 0.793878i \(-0.291941\pi\)
0.129671 + 0.991557i \(0.458608\pi\)
\(354\) −166.113 287.717i −0.469246 0.812759i
\(355\) 0 0
\(356\) 26.4596 + 26.4596i 0.0743247 + 0.0743247i
\(357\) −6.30253 23.5214i −0.0176541 0.0658862i
\(358\) 146.185 39.1701i 0.408337 0.109414i
\(359\) −143.447 + 143.447i −0.399574 + 0.399574i −0.878083 0.478508i \(-0.841178\pi\)
0.478508 + 0.878083i \(0.341178\pi\)
\(360\) 0 0
\(361\) 197.754 114.173i 0.547796 0.316270i
\(362\) −68.6731 + 256.291i −0.189705 + 0.707988i
\(363\) −146.668 −0.404045
\(364\) 9.61892 16.2840i 0.0264256 0.0447363i
\(365\) 0 0
\(366\) −50.0452 + 186.771i −0.136736 + 0.510304i
\(367\) 400.479 231.217i 1.09122 0.630018i 0.157321 0.987547i \(-0.449714\pi\)
0.933902 + 0.357529i \(0.116381\pi\)
\(368\) 112.430 194.734i 0.305515 0.529167i
\(369\) −181.374 181.374i −0.491528 0.491528i
\(370\) 0 0
\(371\) 1.20182 + 4.48525i 0.00323941 + 0.0120896i
\(372\) 55.3668 + 55.3668i 0.148835 + 0.148835i
\(373\) 13.8547 + 7.99902i 0.0371440 + 0.0214451i 0.518457 0.855104i \(-0.326507\pi\)
−0.481313 + 0.876549i \(0.659840\pi\)
\(374\) −257.982 + 148.946i −0.689791 + 0.398251i
\(375\) 0 0
\(376\) 206.090i 0.548111i
\(377\) −58.1118 + 14.9528i −0.154143 + 0.0396626i
\(378\) 79.2495i 0.209655i
\(379\) −42.1137 + 157.170i −0.111118 + 0.414697i −0.998967 0.0454368i \(-0.985532\pi\)
0.887849 + 0.460134i \(0.152199\pi\)
\(380\) 0 0
\(381\) −44.9197 25.9344i −0.117900 0.0680693i
\(382\) −188.323 + 188.323i −0.492993 + 0.492993i
\(383\) 140.296 + 523.591i 0.366307 + 1.36708i 0.865640 + 0.500667i \(0.166912\pi\)
−0.499333 + 0.866410i \(0.666421\pi\)
\(384\) −84.5026 315.368i −0.220059 0.821271i
\(385\) 0 0
\(386\) −258.784 + 448.228i −0.670426 + 1.16121i
\(387\) 160.487 + 277.971i 0.414694 + 0.718271i
\(388\) −55.2267 + 206.109i −0.142337 + 0.531208i
\(389\) 40.9518i 0.105274i 0.998614 + 0.0526372i \(0.0167627\pi\)
−0.998614 + 0.0526372i \(0.983237\pi\)
\(390\) 0 0
\(391\) 110.034 0.281416
\(392\) 293.285 + 78.5855i 0.748176 + 0.200473i
\(393\) 352.633 203.593i 0.897285 0.518048i
\(394\) 187.167 + 108.061i 0.475044 + 0.274267i
\(395\) 0 0
\(396\) 72.1477 19.3319i 0.182191 0.0488180i
\(397\) 257.363 68.9602i 0.648269 0.173703i 0.0803231 0.996769i \(-0.474405\pi\)
0.567946 + 0.823066i \(0.307738\pi\)
\(398\) −460.494 460.494i −1.15702 1.15702i
\(399\) −31.2061 + 54.0506i −0.0782108 + 0.135465i
\(400\) 0 0
\(401\) 440.936 + 118.148i 1.09959 + 0.294634i 0.762598 0.646873i \(-0.223924\pi\)
0.336992 + 0.941507i \(0.390590\pi\)
\(402\) −280.330 −0.697339
\(403\) 349.786 197.334i 0.867955 0.489663i
\(404\) 191.757 0.474646
\(405\) 0 0
\(406\) −6.39162 11.0706i −0.0157429 0.0272675i
\(407\) 137.068 237.410i 0.336778 0.583316i
\(408\) 90.5602 90.5602i 0.221961 0.221961i
\(409\) 690.126 184.919i 1.68735 0.452124i 0.717646 0.696408i \(-0.245220\pi\)
0.969704 + 0.244284i \(0.0785530\pi\)
\(410\) 0 0
\(411\) 285.081 285.081i 0.693627 0.693627i
\(412\) −206.807 119.400i −0.501958 0.289805i
\(413\) −41.8227 72.4390i −0.101266 0.175397i
\(414\) −115.658 30.9906i −0.279368 0.0748565i
\(415\) 0 0
\(416\) 241.435 + 2.40277i 0.580373 + 0.00577590i
\(417\) 253.628i 0.608221i
\(418\) 737.485 + 197.609i 1.76432 + 0.472748i
\(419\) 9.64146 + 16.6995i 0.0230107 + 0.0398556i 0.877301 0.479940i \(-0.159342\pi\)
−0.854291 + 0.519795i \(0.826008\pi\)
\(420\) 0 0
\(421\) 497.028 + 497.028i 1.18059 + 1.18059i 0.979592 + 0.200999i \(0.0644187\pi\)
0.200999 + 0.979592i \(0.435581\pi\)
\(422\) 111.217 + 415.068i 0.263547 + 0.983572i
\(423\) −140.867 + 37.7453i −0.333020 + 0.0892325i
\(424\) −17.2688 + 17.2688i −0.0407283 + 0.0407283i
\(425\) 0 0
\(426\) 229.384 132.435i 0.538460 0.310880i
\(427\) −12.6000 + 47.0238i −0.0295082 + 0.110126i
\(428\) −62.0796 −0.145046
\(429\) −3.77697 + 379.517i −0.00880413 + 0.884655i
\(430\) 0 0
\(431\) −150.008 + 559.839i −0.348047 + 1.29893i 0.540964 + 0.841046i \(0.318059\pi\)
−0.889012 + 0.457885i \(0.848607\pi\)
\(432\) −479.676 + 276.941i −1.11036 + 0.641068i
\(433\) 286.082 495.509i 0.660698 1.14436i −0.319734 0.947507i \(-0.603594\pi\)
0.980432 0.196856i \(-0.0630731\pi\)
\(434\) 60.4986 + 60.4986i 0.139398 + 0.139398i
\(435\) 0 0
\(436\) −64.7396 241.611i −0.148485 0.554155i
\(437\) −199.417 199.417i −0.456331 0.456331i
\(438\) −201.102 116.106i −0.459137 0.265083i
\(439\) −206.594 + 119.277i −0.470602 + 0.271702i −0.716492 0.697596i \(-0.754253\pi\)
0.245890 + 0.969298i \(0.420920\pi\)
\(440\) 0 0
\(441\) 214.861i 0.487212i
\(442\) 137.936 + 244.499i 0.312072 + 0.553165i
\(443\) 110.509i 0.249455i −0.992191 0.124728i \(-0.960194\pi\)
0.992191 0.124728i \(-0.0398057\pi\)
\(444\) 13.0360 48.6510i 0.0293603 0.109574i
\(445\) 0 0
\(446\) 207.743 + 119.940i 0.465791 + 0.268924i
\(447\) 427.996 427.996i 0.957485 0.957485i
\(448\) −11.0300 41.1644i −0.0246205 0.0918849i
\(449\) 106.893 + 398.930i 0.238069 + 0.888486i 0.976741 + 0.214421i \(0.0687864\pi\)
−0.738672 + 0.674065i \(0.764547\pi\)
\(450\) 0 0
\(451\) 391.328 677.800i 0.867690 1.50288i
\(452\) −87.1445 150.939i −0.192798 0.333935i
\(453\) −106.195 + 396.324i −0.234425 + 0.874887i
\(454\) 562.195i 1.23832i
\(455\) 0 0
\(456\) −328.249 −0.719844
\(457\) −389.042 104.243i −0.851295 0.228104i −0.193313 0.981137i \(-0.561923\pi\)
−0.657982 + 0.753033i \(0.728590\pi\)
\(458\) 562.603 324.819i 1.22839 0.709212i
\(459\) −234.727 135.520i −0.511388 0.295250i
\(460\) 0 0
\(461\) 327.128 87.6537i 0.709605 0.190138i 0.114076 0.993472i \(-0.463609\pi\)
0.595529 + 0.803334i \(0.296943\pi\)
\(462\) −78.1002 + 20.9269i −0.169048 + 0.0452963i
\(463\) −27.1990 27.1990i −0.0587451 0.0587451i 0.677124 0.735869i \(-0.263226\pi\)
−0.735869 + 0.677124i \(0.763226\pi\)
\(464\) 44.6716 77.3735i 0.0962750 0.166753i
\(465\) 0 0
\(466\) −768.465 205.910i −1.64907 0.441866i
\(467\) −201.721 −0.431950 −0.215975 0.976399i \(-0.569293\pi\)
−0.215975 + 0.976399i \(0.569293\pi\)
\(468\) −17.5403 68.1677i −0.0374792 0.145657i
\(469\) −70.5793 −0.150489
\(470\) 0 0
\(471\) −9.00953 15.6050i −0.0191285 0.0331315i
\(472\) 219.961 380.984i 0.466019 0.807169i
\(473\) −692.524 + 692.524i −1.46411 + 1.46411i
\(474\) −126.220 + 33.8204i −0.266286 + 0.0713512i
\(475\) 0 0
\(476\) −9.74387 + 9.74387i −0.0204703 + 0.0204703i
\(477\) 14.9664 + 8.64087i 0.0313761 + 0.0181150i
\(478\) −100.395 173.890i −0.210032 0.363786i
\(479\) −6.17022 1.65331i −0.0128815 0.00345158i 0.252373 0.967630i \(-0.418789\pi\)
−0.265254 + 0.964179i \(0.585456\pi\)
\(480\) 0 0
\(481\) −222.431 131.389i −0.462434 0.273158i
\(482\) 428.127i 0.888231i
\(483\) 28.8482 + 7.72985i 0.0597271 + 0.0160038i
\(484\) 41.4987 + 71.8779i 0.0857411 + 0.148508i
\(485\) 0 0
\(486\) 347.379 + 347.379i 0.714772 + 0.714772i
\(487\) −31.1660 116.313i −0.0639958 0.238836i 0.926518 0.376251i \(-0.122787\pi\)
−0.990513 + 0.137416i \(0.956120\pi\)
\(488\) −247.316 + 66.2681i −0.506795 + 0.135795i
\(489\) −291.623 + 291.623i −0.596367 + 0.596367i
\(490\) 0 0
\(491\) −151.464 + 87.4479i −0.308481 + 0.178102i −0.646247 0.763129i \(-0.723662\pi\)
0.337765 + 0.941230i \(0.390329\pi\)
\(492\) 37.2175 138.898i 0.0756454 0.282312i
\(493\) 43.7197 0.0886809
\(494\) 193.127 693.096i 0.390946 1.40303i
\(495\) 0 0
\(496\) −154.767 + 577.597i −0.312030 + 1.16451i
\(497\) 57.7525 33.3434i 0.116202 0.0670894i
\(498\) −68.4734 + 118.599i −0.137497 + 0.238151i
\(499\) −133.231 133.231i −0.266995 0.266995i 0.560893 0.827888i \(-0.310458\pi\)
−0.827888 + 0.560893i \(0.810458\pi\)
\(500\) 0 0
\(501\) 77.4415 + 289.016i 0.154574 + 0.576877i
\(502\) −495.297 495.297i −0.986648 0.986648i
\(503\) 14.0035 + 8.08495i 0.0278400 + 0.0160735i 0.513855 0.857877i \(-0.328217\pi\)
−0.486015 + 0.873950i \(0.661550\pi\)
\(504\) −30.3878 + 17.5444i −0.0602932 + 0.0348103i
\(505\) 0 0
\(506\) 365.355i 0.722045i
\(507\) 357.592 + 7.11825i 0.705310 + 0.0140399i
\(508\) 29.3518i 0.0577791i
\(509\) 2.07048 7.72713i 0.00406774 0.0151810i −0.963862 0.266402i \(-0.914165\pi\)
0.967930 + 0.251221i \(0.0808319\pi\)
\(510\) 0 0
\(511\) −50.6319 29.2323i −0.0990839 0.0572061i
\(512\) 95.5755 95.5755i 0.186671 0.186671i
\(513\) 179.796 + 671.008i 0.350479 + 1.30801i
\(514\) −18.5115 69.0859i −0.0360146 0.134408i
\(515\) 0 0
\(516\) −89.9705 + 155.833i −0.174361 + 0.302003i
\(517\) −222.494 385.371i −0.430356 0.745398i
\(518\) 14.2443 53.1603i 0.0274986 0.102626i
\(519\) 215.692i 0.415591i
\(520\) 0 0
\(521\) −944.984 −1.81379 −0.906895 0.421358i \(-0.861554\pi\)
−0.906895 + 0.421358i \(0.861554\pi\)
\(522\) −45.9546 12.3135i −0.0880356 0.0235891i
\(523\) 1.77856 1.02685i 0.00340070 0.00196339i −0.498299 0.867005i \(-0.666042\pi\)
0.501699 + 0.865042i \(0.332708\pi\)
\(524\) −199.550 115.210i −0.380820 0.219867i
\(525\) 0 0
\(526\) −1132.46 + 303.442i −2.15297 + 0.576885i
\(527\) −282.644 + 75.7343i −0.536327 + 0.143708i
\(528\) −399.589 399.589i −0.756798 0.756798i
\(529\) 197.024 341.255i 0.372445 0.645094i
\(530\) 0 0
\(531\) −300.698 80.5717i −0.566285 0.151736i
\(532\) 35.3181 0.0663874
\(533\) −635.036 375.114i −1.19144 0.703778i
\(534\) −150.755 −0.282313
\(535\) 0 0
\(536\) −185.601 321.471i −0.346271 0.599759i
\(537\) −70.2447 + 121.667i −0.130809 + 0.226569i
\(538\) −535.517 + 535.517i −0.995386 + 0.995386i
\(539\) 633.260 169.681i 1.17488 0.314808i
\(540\) 0 0
\(541\) −65.8956 + 65.8956i −0.121803 + 0.121803i −0.765381 0.643578i \(-0.777449\pi\)
0.643578 + 0.765381i \(0.277449\pi\)
\(542\) 121.147 + 69.9442i 0.223518 + 0.129048i
\(543\) −123.153 213.308i −0.226802 0.392832i
\(544\) −169.925 45.5312i −0.312362 0.0836971i
\(545\) 0 0
\(546\) 18.9874 + 73.7918i 0.0347755 + 0.135150i
\(547\) 297.410i 0.543711i −0.962338 0.271855i \(-0.912363\pi\)
0.962338 0.271855i \(-0.0876372\pi\)
\(548\) −220.371 59.0482i −0.402137 0.107752i
\(549\) 90.5917 + 156.909i 0.165012 + 0.285810i
\(550\) 0 0
\(551\) −79.2342 79.2342i −0.143801 0.143801i
\(552\) 40.6542 + 151.723i 0.0736488 + 0.274861i
\(553\) −31.7786 + 8.51505i −0.0574658 + 0.0153979i
\(554\) −422.925 + 422.925i −0.763402 + 0.763402i
\(555\) 0 0
\(556\) 124.296 71.7621i 0.223553 0.129069i
\(557\) −218.723 + 816.286i −0.392681 + 1.46550i 0.433014 + 0.901387i \(0.357450\pi\)
−0.825695 + 0.564117i \(0.809217\pi\)
\(558\) 318.423 0.570651
\(559\) 646.087 + 659.076i 1.15579 + 1.17903i
\(560\) 0 0
\(561\) 71.5715 267.109i 0.127579 0.476129i
\(562\) −122.330 + 70.6272i −0.217669 + 0.125671i
\(563\) −88.4819 + 153.255i −0.157161 + 0.272212i −0.933844 0.357681i \(-0.883568\pi\)
0.776683 + 0.629892i \(0.216901\pi\)
\(564\) −57.8114 57.8114i −0.102502 0.102502i
\(565\) 0 0
\(566\) −110.492 412.361i −0.195215 0.728553i
\(567\) −17.0682 17.0682i −0.0301026 0.0301026i
\(568\) 303.742 + 175.365i 0.534757 + 0.308742i
\(569\) −306.928 + 177.205i −0.539416 + 0.311432i −0.744842 0.667241i \(-0.767475\pi\)
0.205426 + 0.978673i \(0.434142\pi\)
\(570\) 0 0
\(571\) 1094.23i 1.91634i −0.286193 0.958172i \(-0.592390\pi\)
0.286193 0.958172i \(-0.407610\pi\)
\(572\) 187.059 105.530i 0.327026 0.184494i
\(573\) 247.232i 0.431470i
\(574\) 40.6671 151.772i 0.0708486 0.264411i
\(575\) 0 0
\(576\) −137.358 79.3036i −0.238468 0.137680i
\(577\) 101.074 101.074i 0.175171 0.175171i −0.614076 0.789247i \(-0.710471\pi\)
0.789247 + 0.614076i \(0.210471\pi\)
\(578\) 117.590 + 438.852i 0.203443 + 0.759260i
\(579\) −124.351 464.085i −0.214769 0.801528i
\(580\) 0 0
\(581\) −17.2397 + 29.8600i −0.0296724 + 0.0513942i
\(582\) −429.830 744.487i −0.738539 1.27919i
\(583\) −13.6479 + 50.9345i −0.0234097 + 0.0873663i
\(584\) 307.487i 0.526519i
\(585\) 0 0
\(586\) 625.254 1.06699
\(587\) 322.325 + 86.3669i 0.549106 + 0.147133i 0.522697 0.852519i \(-0.324926\pi\)
0.0264095 + 0.999651i \(0.491593\pi\)
\(588\) 104.316 60.2266i 0.177407 0.102426i
\(589\) 649.498 + 374.988i 1.10271 + 0.636652i
\(590\) 0 0
\(591\) −193.789 + 51.9256i −0.327900 + 0.0878606i
\(592\) 371.542 99.5545i 0.627605 0.168166i
\(593\) 510.973 + 510.973i 0.861674 + 0.861674i 0.991533 0.129859i \(-0.0414524\pi\)
−0.129859 + 0.991533i \(0.541452\pi\)
\(594\) −449.979 + 779.387i −0.757541 + 1.31210i
\(595\) 0 0
\(596\) −330.846 88.6500i −0.555111 0.148742i
\(597\) 604.539 1.01263
\(598\) −344.282 3.42631i −0.575723 0.00572962i
\(599\) −768.936 −1.28370 −0.641849 0.766831i \(-0.721833\pi\)
−0.641849 + 0.766831i \(0.721833\pi\)
\(600\) 0 0
\(601\) 464.639 + 804.778i 0.773109 + 1.33906i 0.935851 + 0.352396i \(0.114633\pi\)
−0.162742 + 0.986669i \(0.552034\pi\)
\(602\) −98.3097 + 170.277i −0.163305 + 0.282853i
\(603\) −185.741 + 185.741i −0.308027 + 0.308027i
\(604\) 224.274 60.0939i 0.371314 0.0994933i
\(605\) 0 0
\(606\) −546.274 + 546.274i −0.901442 + 0.901442i
\(607\) −153.946 88.8810i −0.253618 0.146427i 0.367802 0.929904i \(-0.380111\pi\)
−0.621420 + 0.783478i \(0.713444\pi\)
\(608\) 225.442 + 390.476i 0.370792 + 0.642231i
\(609\) 11.4623 + 3.07130i 0.0188214 + 0.00504319i
\(610\) 0 0
\(611\) −365.230 + 206.047i −0.597758 + 0.337229i
\(612\) 51.2851i 0.0837991i
\(613\) −478.151 128.120i −0.780018 0.209005i −0.153225 0.988191i \(-0.548966\pi\)
−0.626793 + 0.779186i \(0.715633\pi\)
\(614\) −187.180 324.205i −0.304854 0.528022i
\(615\) 0 0
\(616\) −75.7067 75.7067i −0.122901 0.122901i
\(617\) −214.627 800.999i −0.347856 1.29822i −0.889240 0.457440i \(-0.848766\pi\)
0.541385 0.840775i \(-0.317900\pi\)
\(618\) 929.290 249.002i 1.50371 0.402917i
\(619\) −445.288 + 445.288i −0.719366 + 0.719366i −0.968475 0.249109i \(-0.919862\pi\)
0.249109 + 0.968475i \(0.419862\pi\)
\(620\) 0 0
\(621\) 287.886 166.211i 0.463584 0.267650i
\(622\) 247.727 924.529i 0.398274 1.48638i
\(623\) −37.9559 −0.0609244
\(624\) −380.289 + 372.795i −0.609438 + 0.597427i
\(625\) 0 0
\(626\) 2.13175 7.95579i 0.00340535 0.0127089i
\(627\) −613.798 + 354.377i −0.978945 + 0.565194i
\(628\) −5.09835 + 8.83061i −0.00811840 + 0.0140615i
\(629\) 133.096 + 133.096i 0.211599 + 0.211599i
\(630\) 0 0
\(631\) −14.1861 52.9432i −0.0224819 0.0839036i 0.953773 0.300527i \(-0.0971624\pi\)
−0.976255 + 0.216623i \(0.930496\pi\)
\(632\) −122.352 122.352i −0.193594 0.193594i
\(633\) −345.455 199.448i −0.545742 0.315084i
\(634\) −986.278 + 569.428i −1.55564 + 0.898151i
\(635\) 0 0
\(636\) 9.68833i 0.0152332i
\(637\) −153.956 598.326i −0.241689 0.939288i
\(638\) 145.167i 0.227534i
\(639\) 64.2363 239.733i 0.100526 0.375169i
\(640\) 0 0
\(641\) −480.364 277.338i −0.749398 0.432665i 0.0760784 0.997102i \(-0.475760\pi\)
−0.825476 + 0.564437i \(0.809093\pi\)
\(642\) 176.851 176.851i 0.275469 0.275469i
\(643\) 95.3123 + 355.710i 0.148231 + 0.553204i 0.999590 + 0.0286218i \(0.00911185\pi\)
−0.851360 + 0.524582i \(0.824221\pi\)
\(644\) −4.37421 16.3248i −0.00679224 0.0253490i
\(645\) 0 0
\(646\) −262.115 + 453.997i −0.405751 + 0.702781i
\(647\) 298.039 + 516.219i 0.460648 + 0.797866i 0.998993 0.0448587i \(-0.0142838\pi\)
−0.538345 + 0.842724i \(0.680950\pi\)
\(648\) 32.8573 122.625i 0.0507057 0.189236i
\(649\) 949.877i 1.46360i
\(650\) 0 0
\(651\) −79.4229 −0.122001
\(652\) 225.429 + 60.4034i 0.345749 + 0.0926433i
\(653\) 635.999 367.194i 0.973965 0.562319i 0.0735223 0.997294i \(-0.476576\pi\)
0.900443 + 0.434975i \(0.143243\pi\)
\(654\) 872.727 + 503.869i 1.33444 + 0.770442i
\(655\) 0 0
\(656\) 1060.75 284.226i 1.61699 0.433272i
\(657\) −210.175 + 56.3163i −0.319901 + 0.0857173i
\(658\) −63.1698 63.1698i −0.0960028 0.0960028i
\(659\) 58.7650 101.784i 0.0891730 0.154452i −0.817989 0.575234i \(-0.804911\pi\)
0.907162 + 0.420782i \(0.138244\pi\)
\(660\) 0 0
\(661\) −147.166 39.4330i −0.222641 0.0596565i 0.145774 0.989318i \(-0.453433\pi\)
−0.368415 + 0.929661i \(0.620099\pi\)
\(662\) −1070.07 −1.61643
\(663\) −251.031 69.9484i −0.378629 0.105503i
\(664\) −181.340 −0.273102
\(665\) 0 0
\(666\) −102.414 177.386i −0.153774 0.266345i
\(667\) −26.8104 + 46.4370i −0.0401955 + 0.0696206i
\(668\) 119.727 119.727i 0.179231 0.179231i
\(669\) −215.092 + 57.6337i −0.321513 + 0.0861490i
\(670\) 0 0
\(671\) −390.917 + 390.917i −0.582589 + 0.582589i
\(672\) −41.3517 23.8744i −0.0615353 0.0355274i
\(673\) −238.096 412.395i −0.353784 0.612771i 0.633125 0.774049i \(-0.281772\pi\)
−0.986909 + 0.161278i \(0.948438\pi\)
\(674\) 548.506 + 146.972i 0.813807 + 0.218059i
\(675\) 0 0
\(676\) −97.6895 177.259i −0.144511 0.262218i
\(677\) 781.304i 1.15407i −0.816720 0.577034i \(-0.804210\pi\)
0.816720 0.577034i \(-0.195790\pi\)
\(678\) 678.247 + 181.736i 1.00036 + 0.268047i
\(679\) −108.219 187.441i −0.159380 0.276055i
\(680\) 0 0
\(681\) 369.026 + 369.026i 0.541889 + 0.541889i
\(682\) 251.468 + 938.490i 0.368721 + 1.37608i
\(683\) 960.022 257.237i 1.40560 0.376628i 0.525245 0.850951i \(-0.323974\pi\)
0.880351 + 0.474322i \(0.157307\pi\)
\(684\) 92.9451 92.9451i 0.135885 0.135885i
\(685\) 0 0
\(686\) 231.508 133.661i 0.337475 0.194841i
\(687\) −156.082 + 582.507i −0.227194 + 0.847899i
\(688\) −1374.19 −1.99737
\(689\) 47.8688 + 13.3384i 0.0694757 + 0.0193590i
\(690\) 0 0
\(691\) −188.337 + 702.882i −0.272557 + 1.01720i 0.684904 + 0.728633i \(0.259844\pi\)
−0.957461 + 0.288563i \(0.906823\pi\)
\(692\) 105.704 61.0284i 0.152752 0.0881913i
\(693\) −37.8817 + 65.6131i −0.0546634 + 0.0946798i
\(694\) 457.441 + 457.441i 0.659137 + 0.659137i
\(695\) 0 0
\(696\) 16.1531 + 60.2842i 0.0232085 + 0.0866153i
\(697\) 379.987 + 379.987i 0.545174 + 0.545174i
\(698\) 1024.73 + 591.629i 1.46810 + 0.847606i
\(699\) 639.582 369.263i 0.914996 0.528273i
\(700\) 0 0
\(701\) 372.113i 0.530831i 0.964134 + 0.265416i \(0.0855092\pi\)
−0.964134 + 0.265416i \(0.914491\pi\)
\(702\) 730.214 + 431.335i 1.04019 + 0.614437i
\(703\) 482.426i 0.686239i
\(704\) 125.257 467.464i 0.177921 0.664011i
\(705\) 0 0
\(706\) 532.319 + 307.334i 0.753993 + 0.435318i
\(707\) −137.537 + 137.537i −0.194535 + 0.194535i
\(708\) −45.1694 168.574i −0.0637985 0.238099i
\(709\) −206.076 769.087i −0.290658 1.08475i −0.944605 0.328209i \(-0.893555\pi\)
0.653947 0.756540i \(-0.273112\pi\)
\(710\) 0 0
\(711\) −61.2216 + 106.039i −0.0861064 + 0.149141i
\(712\) −99.8121 172.880i −0.140186 0.242809i
\(713\) 92.8857 346.654i 0.130274 0.486191i
\(714\) 55.5163i 0.0777539i
\(715\) 0 0
\(716\) 79.5008 0.111035
\(717\) 180.041 + 48.2420i 0.251104 + 0.0672831i
\(718\) −400.534 + 231.249i −0.557847 + 0.322073i
\(719\) −477.727 275.816i −0.664432 0.383610i 0.129531 0.991575i \(-0.458653\pi\)
−0.793964 + 0.607965i \(0.791986\pi\)
\(720\) 0 0
\(721\) 233.969 62.6919i 0.324507 0.0869513i
\(722\) 502.853 134.739i 0.696472 0.186619i
\(723\) −281.024 281.024i −0.388691 0.388691i
\(724\) −69.6905 + 120.708i −0.0962576 + 0.166723i
\(725\) 0 0
\(726\) −322.985 86.5435i −0.444883 0.119206i
\(727\) 1045.67 1.43834 0.719168 0.694836i \(-0.244523\pi\)
0.719168 + 0.694836i \(0.244523\pi\)
\(728\) −72.0501 + 70.6302i −0.0989700 + 0.0970195i
\(729\) −634.875 −0.870884
\(730\) 0 0
\(731\) −336.227 582.362i −0.459954 0.796665i
\(732\) −50.7867 + 87.9651i −0.0693807 + 0.120171i
\(733\) 404.316 404.316i 0.551591 0.551591i −0.375309 0.926900i \(-0.622463\pi\)
0.926900 + 0.375309i \(0.122463\pi\)
\(734\) 1018.34 272.865i 1.38739 0.371750i
\(735\) 0 0
\(736\) 152.565 152.565i 0.207289 0.207289i
\(737\) −694.119 400.750i −0.941816 0.543758i
\(738\) −292.389 506.433i −0.396191 0.686224i
\(739\) −556.077 149.000i −0.752472 0.201624i −0.137858 0.990452i \(-0.544022\pi\)
−0.614614 + 0.788828i \(0.710688\pi\)
\(740\) 0 0
\(741\) 328.181 + 581.719i 0.442889 + 0.785046i
\(742\) 10.5863i 0.0142673i
\(743\) −224.987 60.2851i −0.302809 0.0811374i 0.104215 0.994555i \(-0.466767\pi\)
−0.407024 + 0.913417i \(0.633434\pi\)
\(744\) −208.857 361.751i −0.280722 0.486225i
\(745\) 0 0
\(746\) 25.7901 + 25.7901i 0.0345712 + 0.0345712i
\(747\) 33.2124 + 123.950i 0.0444610 + 0.165931i
\(748\) −151.153 + 40.5012i −0.202076 + 0.0541460i
\(749\) 44.5262 44.5262i 0.0594475 0.0594475i
\(750\) 0 0
\(751\) 171.987 99.2965i 0.229010 0.132219i −0.381105 0.924532i \(-0.624456\pi\)
0.610115 + 0.792313i \(0.291123\pi\)
\(752\) 161.600 603.100i 0.214894 0.801995i
\(753\) 650.229 0.863518
\(754\) −136.794 1.36138i −0.181424 0.00180554i
\(755\) 0 0
\(756\) −10.7747 + 40.2118i −0.0142523 + 0.0531903i
\(757\) −349.645 + 201.868i −0.461883 + 0.266668i −0.712836 0.701331i \(-0.752589\pi\)
0.250953 + 0.967999i \(0.419256\pi\)
\(758\) −185.481 + 321.262i −0.244697 + 0.423828i
\(759\) 239.820 + 239.820i 0.315968 + 0.315968i
\(760\) 0 0
\(761\) 262.782 + 980.716i 0.345312 + 1.28872i 0.892248 + 0.451546i \(0.149127\pi\)
−0.546936 + 0.837174i \(0.684206\pi\)
\(762\) −83.6167 83.6167i −0.109733 0.109733i
\(763\) 219.728 + 126.860i 0.287979 + 0.166265i
\(764\) −121.161 + 69.9524i −0.158588 + 0.0915608i
\(765\) 0 0
\(766\) 1235.81i 1.61332i
\(767\) −895.091 8.90799i −1.16700 0.0116141i
\(768\) 447.366i 0.582508i
\(769\) −143.955 + 537.249i −0.187198 + 0.698633i 0.806951 + 0.590618i \(0.201116\pi\)
−0.994149 + 0.108015i \(0.965551\pi\)
\(770\) 0 0
\(771\) 57.4992 + 33.1972i 0.0745774 + 0.0430573i
\(772\) −192.250 + 192.250i −0.249028 + 0.249028i
\(773\) 121.247 + 452.500i 0.156853 + 0.585382i 0.998940 + 0.0460401i \(0.0146602\pi\)
−0.842087 + 0.539342i \(0.818673\pi\)
\(774\) 189.394 + 706.829i 0.244695 + 0.913216i
\(775\) 0 0
\(776\) 569.165 985.822i 0.733460 1.27039i
\(777\) 25.5446 + 44.2446i 0.0328759 + 0.0569428i
\(778\) −24.1641 + 90.1817i −0.0310593 + 0.115915i
\(779\) 1377.32i 1.76806i
\(780\) 0 0
\(781\) 757.296 0.969649
\(782\) 242.310 + 64.9267i 0.309859 + 0.0830265i
\(783\) 114.386 66.0405i 0.146086 0.0843429i
\(784\) 796.647 + 459.944i 1.01613 + 0.586664i
\(785\) 0 0
\(786\) 896.681 240.265i 1.14082 0.305681i
\(787\) −255.618 + 68.4928i −0.324801 + 0.0870302i −0.417535 0.908661i \(-0.637106\pi\)
0.0927342 + 0.995691i \(0.470439\pi\)
\(788\) 80.2783 + 80.2783i 0.101876 + 0.101876i
\(789\) 544.170 942.530i 0.689696 1.19459i
\(790\) 0 0
\(791\) 170.764 + 45.7560i 0.215883 + 0.0578457i
\(792\) −398.468 −0.503117
\(793\) 364.704 + 372.036i 0.459904 + 0.469150i
\(794\) 607.441 0.765039
\(795\) 0 0
\(796\) −171.050 296.267i −0.214887 0.372195i
\(797\) 127.501 220.839i 0.159977 0.277087i −0.774883 0.632104i \(-0.782191\pi\)
0.934860 + 0.355017i \(0.115525\pi\)
\(798\) −100.614 + 100.614i −0.126082 + 0.126082i
\(799\) 295.124 79.0782i 0.369367 0.0989715i
\(800\) 0 0
\(801\) −99.8870 + 99.8870i −0.124703 + 0.124703i
\(802\) 901.289 + 520.359i 1.12380 + 0.648827i
\(803\) −331.962 574.976i −0.413403 0.716035i
\(804\) −142.242 38.1136i −0.176918 0.0474049i
\(805\) 0 0
\(806\) 886.718 228.162i 1.10015 0.283080i
\(807\) 703.030i 0.871165i
\(808\) −988.122 264.766i −1.22292 0.327681i
\(809\) −6.95187 12.0410i −0.00859316 0.0148838i 0.861697 0.507423i \(-0.169402\pi\)
−0.870290 + 0.492540i \(0.836069\pi\)
\(810\) 0 0
\(811\) −567.998 567.998i −0.700367 0.700367i 0.264122 0.964489i \(-0.414918\pi\)
−0.964489 + 0.264122i \(0.914918\pi\)
\(812\) −1.73800 6.48631i −0.00214040 0.00798807i
\(813\) −125.433 + 33.6096i −0.154284 + 0.0413403i
\(814\) 441.931 441.931i 0.542913 0.542913i
\(815\) 0 0
\(816\) 336.025 194.004i 0.411796 0.237750i
\(817\) −446.077 + 1664.78i −0.545993 + 2.03767i
\(818\) 1628.87 1.99128
\(819\) 61.4735 + 36.3121i 0.0750592 + 0.0443372i
\(820\) 0 0
\(821\) 395.448 1475.83i 0.481666 1.79760i −0.112962 0.993599i \(-0.536034\pi\)
0.594627 0.804002i \(-0.297300\pi\)
\(822\) 796.004 459.573i 0.968375 0.559091i
\(823\) −189.106 + 327.542i −0.229777 + 0.397985i −0.957742 0.287629i \(-0.907133\pi\)
0.727965 + 0.685614i \(0.240466\pi\)
\(824\) 900.811 + 900.811i 1.09322 + 1.09322i
\(825\) 0 0
\(826\) −49.3560 184.199i −0.0597530 0.223001i
\(827\) 1072.43 + 1072.43i 1.29677 + 1.29677i 0.930516 + 0.366251i \(0.119359\pi\)
0.366251 + 0.930516i \(0.380641\pi\)
\(828\) −54.4726 31.4497i −0.0657881 0.0379828i
\(829\) −1417.54 + 818.417i −1.70994 + 0.987234i −0.775331 + 0.631555i \(0.782417\pi\)
−0.934608 + 0.355679i \(0.884250\pi\)
\(830\) 0 0
\(831\) 555.218i 0.668132i
\(832\) −439.327 122.416i −0.528037 0.147135i
\(833\) 450.143i 0.540388i
\(834\) −149.656 + 558.526i −0.179444 + 0.669695i
\(835\) 0 0
\(836\) 347.339 + 200.536i 0.415477 + 0.239876i
\(837\) −625.093 + 625.093i −0.746826 + 0.746826i
\(838\) 11.3781 + 42.4638i 0.0135777 + 0.0506728i
\(839\) 101.533 + 378.924i 0.121016 + 0.451638i 0.999666 0.0258276i \(-0.00822209\pi\)
−0.878650 + 0.477466i \(0.841555\pi\)
\(840\) 0 0
\(841\) 409.847 709.877i 0.487333 0.844086i
\(842\) 801.250 + 1387.81i 0.951603 + 1.64823i
\(843\) 33.9378 126.658i 0.0402583 0.150246i
\(844\) 225.730i 0.267452i
\(845\) 0 0
\(846\) −332.483 −0.393005
\(847\) −81.3186 21.7892i −0.0960078 0.0257252i
\(848\) −64.0761 + 36.9944i −0.0755615 + 0.0436254i
\(849\) 343.202 + 198.148i 0.404243 + 0.233390i
\(850\) 0 0
\(851\) −222.987 + 59.7492i −0.262030 + 0.0702106i
\(852\) 134.397 36.0116i 0.157743 0.0422671i
\(853\) −393.928 393.928i −0.461815 0.461815i 0.437435 0.899250i \(-0.355887\pi\)
−0.899250 + 0.437435i \(0.855887\pi\)
\(854\) −55.4940 + 96.1184i −0.0649813 + 0.112551i
\(855\) 0 0
\(856\) 319.895 + 85.7157i 0.373709 + 0.100135i
\(857\) −838.341 −0.978227 −0.489114 0.872220i \(-0.662680\pi\)
−0.489114 + 0.872220i \(0.662680\pi\)
\(858\) −232.256 + 833.523i −0.270695 + 0.971472i
\(859\) −491.289 −0.571931 −0.285966 0.958240i \(-0.592314\pi\)
−0.285966 + 0.958240i \(0.592314\pi\)
\(860\) 0 0
\(861\) 72.9294 + 126.317i 0.0847031 + 0.146710i
\(862\) −660.680 + 1144.33i −0.766450 + 1.32753i
\(863\) −543.438 + 543.438i −0.629708 + 0.629708i −0.947995 0.318287i \(-0.896893\pi\)
0.318287 + 0.947995i \(0.396893\pi\)
\(864\) −513.358 + 137.554i −0.594165 + 0.159206i
\(865\) 0 0
\(866\) 922.376 922.376i 1.06510 1.06510i
\(867\) −365.250 210.877i −0.421281 0.243227i
\(868\) 22.4721 + 38.9228i 0.0258895 + 0.0448420i
\(869\) −360.878 96.6969i −0.415279 0.111274i
\(870\) 0 0
\(871\) −384.145 + 650.325i −0.441039 + 0.746642i
\(872\) 1334.41i 1.53029i
\(873\) −778.076 208.485i −0.891267 0.238814i
\(874\) −321.476 556.812i −0.367821 0.637085i
\(875\) 0 0
\(876\) −86.2550 86.2550i −0.0984646 0.0984646i
\(877\) −201.005 750.161i −0.229196 0.855372i −0.980680 0.195620i \(-0.937328\pi\)
0.751484 0.659752i \(-0.229339\pi\)
\(878\) −525.331 + 140.762i −0.598327 + 0.160321i
\(879\) −410.419 + 410.419i −0.466915 + 0.466915i
\(880\) 0 0
\(881\) −692.313 + 399.707i −0.785826 + 0.453697i −0.838491 0.544915i \(-0.816562\pi\)
0.0526650 + 0.998612i \(0.483228\pi\)
\(882\) 126.781 473.154i 0.143743 0.536456i
\(883\) 1402.70 1.58856 0.794281 0.607550i \(-0.207848\pi\)
0.794281 + 0.607550i \(0.207848\pi\)
\(884\) 36.7477 + 142.814i 0.0415698 + 0.161555i
\(885\) 0 0
\(886\) 65.2071 243.356i 0.0735971 0.274668i
\(887\) −45.8967 + 26.4985i −0.0517438 + 0.0298743i −0.525649 0.850702i \(-0.676177\pi\)
0.473905 + 0.880576i \(0.342844\pi\)
\(888\) −134.349 + 232.698i −0.151293 + 0.262048i
\(889\) −21.0524 21.0524i −0.0236809 0.0236809i
\(890\) 0 0
\(891\) −70.9453 264.772i −0.0796244 0.297162i
\(892\) 89.1032 + 89.1032i 0.0998915 + 0.0998915i
\(893\) −678.176 391.545i −0.759435 0.438460i
\(894\) 1195.05 689.964i 1.33675 0.771771i
\(895\) 0 0
\(896\) 187.406i 0.209158i
\(897\) 228.237 223.739i 0.254445 0.249430i
\(898\) 941.575i 1.04852i
\(899\) 36.9063 137.736i 0.0410526 0.153210i
\(900\) 0 0
\(901\) −31.3553 18.1030i −0.0348006 0.0200921i
\(902\) 1261.70 1261.70i 1.39879 1.39879i
\(903\) −47.2398 176.301i −0.0523143 0.195240i
\(904\) 240.648 + 898.109i 0.266203 + 0.993484i
\(905\) 0 0
\(906\) −467.712 + 810.100i −0.516238 + 0.894151i
\(907\) −115.693 200.386i −0.127556 0.220933i 0.795173 0.606382i \(-0.207380\pi\)
−0.922729 + 0.385449i \(0.874046\pi\)
\(908\) 76.4358 285.262i 0.0841804 0.314165i
\(909\) 723.898i 0.796367i
\(910\) 0 0
\(911\) −1082.49 −1.18825 −0.594124 0.804373i \(-0.702501\pi\)
−0.594124 + 0.804373i \(0.702501\pi\)
\(912\) −960.585 257.388i −1.05327 0.282224i
\(913\) −339.090 + 195.774i −0.371402 + 0.214429i
\(914\) −795.216 459.118i −0.870039 0.502317i
\(915\) 0 0
\(916\) 329.632 88.3245i 0.359860 0.0964241i
\(917\) 225.759 60.4920i 0.246193 0.0659673i
\(918\) −436.938 436.938i −0.475967 0.475967i
\(919\) 158.907 275.235i 0.172913 0.299494i −0.766524 0.642215i \(-0.778015\pi\)
0.939437 + 0.342722i \(0.111349\pi\)
\(920\) 0 0
\(921\) 335.675 + 89.9438i 0.364468 + 0.0976589i
\(922\) 772.104 0.837423
\(923\) 7.10195 713.617i 0.00769442 0.773150i
\(924\) −42.4738 −0.0459674
\(925\) 0 0
\(926\) −43.8470 75.9451i −0.0473509 0.0820142i
\(927\) 450.743 780.710i 0.486239 0.842190i
\(928\) 60.6186 60.6186i 0.0653218 0.0653218i
\(929\) 324.719 87.0081i 0.349536 0.0936578i −0.0797795 0.996813i \(-0.525422\pi\)
0.429315 + 0.903155i \(0.358755\pi\)
\(930\) 0 0
\(931\) 815.805 815.805i 0.876267 0.876267i
\(932\) −361.930 208.960i −0.388337 0.224206i
\(933\) 444.255 + 769.472i 0.476157 + 0.824728i
\(934\) −444.218 119.028i −0.475608 0.127439i
\(935\) 0 0
\(936\) −3.73685 + 375.486i −0.00399236 + 0.401160i
\(937\) 896.921i 0.957226i 0.878026 + 0.478613i \(0.158860\pi\)
−0.878026 + 0.478613i \(0.841140\pi\)
\(938\) −155.426 41.6462i −0.165699 0.0443990i
\(939\) 3.82292 + 6.62149i 0.00407127 + 0.00705164i
\(940\) 0 0
\(941\) −426.378 426.378i −0.453111 0.453111i 0.443274 0.896386i \(-0.353817\pi\)
−0.896386 + 0.443274i \(0.853817\pi\)
\(942\) −10.6324 39.6805i −0.0112870 0.0421237i
\(943\) −636.624 + 170.583i −0.675106 + 0.180894i
\(944\) 942.431 942.431i 0.998338 0.998338i
\(945\) 0 0
\(946\) −1933.67 + 1116.41i −2.04405 + 1.18013i
\(947\) 359.653 1342.24i 0.379781 1.41736i −0.466450 0.884548i \(-0.654467\pi\)
0.846231 0.532816i \(-0.178866\pi\)
\(948\) −68.6430 −0.0724083
\(949\) −544.926 + 307.424i −0.574211 + 0.323945i
\(950\) 0 0
\(951\) 273.622 1021.17i 0.287720 1.07378i
\(952\) 63.6638 36.7563i 0.0668737 0.0386096i
\(953\) −254.103 + 440.120i −0.266635 + 0.461826i −0.967991 0.250986i \(-0.919245\pi\)
0.701356 + 0.712812i \(0.252579\pi\)
\(954\) 27.8595 + 27.8595i 0.0292029 + 0.0292029i
\(955\) 0 0
\(956\) −27.2994 101.883i −0.0285558 0.106572i
\(957\) 95.2877 + 95.2877i 0.0995692 + 0.0995692i
\(958\) −12.6122 7.28163i −0.0131651 0.00760087i
\(959\) 200.412 115.708i 0.208980 0.120655i
\(960\) 0 0
\(961\) 6.61540i 0.00688387i
\(962\) −412.297 420.586i −0.428583 0.437199i
\(963\) 234.355i 0.243360i
\(964\) −58.2080 + 217.235i −0.0603817 + 0.225348i
\(965\) 0 0
\(966\) 58.9668 + 34.0445i 0.0610422 + 0.0352427i
\(967\) −779.562 + 779.562i −0.806165 + 0.806165i −0.984051 0.177886i \(-0.943074\pi\)
0.177886 + 0.984051i \(0.443074\pi\)
\(968\) −114.598 427.684i −0.118386 0.441823i
\(969\) −125.952 470.058i −0.129981 0.485096i
\(970\) 0 0
\(971\) −401.009 + 694.568i −0.412986 + 0.715312i −0.995215 0.0977127i \(-0.968847\pi\)
0.582229 + 0.813025i \(0.302181\pi\)
\(972\) 129.033 + 223.493i 0.132751 + 0.229931i
\(973\) −37.6793 + 140.621i −0.0387249 + 0.144523i
\(974\) 274.528i 0.281856i
\(975\) 0 0
\(976\) −775.706 −0.794780
\(977\) −62.9250 16.8607i −0.0644064 0.0172576i 0.226472 0.974018i \(-0.427281\pi\)
−0.290878 + 0.956760i \(0.593947\pi\)
\(978\) −814.272 + 470.120i −0.832589 + 0.480696i
\(979\) −373.281 215.514i −0.381288 0.220137i
\(980\) 0 0
\(981\) 912.102 244.397i 0.929767 0.249130i
\(982\) −385.146 + 103.199i −0.392205 + 0.105091i
\(983\) −214.471 214.471i −0.218180 0.218180i 0.589551 0.807731i \(-0.299305\pi\)
−0.807731 + 0.589551i \(0.799305\pi\)
\(984\) −383.563 + 664.350i −0.389800 + 0.675153i
\(985\) 0 0
\(986\) 96.2770 + 25.7973i 0.0976440 + 0.0261636i
\(987\) 82.9297 0.0840220
\(988\) 192.227 325.425i 0.194562 0.329377i
\(989\) 824.743 0.833916
\(990\) 0 0
\(991\) 95.2782 + 165.027i 0.0961435 + 0.166525i 0.910085 0.414421i \(-0.136016\pi\)
−0.813942 + 0.580946i \(0.802683\pi\)
\(992\) −286.887 + 496.902i −0.289200 + 0.500910i
\(993\) 702.400 702.400i 0.707351 0.707351i
\(994\) 146.854 39.3494i 0.147740 0.0395869i
\(995\) 0 0
\(996\) −50.8686 + 50.8686i −0.0510729 + 0.0510729i
\(997\) 1370.92 + 791.503i 1.37505 + 0.793885i 0.991559 0.129660i \(-0.0413885\pi\)
0.383491 + 0.923545i \(0.374722\pi\)
\(998\) −214.779 372.008i −0.215209 0.372753i
\(999\) 549.272 + 147.177i 0.549822 + 0.147324i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.3.w.e.24.8 40
5.2 odd 4 65.3.p.a.11.3 yes 40
5.3 odd 4 325.3.t.d.76.8 40
5.4 even 2 325.3.w.f.24.3 40
13.6 odd 12 325.3.w.f.149.3 40
65.19 odd 12 inner 325.3.w.e.149.8 40
65.32 even 12 65.3.p.a.6.3 40
65.58 even 12 325.3.t.d.201.8 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.3.p.a.6.3 40 65.32 even 12
65.3.p.a.11.3 yes 40 5.2 odd 4
325.3.t.d.76.8 40 5.3 odd 4
325.3.t.d.201.8 40 65.58 even 12
325.3.w.e.24.8 40 1.1 even 1 trivial
325.3.w.e.149.8 40 65.19 odd 12 inner
325.3.w.f.24.3 40 5.4 even 2
325.3.w.f.149.3 40 13.6 odd 12