L(s) = 1 | + (2.20 + 0.590i)2-s + (−1.83 + 1.05i)3-s + (1.03 + 0.598i)4-s + (−4.66 + 1.24i)6-s + (−1.17 + 0.314i)7-s + (−4.51 − 4.51i)8-s + (−2.26 + 3.91i)9-s + (−13.3 − 3.57i)11-s − 2.53·12-s + (−3.48 + 12.5i)13-s − 2.76·14-s + (−9.67 − 16.7i)16-s + (4.73 − 8.20i)17-s + (−7.28 + 7.28i)18-s + (−23.4 + 6.28i)19-s + ⋯ |
L(s) = 1 | + (1.10 + 0.295i)2-s + (−0.610 + 0.352i)3-s + (0.259 + 0.149i)4-s + (−0.776 + 0.208i)6-s + (−0.167 + 0.0449i)7-s + (−0.564 − 0.564i)8-s + (−0.251 + 0.435i)9-s + (−1.21 − 0.324i)11-s − 0.211·12-s + (−0.268 + 0.963i)13-s − 0.197·14-s + (−0.604 − 1.04i)16-s + (0.278 − 0.482i)17-s + (−0.404 + 0.404i)18-s + (−1.23 + 0.330i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 + 0.228i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.973 + 0.228i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0391895 - 0.338517i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0391895 - 0.338517i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (3.48 - 12.5i)T \) |
good | 2 | \( 1 + (-2.20 - 0.590i)T + (3.46 + 2i)T^{2} \) |
| 3 | \( 1 + (1.83 - 1.05i)T + (4.5 - 7.79i)T^{2} \) |
| 7 | \( 1 + (1.17 - 0.314i)T + (42.4 - 24.5i)T^{2} \) |
| 11 | \( 1 + (13.3 + 3.57i)T + (104. + 60.5i)T^{2} \) |
| 17 | \( 1 + (-4.73 + 8.20i)T + (-144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (23.4 - 6.28i)T + (312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (-5.80 - 10.0i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (-2.30 - 3.99i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (21.8 + 21.8i)T + 961iT^{2} \) |
| 37 | \( 1 + (5.14 - 19.1i)T + (-1.18e3 - 684.5i)T^{2} \) |
| 41 | \( 1 + (14.6 - 54.8i)T + (-1.45e3 - 840.5i)T^{2} \) |
| 43 | \( 1 + (-35.4 + 61.4i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-22.8 - 22.8i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + 3.82iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (-17.8 - 66.5i)T + (-3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (-20.0 + 34.7i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-56.1 - 15.0i)T + (3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + (53.0 - 14.2i)T + (4.36e3 - 2.52e3i)T^{2} \) |
| 73 | \( 1 + (-34.0 - 34.0i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 27.0T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-20.0 + 20.0i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + (-30.1 - 8.08i)T + (6.85e3 + 3.96e3i)T^{2} \) |
| 97 | \( 1 + (-46.1 - 172. i)T + (-8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.99016742123026611420717453749, −11.11289935871479193578566383713, −10.21399877239382840569425427780, −9.192926768631820506319558721200, −7.927042516977375347281577576059, −6.68067890460345410467280082933, −5.69673347476343096373350664101, −5.01730187698713001015509724610, −4.06366723558735064792842877318, −2.60632725145365255259340819372,
0.11182822587118602272374539634, 2.45669458801467018973589768758, 3.61360292267457516417275752473, 4.95869537244629793647805356341, 5.66277204954140844128726904810, 6.64715672405619626673899377892, 7.941996087260840047178798876492, 8.961069563819511231230094342429, 10.40405339424675165491153400169, 11.04114583025200389639640811381