Properties

Label 325.3.w.e.24.1
Level $325$
Weight $3$
Character 325.24
Analytic conductor $8.856$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,3,Mod(24,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 325.w (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.85560859171\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 24.1
Character \(\chi\) \(=\) 325.24
Dual form 325.3.w.e.149.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.30742 - 0.886220i) q^{2} +(0.0285599 - 0.0164891i) q^{3} +(6.68953 + 3.86220i) q^{4} +(-0.109072 + 0.0292259i) q^{6} +(0.692695 - 0.185607i) q^{7} +(-9.01754 - 9.01754i) q^{8} +(-4.49946 + 7.79329i) q^{9} +(15.5985 + 4.17961i) q^{11} +0.254736 q^{12} +(-12.8191 - 2.16135i) q^{13} -2.45552 q^{14} +(6.38443 + 11.0582i) q^{16} +(-0.860444 + 1.49033i) q^{17} +(21.7882 - 21.7882i) q^{18} +(-6.58643 + 1.76483i) q^{19} +(0.0167228 - 0.0167228i) q^{21} +(-47.8868 - 27.6475i) q^{22} +(0.674114 + 1.16760i) q^{23} +(-0.406230 - 0.108849i) q^{24} +(40.4826 + 18.5090i) q^{26} +0.593570i q^{27} +(5.35066 + 1.43370i) q^{28} +(-23.7681 - 41.1675i) q^{29} +(-21.6495 - 21.6495i) q^{31} +(1.88656 + 7.04075i) q^{32} +(0.514410 - 0.137836i) q^{33} +(4.16661 - 4.16661i) q^{34} +(-60.1985 + 34.7556i) q^{36} +(-11.3078 + 42.2011i) q^{37} +23.3481 q^{38} +(-0.401750 + 0.149647i) q^{39} +(-14.6912 + 54.8283i) q^{41} +(-0.0701294 + 0.0404892i) q^{42} +(-13.1597 + 22.7934i) q^{43} +(88.2044 + 88.2044i) q^{44} +(-1.19483 - 4.45916i) q^{46} +(57.0372 + 57.0372i) q^{47} +(0.364677 + 0.210547i) q^{48} +(-41.9899 + 24.2429i) q^{49} +0.0567516i q^{51} +(-77.4061 - 63.9683i) q^{52} +31.8181i q^{53} +(0.526034 - 1.96319i) q^{54} +(-7.92012 - 4.57268i) q^{56} +(-0.159007 + 0.159007i) q^{57} +(42.1275 + 157.222i) q^{58} +(24.3081 + 90.7191i) q^{59} +(-21.4156 + 37.0929i) q^{61} +(52.4177 + 90.7902i) q^{62} +(-1.67026 + 6.23350i) q^{63} -76.0341i q^{64} -1.82352 q^{66} +(-95.4126 - 25.5657i) q^{67} +(-11.5119 + 6.64642i) q^{68} +(0.0385053 + 0.0222310i) q^{69} +(50.7246 - 13.5916i) q^{71} +(110.850 - 29.7022i) q^{72} +(-52.6480 - 52.6480i) q^{73} +(74.7989 - 129.556i) q^{74} +(-50.8763 - 13.6323i) q^{76} +11.5808 q^{77} +(1.46137 - 0.138905i) q^{78} -41.6643 q^{79} +(-40.4853 - 70.1226i) q^{81} +(97.1800 - 168.321i) q^{82} +(-8.45759 + 8.45759i) q^{83} +(0.176455 - 0.0472809i) q^{84} +(63.7247 - 63.7247i) q^{86} +(-1.35763 - 0.783826i) q^{87} +(-102.971 - 178.350i) q^{88} +(-91.6776 - 24.5649i) q^{89} +(-9.28087 + 0.882157i) q^{91} +10.4143i q^{92} +(-0.975287 - 0.261327i) q^{93} +(-138.098 - 239.194i) q^{94} +(0.169975 + 0.169975i) q^{96} +(37.8898 + 141.407i) q^{97} +(160.363 - 42.9690i) q^{98} +(-102.758 + 102.758i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 12 q^{3} - 12 q^{6} - 44 q^{7} + 36 q^{8} + 72 q^{9} - 12 q^{11} + 120 q^{12} - 36 q^{13} - 48 q^{14} + 128 q^{16} - 32 q^{17} + 136 q^{18} - 68 q^{19} - 48 q^{21} - 72 q^{22} - 28 q^{23} + 56 q^{24}+ \cdots + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.30742 0.886220i −1.65371 0.443110i −0.693062 0.720878i \(-0.743739\pi\)
−0.960648 + 0.277768i \(0.910405\pi\)
\(3\) 0.0285599 0.0164891i 0.00951996 0.00549635i −0.495232 0.868760i \(-0.664917\pi\)
0.504752 + 0.863264i \(0.331584\pi\)
\(4\) 6.68953 + 3.86220i 1.67238 + 0.965551i
\(5\) 0 0
\(6\) −0.109072 + 0.0292259i −0.0181787 + 0.00487098i
\(7\) 0.692695 0.185607i 0.0989564 0.0265153i −0.209001 0.977915i \(-0.567021\pi\)
0.307957 + 0.951400i \(0.400355\pi\)
\(8\) −9.01754 9.01754i −1.12719 1.12719i
\(9\) −4.49946 + 7.79329i −0.499940 + 0.865921i
\(10\) 0 0
\(11\) 15.5985 + 4.17961i 1.41805 + 0.379965i 0.884791 0.465988i \(-0.154301\pi\)
0.533257 + 0.845953i \(0.320968\pi\)
\(12\) 0.254736 0.0212280
\(13\) −12.8191 2.16135i −0.986082 0.166257i
\(14\) −2.45552 −0.175394
\(15\) 0 0
\(16\) 6.38443 + 11.0582i 0.399027 + 0.691135i
\(17\) −0.860444 + 1.49033i −0.0506143 + 0.0876666i −0.890223 0.455526i \(-0.849451\pi\)
0.839608 + 0.543192i \(0.182785\pi\)
\(18\) 21.7882 21.7882i 1.21045 1.21045i
\(19\) −6.58643 + 1.76483i −0.346654 + 0.0928857i −0.427945 0.903805i \(-0.640762\pi\)
0.0812910 + 0.996690i \(0.474096\pi\)
\(20\) 0 0
\(21\) 0.0167228 0.0167228i 0.000796324 0.000796324i
\(22\) −47.8868 27.6475i −2.17667 1.25670i
\(23\) 0.674114 + 1.16760i 0.0293093 + 0.0507652i 0.880308 0.474403i \(-0.157336\pi\)
−0.850999 + 0.525168i \(0.824003\pi\)
\(24\) −0.406230 0.108849i −0.0169263 0.00453538i
\(25\) 0 0
\(26\) 40.4826 + 18.5090i 1.55702 + 0.711884i
\(27\) 0.593570i 0.0219841i
\(28\) 5.35066 + 1.43370i 0.191095 + 0.0512037i
\(29\) −23.7681 41.1675i −0.819588 1.41957i −0.905986 0.423308i \(-0.860869\pi\)
0.0863974 0.996261i \(-0.472465\pi\)
\(30\) 0 0
\(31\) −21.6495 21.6495i −0.698371 0.698371i 0.265688 0.964059i \(-0.414401\pi\)
−0.964059 + 0.265688i \(0.914401\pi\)
\(32\) 1.88656 + 7.04075i 0.0589551 + 0.220023i
\(33\) 0.514410 0.137836i 0.0155882 0.00417684i
\(34\) 4.16661 4.16661i 0.122547 0.122547i
\(35\) 0 0
\(36\) −60.1985 + 34.7556i −1.67218 + 0.965435i
\(37\) −11.3078 + 42.2011i −0.305615 + 1.14057i 0.626800 + 0.779180i \(0.284364\pi\)
−0.932415 + 0.361390i \(0.882302\pi\)
\(38\) 23.3481 0.614424
\(39\) −0.401750 + 0.149647i −0.0103013 + 0.00383709i
\(40\) 0 0
\(41\) −14.6912 + 54.8283i −0.358322 + 1.33728i 0.517930 + 0.855423i \(0.326703\pi\)
−0.876252 + 0.481853i \(0.839964\pi\)
\(42\) −0.0701294 + 0.0404892i −0.00166975 + 0.000964029i
\(43\) −13.1597 + 22.7934i −0.306041 + 0.530078i −0.977492 0.210970i \(-0.932338\pi\)
0.671452 + 0.741048i \(0.265671\pi\)
\(44\) 88.2044 + 88.2044i 2.00465 + 2.00465i
\(45\) 0 0
\(46\) −1.19483 4.45916i −0.0259745 0.0969382i
\(47\) 57.0372 + 57.0372i 1.21356 + 1.21356i 0.969848 + 0.243710i \(0.0783643\pi\)
0.243710 + 0.969848i \(0.421636\pi\)
\(48\) 0.364677 + 0.210547i 0.00759744 + 0.00438639i
\(49\) −41.9899 + 24.2429i −0.856936 + 0.494752i
\(50\) 0 0
\(51\) 0.0567516i 0.00111278i
\(52\) −77.4061 63.9683i −1.48858 1.23016i
\(53\) 31.8181i 0.600342i 0.953885 + 0.300171i \(0.0970438\pi\)
−0.953885 + 0.300171i \(0.902956\pi\)
\(54\) 0.526034 1.96319i 0.00974137 0.0363553i
\(55\) 0 0
\(56\) −7.92012 4.57268i −0.141431 0.0816551i
\(57\) −0.159007 + 0.159007i −0.00278960 + 0.00278960i
\(58\) 42.1275 + 157.222i 0.726336 + 2.71072i
\(59\) 24.3081 + 90.7191i 0.412002 + 1.53761i 0.790766 + 0.612119i \(0.209683\pi\)
−0.378764 + 0.925493i \(0.623651\pi\)
\(60\) 0 0
\(61\) −21.4156 + 37.0929i −0.351075 + 0.608080i −0.986438 0.164134i \(-0.947517\pi\)
0.635363 + 0.772214i \(0.280850\pi\)
\(62\) 52.4177 + 90.7902i 0.845447 + 1.46436i
\(63\) −1.67026 + 6.23350i −0.0265121 + 0.0989445i
\(64\) 76.0341i 1.18803i
\(65\) 0 0
\(66\) −1.82352 −0.0276291
\(67\) −95.4126 25.5657i −1.42407 0.381578i −0.537143 0.843491i \(-0.680496\pi\)
−0.886925 + 0.461913i \(0.847163\pi\)
\(68\) −11.5119 + 6.64642i −0.169293 + 0.0977415i
\(69\) 0.0385053 + 0.0222310i 0.000558047 + 0.000322189i
\(70\) 0 0
\(71\) 50.7246 13.5916i 0.714431 0.191431i 0.116745 0.993162i \(-0.462754\pi\)
0.597685 + 0.801731i \(0.296087\pi\)
\(72\) 110.850 29.7022i 1.53959 0.412531i
\(73\) −52.6480 52.6480i −0.721205 0.721205i 0.247646 0.968851i \(-0.420343\pi\)
−0.968851 + 0.247646i \(0.920343\pi\)
\(74\) 74.7989 129.556i 1.01080 1.75075i
\(75\) 0 0
\(76\) −50.8763 13.6323i −0.669425 0.179372i
\(77\) 11.5808 0.150400
\(78\) 1.46137 0.138905i 0.0187356 0.00178084i
\(79\) −41.6643 −0.527397 −0.263698 0.964605i \(-0.584942\pi\)
−0.263698 + 0.964605i \(0.584942\pi\)
\(80\) 0 0
\(81\) −40.4853 70.1226i −0.499819 0.865711i
\(82\) 97.1800 168.321i 1.18512 2.05269i
\(83\) −8.45759 + 8.45759i −0.101899 + 0.101899i −0.756218 0.654320i \(-0.772955\pi\)
0.654320 + 0.756218i \(0.272955\pi\)
\(84\) 0.176455 0.0472809i 0.00210065 0.000562868i
\(85\) 0 0
\(86\) 63.7247 63.7247i 0.740985 0.740985i
\(87\) −1.35763 0.783826i −0.0156049 0.00900949i
\(88\) −102.971 178.350i −1.17012 2.02671i
\(89\) −91.6776 24.5649i −1.03009 0.276011i −0.296087 0.955161i \(-0.595682\pi\)
−0.733999 + 0.679150i \(0.762348\pi\)
\(90\) 0 0
\(91\) −9.28087 + 0.882157i −0.101988 + 0.00969403i
\(92\) 10.4143i 0.113199i
\(93\) −0.975287 0.261327i −0.0104870 0.00280997i
\(94\) −138.098 239.194i −1.46913 2.54461i
\(95\) 0 0
\(96\) 0.169975 + 0.169975i 0.00177058 + 0.00177058i
\(97\) 37.8898 + 141.407i 0.390616 + 1.45780i 0.829120 + 0.559070i \(0.188842\pi\)
−0.438504 + 0.898729i \(0.644492\pi\)
\(98\) 160.363 42.9690i 1.63635 0.438460i
\(99\) −102.758 + 102.758i −1.03796 + 1.03796i
\(100\) 0 0
\(101\) 78.2407 45.1723i 0.774660 0.447250i −0.0598743 0.998206i \(-0.519070\pi\)
0.834535 + 0.550956i \(0.185737\pi\)
\(102\) 0.0502944 0.187701i 0.000493083 0.00184021i
\(103\) 106.662 1.03555 0.517777 0.855516i \(-0.326760\pi\)
0.517777 + 0.855516i \(0.326760\pi\)
\(104\) 96.1064 + 135.086i 0.924100 + 1.29891i
\(105\) 0 0
\(106\) 28.1979 105.236i 0.266018 0.992792i
\(107\) −111.655 + 64.4638i −1.04350 + 0.602465i −0.920823 0.389982i \(-0.872481\pi\)
−0.122677 + 0.992447i \(0.539148\pi\)
\(108\) −2.29249 + 3.97071i −0.0212268 + 0.0367658i
\(109\) 80.6778 + 80.6778i 0.740164 + 0.740164i 0.972609 0.232446i \(-0.0746728\pi\)
−0.232446 + 0.972609i \(0.574673\pi\)
\(110\) 0 0
\(111\) 0.372908 + 1.39171i 0.00335953 + 0.0125380i
\(112\) 6.47494 + 6.47494i 0.0578119 + 0.0578119i
\(113\) −123.405 71.2477i −1.09208 0.630510i −0.157947 0.987448i \(-0.550488\pi\)
−0.934128 + 0.356937i \(0.883821\pi\)
\(114\) 0.666819 0.384988i 0.00584929 0.00337709i
\(115\) 0 0
\(116\) 367.189i 3.16542i
\(117\) 74.5228 90.1778i 0.636947 0.770751i
\(118\) 321.589i 2.72533i
\(119\) −0.319409 + 1.19205i −0.00268411 + 0.0100172i
\(120\) 0 0
\(121\) 121.056 + 69.8917i 1.00046 + 0.577617i
\(122\) 103.703 103.703i 0.850022 0.850022i
\(123\) 0.484488 + 1.80813i 0.00393893 + 0.0147003i
\(124\) −61.2103 228.440i −0.493631 1.84226i
\(125\) 0 0
\(126\) 11.0485 19.1366i 0.0876866 0.151878i
\(127\) −49.4838 85.7085i −0.389636 0.674870i 0.602764 0.797919i \(-0.294066\pi\)
−0.992401 + 0.123049i \(0.960733\pi\)
\(128\) −59.8367 + 223.314i −0.467474 + 1.74464i
\(129\) 0.867967i 0.00672843i
\(130\) 0 0
\(131\) −96.5698 −0.737174 −0.368587 0.929593i \(-0.620158\pi\)
−0.368587 + 0.929593i \(0.620158\pi\)
\(132\) 3.97352 + 1.06470i 0.0301024 + 0.00806591i
\(133\) −4.23482 + 2.44497i −0.0318408 + 0.0183833i
\(134\) 292.913 + 169.113i 2.18591 + 1.26204i
\(135\) 0 0
\(136\) 21.1982 5.68004i 0.155869 0.0417650i
\(137\) 134.199 35.9585i 0.979555 0.262471i 0.266698 0.963780i \(-0.414068\pi\)
0.712857 + 0.701309i \(0.247401\pi\)
\(138\) −0.107651 0.107651i −0.000780083 0.000780083i
\(139\) 36.5951 63.3846i 0.263274 0.456005i −0.703836 0.710363i \(-0.748531\pi\)
0.967110 + 0.254358i \(0.0818642\pi\)
\(140\) 0 0
\(141\) 2.56947 + 0.688486i 0.0182232 + 0.00488288i
\(142\) −179.813 −1.26629
\(143\) −190.925 87.2926i −1.33514 0.610438i
\(144\) −114.906 −0.797958
\(145\) 0 0
\(146\) 127.471 + 220.787i 0.873091 + 1.51224i
\(147\) −0.799484 + 1.38475i −0.00543867 + 0.00942005i
\(148\) −238.633 + 238.633i −1.61238 + 1.61238i
\(149\) 157.836 42.2920i 1.05930 0.283839i 0.313210 0.949684i \(-0.398595\pi\)
0.746090 + 0.665845i \(0.231929\pi\)
\(150\) 0 0
\(151\) −183.510 + 183.510i −1.21530 + 1.21530i −0.246036 + 0.969261i \(0.579128\pi\)
−0.969261 + 0.246036i \(0.920872\pi\)
\(152\) 75.3078 + 43.4790i 0.495446 + 0.286046i
\(153\) −7.74306 13.4114i −0.0506082 0.0876560i
\(154\) −38.3025 10.2631i −0.248718 0.0666437i
\(155\) 0 0
\(156\) −3.26548 0.550573i −0.0209326 0.00352932i
\(157\) 21.3368i 0.135903i 0.997689 + 0.0679516i \(0.0216463\pi\)
−0.997689 + 0.0679516i \(0.978354\pi\)
\(158\) 137.801 + 36.9238i 0.872161 + 0.233695i
\(159\) 0.524651 + 0.908722i 0.00329969 + 0.00571524i
\(160\) 0 0
\(161\) 0.683670 + 0.683670i 0.00424640 + 0.00424640i
\(162\) 71.7578 + 267.804i 0.442950 + 1.65311i
\(163\) 74.3081 19.9108i 0.455878 0.122152i −0.0235705 0.999722i \(-0.507503\pi\)
0.479448 + 0.877570i \(0.340837\pi\)
\(164\) −310.036 + 310.036i −1.89046 + 1.89046i
\(165\) 0 0
\(166\) 35.4681 20.4775i 0.213663 0.123358i
\(167\) 63.9559 238.687i 0.382969 1.42926i −0.458374 0.888759i \(-0.651568\pi\)
0.841343 0.540501i \(-0.181765\pi\)
\(168\) −0.301597 −0.00179522
\(169\) 159.657 + 55.4129i 0.944717 + 0.327887i
\(170\) 0 0
\(171\) 15.8815 59.2707i 0.0928745 0.346612i
\(172\) −176.065 + 101.651i −1.02363 + 0.590996i
\(173\) −55.2331 + 95.6665i −0.319266 + 0.552986i −0.980335 0.197340i \(-0.936770\pi\)
0.661069 + 0.750325i \(0.270103\pi\)
\(174\) 3.79560 + 3.79560i 0.0218138 + 0.0218138i
\(175\) 0 0
\(176\) 53.3689 + 199.176i 0.303233 + 1.13168i
\(177\) 2.19011 + 2.19011i 0.0123735 + 0.0123735i
\(178\) 281.446 + 162.493i 1.58116 + 0.912883i
\(179\) −183.778 + 106.104i −1.02669 + 0.592761i −0.916035 0.401098i \(-0.868629\pi\)
−0.110656 + 0.993859i \(0.535295\pi\)
\(180\) 0 0
\(181\) 51.8213i 0.286306i −0.989701 0.143153i \(-0.954276\pi\)
0.989701 0.143153i \(-0.0457240\pi\)
\(182\) 31.4775 + 5.30723i 0.172953 + 0.0291606i
\(183\) 1.41249i 0.00771853i
\(184\) 4.45003 16.6077i 0.0241849 0.0902594i
\(185\) 0 0
\(186\) 2.99409 + 1.72864i 0.0160973 + 0.00929375i
\(187\) −19.6507 + 19.6507i −0.105084 + 0.105084i
\(188\) 161.263 + 601.842i 0.857782 + 3.20129i
\(189\) 0.110171 + 0.411163i 0.000582914 + 0.00217547i
\(190\) 0 0
\(191\) −95.3560 + 165.161i −0.499246 + 0.864720i −1.00000 0.000870149i \(-0.999723\pi\)
0.500753 + 0.865590i \(0.333056\pi\)
\(192\) −1.25373 2.17152i −0.00652984 0.0113100i
\(193\) 5.88526 21.9641i 0.0304936 0.113804i −0.949002 0.315271i \(-0.897904\pi\)
0.979495 + 0.201468i \(0.0645711\pi\)
\(194\) 501.269i 2.58386i
\(195\) 0 0
\(196\) −374.524 −1.91083
\(197\) 119.041 + 31.8969i 0.604267 + 0.161913i 0.547966 0.836501i \(-0.315402\pi\)
0.0563018 + 0.998414i \(0.482069\pi\)
\(198\) 430.929 248.797i 2.17641 1.25655i
\(199\) −23.6042 13.6279i −0.118614 0.0684820i 0.439519 0.898233i \(-0.355149\pi\)
−0.558133 + 0.829751i \(0.688482\pi\)
\(200\) 0 0
\(201\) −3.14653 + 0.843109i −0.0156544 + 0.00419457i
\(202\) −298.807 + 80.0652i −1.47924 + 0.396362i
\(203\) −24.1050 24.1050i −0.118744 0.118744i
\(204\) −0.219186 + 0.379642i −0.00107444 + 0.00186099i
\(205\) 0 0
\(206\) −352.776 94.5261i −1.71251 0.458864i
\(207\) −12.1326 −0.0586116
\(208\) −57.9420 155.554i −0.278567 0.747857i
\(209\) −110.115 −0.526866
\(210\) 0 0
\(211\) 13.7251 + 23.7725i 0.0650477 + 0.112666i 0.896715 0.442608i \(-0.145947\pi\)
−0.831667 + 0.555274i \(0.812613\pi\)
\(212\) −122.888 + 212.849i −0.579661 + 1.00400i
\(213\) 1.22458 1.22458i 0.00574918 0.00574918i
\(214\) 426.417 114.258i 1.99260 0.533917i
\(215\) 0 0
\(216\) 5.35254 5.35254i 0.0247803 0.0247803i
\(217\) −19.0148 10.9782i −0.0876258 0.0505908i
\(218\) −195.337 338.334i −0.896042 1.55199i
\(219\) −2.37174 0.635505i −0.0108298 0.00290185i
\(220\) 0 0
\(221\) 14.2512 17.2450i 0.0644851 0.0780315i
\(222\) 4.93346i 0.0222228i
\(223\) −29.2747 7.84413i −0.131277 0.0351755i 0.192582 0.981281i \(-0.438314\pi\)
−0.323859 + 0.946105i \(0.604980\pi\)
\(224\) 2.61362 + 4.52693i 0.0116680 + 0.0202095i
\(225\) 0 0
\(226\) 345.010 + 345.010i 1.52659 + 1.52659i
\(227\) −97.2358 362.889i −0.428351 1.59863i −0.756494 0.654001i \(-0.773089\pi\)
0.328142 0.944628i \(-0.393577\pi\)
\(228\) −1.67780 + 0.449566i −0.00735879 + 0.00197178i
\(229\) 165.325 165.325i 0.721942 0.721942i −0.247059 0.969001i \(-0.579464\pi\)
0.969001 + 0.247059i \(0.0794640\pi\)
\(230\) 0 0
\(231\) 0.330746 0.190956i 0.00143180 0.000826651i
\(232\) −156.900 + 585.559i −0.676293 + 2.52396i
\(233\) 116.211 0.498759 0.249379 0.968406i \(-0.419773\pi\)
0.249379 + 0.968406i \(0.419773\pi\)
\(234\) −326.396 + 232.212i −1.39485 + 0.992360i
\(235\) 0 0
\(236\) −187.766 + 700.752i −0.795618 + 2.96929i
\(237\) −1.18993 + 0.687006i −0.00502080 + 0.00289876i
\(238\) 2.11284 3.65954i 0.00887747 0.0153762i
\(239\) 224.962 + 224.962i 0.941263 + 0.941263i 0.998368 0.0571055i \(-0.0181871\pi\)
−0.0571055 + 0.998368i \(0.518187\pi\)
\(240\) 0 0
\(241\) −44.9894 167.903i −0.186678 0.696692i −0.994265 0.106944i \(-0.965894\pi\)
0.807587 0.589748i \(-0.200773\pi\)
\(242\) −338.444 338.444i −1.39853 1.39853i
\(243\) −6.93893 4.00620i −0.0285553 0.0164864i
\(244\) −286.520 + 165.423i −1.17426 + 0.677962i
\(245\) 0 0
\(246\) 6.40962i 0.0260554i
\(247\) 88.2463 8.38791i 0.357272 0.0339592i
\(248\) 390.450i 1.57440i
\(249\) −0.102090 + 0.381005i −0.000410000 + 0.00153014i
\(250\) 0 0
\(251\) 145.005 + 83.7187i 0.577709 + 0.333541i 0.760223 0.649663i \(-0.225090\pi\)
−0.182513 + 0.983203i \(0.558423\pi\)
\(252\) −35.2483 + 35.2483i −0.139874 + 0.139874i
\(253\) 5.63508 + 21.0304i 0.0222730 + 0.0831241i
\(254\) 87.7071 + 327.327i 0.345304 + 1.28869i
\(255\) 0 0
\(256\) 243.742 422.173i 0.952117 1.64911i
\(257\) −93.3719 161.725i −0.363315 0.629279i 0.625190 0.780473i \(-0.285022\pi\)
−0.988504 + 0.151194i \(0.951688\pi\)
\(258\) 0.769210 2.87073i 0.00298144 0.0111269i
\(259\) 31.3313i 0.120970i
\(260\) 0 0
\(261\) 427.773 1.63898
\(262\) 319.397 + 85.5821i 1.21907 + 0.326649i
\(263\) 121.329 70.0491i 0.461326 0.266346i −0.251276 0.967915i \(-0.580850\pi\)
0.712601 + 0.701569i \(0.247517\pi\)
\(264\) −5.88165 3.39577i −0.0222790 0.0128628i
\(265\) 0 0
\(266\) 16.1731 4.33357i 0.0608012 0.0162916i
\(267\) −3.02336 + 0.810106i −0.0113234 + 0.00303410i
\(268\) −539.526 539.526i −2.01316 2.01316i
\(269\) −24.6298 + 42.6600i −0.0915604 + 0.158587i −0.908168 0.418606i \(-0.862519\pi\)
0.816607 + 0.577193i \(0.195852\pi\)
\(270\) 0 0
\(271\) −450.532 120.720i −1.66248 0.445460i −0.699412 0.714718i \(-0.746555\pi\)
−0.963068 + 0.269258i \(0.913222\pi\)
\(272\) −21.9738 −0.0807859
\(273\) −0.250515 + 0.178227i −0.000917636 + 0.000652846i
\(274\) −475.719 −1.73620
\(275\) 0 0
\(276\) 0.171721 + 0.297430i 0.000622179 + 0.00107765i
\(277\) 11.0619 19.1597i 0.0399345 0.0691686i −0.845367 0.534185i \(-0.820618\pi\)
0.885302 + 0.465017i \(0.153952\pi\)
\(278\) −177.208 + 177.208i −0.637440 + 0.637440i
\(279\) 266.132 71.3098i 0.953877 0.255591i
\(280\) 0 0
\(281\) 213.347 213.347i 0.759241 0.759241i −0.216943 0.976184i \(-0.569609\pi\)
0.976184 + 0.216943i \(0.0696086\pi\)
\(282\) −7.88815 4.55423i −0.0279722 0.0161497i
\(283\) −1.31656 2.28036i −0.00465217 0.00805779i 0.863690 0.504023i \(-0.168148\pi\)
−0.868342 + 0.495966i \(0.834814\pi\)
\(284\) 391.817 + 104.987i 1.37964 + 0.369673i
\(285\) 0 0
\(286\) 554.109 + 457.915i 1.93744 + 1.60110i
\(287\) 40.7061i 0.141833i
\(288\) −63.3591 16.9770i −0.219997 0.0589480i
\(289\) 143.019 + 247.717i 0.494876 + 0.857151i
\(290\) 0 0
\(291\) 3.41379 + 3.41379i 0.0117312 + 0.0117312i
\(292\) −148.853 555.528i −0.509771 1.90249i
\(293\) 102.990 27.5961i 0.351502 0.0941847i −0.0787477 0.996895i \(-0.525092\pi\)
0.430250 + 0.902710i \(0.358425\pi\)
\(294\) 3.87142 3.87142i 0.0131681 0.0131681i
\(295\) 0 0
\(296\) 482.518 278.582i 1.63013 0.941155i
\(297\) −2.48089 + 9.25882i −0.00835318 + 0.0311745i
\(298\) −559.509 −1.87755
\(299\) −6.11793 16.4245i −0.0204613 0.0549316i
\(300\) 0 0
\(301\) −4.88508 + 18.2314i −0.0162295 + 0.0605694i
\(302\) 769.574 444.314i 2.54826 1.47124i
\(303\) 1.48970 2.58023i 0.00491649 0.00851561i
\(304\) −61.5664 61.5664i −0.202521 0.202521i
\(305\) 0 0
\(306\) 13.7241 + 51.2191i 0.0448500 + 0.167383i
\(307\) 148.641 + 148.641i 0.484174 + 0.484174i 0.906462 0.422288i \(-0.138773\pi\)
−0.422288 + 0.906462i \(0.638773\pi\)
\(308\) 77.4701 + 44.7274i 0.251526 + 0.145219i
\(309\) 3.04626 1.75876i 0.00985843 0.00569177i
\(310\) 0 0
\(311\) 158.134i 0.508469i 0.967143 + 0.254234i \(0.0818235\pi\)
−0.967143 + 0.254234i \(0.918177\pi\)
\(312\) 4.97224 + 2.27335i 0.0159367 + 0.00728638i
\(313\) 145.003i 0.463269i −0.972803 0.231634i \(-0.925593\pi\)
0.972803 0.231634i \(-0.0744073\pi\)
\(314\) 18.9091 70.5697i 0.0602201 0.224744i
\(315\) 0 0
\(316\) −278.715 160.916i −0.882010 0.509229i
\(317\) −385.578 + 385.578i −1.21633 + 1.21633i −0.247427 + 0.968907i \(0.579585\pi\)
−0.968907 + 0.247427i \(0.920415\pi\)
\(318\) −0.929913 3.47048i −0.00292425 0.0109135i
\(319\) −198.683 741.494i −0.622830 2.32443i
\(320\) 0 0
\(321\) −2.12589 + 3.68215i −0.00662272 + 0.0114709i
\(322\) −1.65530 2.86707i −0.00514069 0.00890394i
\(323\) 3.03707 11.3345i 0.00940269 0.0350913i
\(324\) 625.450i 1.93040i
\(325\) 0 0
\(326\) −263.413 −0.808017
\(327\) 3.63445 + 0.973848i 0.0111145 + 0.00297813i
\(328\) 626.895 361.938i 1.91127 1.10347i
\(329\) 50.0959 + 28.9229i 0.152267 + 0.0879115i
\(330\) 0 0
\(331\) 71.9790 19.2867i 0.217459 0.0582680i −0.148444 0.988921i \(-0.547427\pi\)
0.365904 + 0.930653i \(0.380760\pi\)
\(332\) −89.2422 + 23.9124i −0.268802 + 0.0720253i
\(333\) −278.007 278.007i −0.834854 0.834854i
\(334\) −423.058 + 732.758i −1.26664 + 2.19388i
\(335\) 0 0
\(336\) 0.291689 + 0.0781578i 0.000868122 + 0.000232613i
\(337\) −127.419 −0.378098 −0.189049 0.981968i \(-0.560541\pi\)
−0.189049 + 0.981968i \(0.560541\pi\)
\(338\) −478.945 324.765i −1.41700 0.960843i
\(339\) −4.69923 −0.0138620
\(340\) 0 0
\(341\) −247.214 428.187i −0.724967 1.25568i
\(342\) −105.054 + 181.958i −0.307175 + 0.532042i
\(343\) −49.4338 + 49.4338i −0.144122 + 0.144122i
\(344\) 324.208 86.8714i 0.942466 0.252533i
\(345\) 0 0
\(346\) 267.461 267.461i 0.773008 0.773008i
\(347\) −244.481 141.151i −0.704557 0.406776i 0.104486 0.994526i \(-0.466680\pi\)
−0.809042 + 0.587750i \(0.800014\pi\)
\(348\) −6.05459 10.4869i −0.0173983 0.0301347i
\(349\) −146.454 39.2423i −0.419640 0.112442i 0.0428192 0.999083i \(-0.486366\pi\)
−0.462459 + 0.886641i \(0.653033\pi\)
\(350\) 0 0
\(351\) 1.28291 7.60902i 0.00365501 0.0216781i
\(352\) 117.710i 0.334405i
\(353\) 420.878 + 112.774i 1.19229 + 0.319473i 0.799790 0.600280i \(-0.204944\pi\)
0.392499 + 0.919753i \(0.371611\pi\)
\(354\) −5.30269 9.18453i −0.0149794 0.0259450i
\(355\) 0 0
\(356\) −518.406 518.406i −1.45620 1.45620i
\(357\) 0.0105335 + 0.0393116i 2.95056e−5 + 0.000110116i
\(358\) 701.862 188.063i 1.96051 0.525316i
\(359\) 121.061 121.061i 0.337217 0.337217i −0.518102 0.855319i \(-0.673361\pi\)
0.855319 + 0.518102i \(0.173361\pi\)
\(360\) 0 0
\(361\) −272.369 + 157.252i −0.754484 + 0.435602i
\(362\) −45.9251 + 171.395i −0.126865 + 0.473466i
\(363\) 4.60979 0.0126992
\(364\) −65.4918 29.9434i −0.179922 0.0822621i
\(365\) 0 0
\(366\) 1.25178 4.67170i 0.00342016 0.0127642i
\(367\) 540.000 311.769i 1.47139 0.849507i 0.471907 0.881648i \(-0.343566\pi\)
0.999483 + 0.0321410i \(0.0102326\pi\)
\(368\) −8.60767 + 14.9089i −0.0233904 + 0.0405134i
\(369\) −361.190 361.190i −0.978836 0.978836i
\(370\) 0 0
\(371\) 5.90567 + 22.0403i 0.0159183 + 0.0594077i
\(372\) −5.51492 5.51492i −0.0148250 0.0148250i
\(373\) 577.015 + 333.140i 1.54696 + 0.893136i 0.998372 + 0.0570403i \(0.0181664\pi\)
0.548584 + 0.836095i \(0.315167\pi\)
\(374\) 82.4078 47.5782i 0.220342 0.127214i
\(375\) 0 0
\(376\) 1028.67i 2.73583i
\(377\) 215.707 + 579.100i 0.572168 + 1.53607i
\(378\) 1.45752i 0.00385588i
\(379\) −99.5832 + 371.649i −0.262752 + 0.980605i 0.700859 + 0.713299i \(0.252800\pi\)
−0.963612 + 0.267306i \(0.913867\pi\)
\(380\) 0 0
\(381\) −2.82650 1.63188i −0.00741864 0.00428316i
\(382\) 461.752 461.752i 1.20877 1.20877i
\(383\) −1.92147 7.17101i −0.00501689 0.0187233i 0.963372 0.268169i \(-0.0864184\pi\)
−0.968389 + 0.249445i \(0.919752\pi\)
\(384\) 1.97330 + 7.36446i 0.00513881 + 0.0191783i
\(385\) 0 0
\(386\) −38.9300 + 67.4288i −0.100855 + 0.174686i
\(387\) −118.423 205.115i −0.306004 0.530014i
\(388\) −292.676 + 1092.28i −0.754320 + 2.81516i
\(389\) 15.5965i 0.0400938i −0.999799 0.0200469i \(-0.993618\pi\)
0.999799 0.0200469i \(-0.00638155\pi\)
\(390\) 0 0
\(391\) −2.32015 −0.00593389
\(392\) 597.256 + 160.034i 1.52361 + 0.408251i
\(393\) −2.75802 + 1.59235i −0.00701787 + 0.00405177i
\(394\) −365.450 210.993i −0.927538 0.535514i
\(395\) 0 0
\(396\) −1084.27 + 290.530i −2.73807 + 0.733663i
\(397\) 181.452 48.6200i 0.457059 0.122469i −0.0229416 0.999737i \(-0.507303\pi\)
0.480000 + 0.877268i \(0.340637\pi\)
\(398\) 65.9918 + 65.9918i 0.165809 + 0.165809i
\(399\) −0.0806307 + 0.139656i −0.000202082 + 0.000350016i
\(400\) 0 0
\(401\) 293.349 + 78.6027i 0.731544 + 0.196017i 0.605317 0.795985i \(-0.293046\pi\)
0.126227 + 0.992001i \(0.459713\pi\)
\(402\) 11.1541 0.0277464
\(403\) 230.734 + 324.318i 0.572542 + 0.804761i
\(404\) 697.858 1.72737
\(405\) 0 0
\(406\) 58.3630 + 101.088i 0.143751 + 0.248984i
\(407\) −352.769 + 611.013i −0.866753 + 1.50126i
\(408\) 0.511760 0.511760i 0.00125431 0.00125431i
\(409\) 124.212 33.2825i 0.303697 0.0813753i −0.103752 0.994603i \(-0.533085\pi\)
0.407449 + 0.913228i \(0.366418\pi\)
\(410\) 0 0
\(411\) 3.23979 3.23979i 0.00788269 0.00788269i
\(412\) 713.519 + 411.951i 1.73184 + 0.999880i
\(413\) 33.6762 + 58.3289i 0.0815405 + 0.141232i
\(414\) 40.1276 + 10.7521i 0.0969265 + 0.0259714i
\(415\) 0 0
\(416\) −8.96649 94.3334i −0.0215541 0.226763i
\(417\) 2.41368i 0.00578819i
\(418\) 364.196 + 97.5861i 0.871283 + 0.233460i
\(419\) −82.0055 142.038i −0.195717 0.338992i 0.751418 0.659826i \(-0.229370\pi\)
−0.947135 + 0.320834i \(0.896037\pi\)
\(420\) 0 0
\(421\) 32.1013 + 32.1013i 0.0762501 + 0.0762501i 0.744203 0.667953i \(-0.232829\pi\)
−0.667953 + 0.744203i \(0.732829\pi\)
\(422\) −24.3269 90.7891i −0.0576466 0.215140i
\(423\) −701.144 + 187.871i −1.65755 + 0.444139i
\(424\) 286.921 286.921i 0.676701 0.676701i
\(425\) 0 0
\(426\) −5.13543 + 2.96494i −0.0120550 + 0.00695996i
\(427\) −7.94976 + 29.6689i −0.0186177 + 0.0694822i
\(428\) −995.889 −2.32684
\(429\) −6.89217 + 0.655109i −0.0160657 + 0.00152706i
\(430\) 0 0
\(431\) −60.7510 + 226.726i −0.140953 + 0.526046i 0.858949 + 0.512062i \(0.171118\pi\)
−0.999902 + 0.0139840i \(0.995549\pi\)
\(432\) −6.56379 + 3.78961i −0.0151940 + 0.00877224i
\(433\) −43.3111 + 75.0171i −0.100026 + 0.173250i −0.911695 0.410868i \(-0.865226\pi\)
0.811669 + 0.584117i \(0.198559\pi\)
\(434\) 53.1608 + 53.1608i 0.122490 + 0.122490i
\(435\) 0 0
\(436\) 228.103 + 851.291i 0.523172 + 1.95250i
\(437\) −6.50062 6.50062i −0.0148756 0.0148756i
\(438\) 7.28113 + 4.20376i 0.0166236 + 0.00959763i
\(439\) −94.1234 + 54.3422i −0.214404 + 0.123786i −0.603357 0.797472i \(-0.706170\pi\)
0.388952 + 0.921258i \(0.372837\pi\)
\(440\) 0 0
\(441\) 436.319i 0.989385i
\(442\) −62.4176 + 44.4066i −0.141216 + 0.100467i
\(443\) 355.262i 0.801945i 0.916090 + 0.400973i \(0.131328\pi\)
−0.916090 + 0.400973i \(0.868672\pi\)
\(444\) −2.88050 + 10.7502i −0.00648760 + 0.0242121i
\(445\) 0 0
\(446\) 89.8721 + 51.8877i 0.201507 + 0.116340i
\(447\) 3.81042 3.81042i 0.00852442 0.00852442i
\(448\) −14.1125 52.6684i −0.0315010 0.117563i
\(449\) −54.9003 204.891i −0.122272 0.456327i 0.877455 0.479658i \(-0.159239\pi\)
−0.999728 + 0.0233313i \(0.992573\pi\)
\(450\) 0 0
\(451\) −458.323 + 793.838i −1.01624 + 1.76017i
\(452\) −550.346 953.227i −1.21758 2.10891i
\(453\) −2.21512 + 8.26692i −0.00488988 + 0.0182493i
\(454\) 1286.40i 2.83348i
\(455\) 0 0
\(456\) 2.86771 0.00628883
\(457\) 304.417 + 81.5684i 0.666121 + 0.178487i 0.576007 0.817445i \(-0.304610\pi\)
0.0901143 + 0.995931i \(0.471277\pi\)
\(458\) −693.312 + 400.284i −1.51378 + 0.873983i
\(459\) −0.884617 0.510734i −0.00192727 0.00111271i
\(460\) 0 0
\(461\) 673.308 180.412i 1.46054 0.391350i 0.560862 0.827909i \(-0.310470\pi\)
0.899676 + 0.436559i \(0.143803\pi\)
\(462\) −1.26315 + 0.338459i −0.00273408 + 0.000732595i
\(463\) 645.269 + 645.269i 1.39367 + 1.39367i 0.816923 + 0.576746i \(0.195678\pi\)
0.576746 + 0.816923i \(0.304322\pi\)
\(464\) 303.491 525.662i 0.654076 1.13289i
\(465\) 0 0
\(466\) −384.358 102.988i −0.824802 0.221005i
\(467\) −571.015 −1.22273 −0.611365 0.791349i \(-0.709379\pi\)
−0.611365 + 0.791349i \(0.709379\pi\)
\(468\) 846.808 315.425i 1.80942 0.673986i
\(469\) −70.8370 −0.151038
\(470\) 0 0
\(471\) 0.351824 + 0.609376i 0.000746972 + 0.00129379i
\(472\) 598.864 1037.26i 1.26878 2.19759i
\(473\) −300.540 + 300.540i −0.635392 + 0.635392i
\(474\) 4.54443 1.21768i 0.00958741 0.00256894i
\(475\) 0 0
\(476\) −6.74064 + 6.74064i −0.0141610 + 0.0141610i
\(477\) −247.968 143.164i −0.519849 0.300135i
\(478\) −544.677 943.409i −1.13949 1.97366i
\(479\) −40.3383 10.8086i −0.0842137 0.0225650i 0.216466 0.976290i \(-0.430547\pi\)
−0.300680 + 0.953725i \(0.597214\pi\)
\(480\) 0 0
\(481\) 236.166 516.539i 0.490990 1.07389i
\(482\) 595.196i 1.23485i
\(483\) 0.0307986 + 0.00825247i 6.37653e−5 + 1.70859e-5i
\(484\) 539.872 + 935.086i 1.11544 + 1.93200i
\(485\) 0 0
\(486\) 19.3996 + 19.3996i 0.0399169 + 0.0399169i
\(487\) 95.2286 + 355.398i 0.195541 + 0.729770i 0.992126 + 0.125243i \(0.0399711\pi\)
−0.796585 + 0.604527i \(0.793362\pi\)
\(488\) 527.602 141.371i 1.08115 0.289694i
\(489\) 1.79392 1.79392i 0.00366855 0.00366855i
\(490\) 0 0
\(491\) 274.278 158.355i 0.558612 0.322515i −0.193976 0.981006i \(-0.562138\pi\)
0.752588 + 0.658491i \(0.228805\pi\)
\(492\) −3.74239 + 13.9668i −0.00760648 + 0.0283878i
\(493\) 81.8043 0.165932
\(494\) −299.301 50.4633i −0.605872 0.102152i
\(495\) 0 0
\(496\) 101.184 377.623i 0.204000 0.761337i
\(497\) 32.6140 18.8297i 0.0656217 0.0378867i
\(498\) 0.675309 1.16967i 0.00135604 0.00234873i
\(499\) −426.657 426.657i −0.855023 0.855023i 0.135723 0.990747i \(-0.456664\pi\)
−0.990747 + 0.135723i \(0.956664\pi\)
\(500\) 0 0
\(501\) −2.10914 7.87143i −0.00420987 0.0157114i
\(502\) −405.399 405.399i −0.807568 0.807568i
\(503\) −638.951 368.899i −1.27028 0.733397i −0.295240 0.955423i \(-0.595400\pi\)
−0.975041 + 0.222026i \(0.928733\pi\)
\(504\) 71.2725 41.1492i 0.141414 0.0816452i
\(505\) 0 0
\(506\) 74.5502i 0.147332i
\(507\) 5.47350 1.05001i 0.0107959 0.00207103i
\(508\) 764.466i 1.50486i
\(509\) 21.0926 78.7186i 0.0414392 0.154653i −0.942106 0.335315i \(-0.891157\pi\)
0.983545 + 0.180662i \(0.0578239\pi\)
\(510\) 0 0
\(511\) −46.2408 26.6972i −0.0904908 0.0522449i
\(512\) −526.388 + 526.388i −1.02810 + 1.02810i
\(513\) −1.04755 3.90951i −0.00204201 0.00762087i
\(514\) 165.496 + 617.640i 0.321977 + 1.20163i
\(515\) 0 0
\(516\) −3.35227 + 5.80630i −0.00649664 + 0.0112525i
\(517\) 651.303 + 1128.09i 1.25977 + 2.18199i
\(518\) 27.7664 103.626i 0.0536031 0.200050i
\(519\) 3.64297i 0.00701920i
\(520\) 0 0
\(521\) 461.334 0.885477 0.442739 0.896651i \(-0.354007\pi\)
0.442739 + 0.896651i \(0.354007\pi\)
\(522\) −1414.83 379.102i −2.71040 0.726248i
\(523\) 515.982 297.903i 0.986582 0.569603i 0.0823312 0.996605i \(-0.473763\pi\)
0.904251 + 0.427002i \(0.140430\pi\)
\(524\) −646.007 372.972i −1.23284 0.711779i
\(525\) 0 0
\(526\) −463.364 + 124.158i −0.880919 + 0.236042i
\(527\) 50.8931 13.6368i 0.0965714 0.0258762i
\(528\) 4.80843 + 4.80843i 0.00910687 + 0.00910687i
\(529\) 263.591 456.553i 0.498282 0.863050i
\(530\) 0 0
\(531\) −816.374 218.747i −1.53743 0.411952i
\(532\) −37.7720 −0.0709999
\(533\) 306.831 671.095i 0.575667 1.25909i
\(534\) 10.7174 0.0200701
\(535\) 0 0
\(536\) 629.847 + 1090.93i 1.17509 + 2.03531i
\(537\) −3.49911 + 6.06064i −0.00651604 + 0.0112861i
\(538\) 119.267 119.267i 0.221686 0.221686i
\(539\) −756.306 + 202.652i −1.40317 + 0.375977i
\(540\) 0 0
\(541\) 257.907 257.907i 0.476723 0.476723i −0.427359 0.904082i \(-0.640556\pi\)
0.904082 + 0.427359i \(0.140556\pi\)
\(542\) 1383.11 + 798.542i 2.55187 + 1.47332i
\(543\) −0.854485 1.48001i −0.00157364 0.00272562i
\(544\) −12.1163 3.24656i −0.0222727 0.00596794i
\(545\) 0 0
\(546\) 0.986505 0.367460i 0.00180679 0.000673005i
\(547\) 700.642i 1.28088i −0.768007 0.640441i \(-0.778752\pi\)
0.768007 0.640441i \(-0.221248\pi\)
\(548\) 1036.61 + 277.758i 1.89162 + 0.506858i
\(549\) −192.717 333.795i −0.351033 0.608006i
\(550\) 0 0
\(551\) 229.200 + 229.200i 0.415971 + 0.415971i
\(552\) −0.146754 0.547692i −0.000265858 0.000992195i
\(553\) −28.8607 + 7.73320i −0.0521893 + 0.0139841i
\(554\) −53.5660 + 53.5660i −0.0966894 + 0.0966894i
\(555\) 0 0
\(556\) 489.609 282.676i 0.880591 0.508410i
\(557\) 93.6252 349.414i 0.168088 0.627314i −0.829538 0.558451i \(-0.811396\pi\)
0.997626 0.0688635i \(-0.0219373\pi\)
\(558\) −943.405 −1.69069
\(559\) 217.960 263.747i 0.389911 0.471819i
\(560\) 0 0
\(561\) −0.237200 + 0.885242i −0.000422816 + 0.00157797i
\(562\) −894.700 + 516.555i −1.59199 + 0.919137i
\(563\) 416.253 720.971i 0.739348 1.28059i −0.213441 0.976956i \(-0.568467\pi\)
0.952789 0.303632i \(-0.0981995\pi\)
\(564\) 14.5295 + 14.5295i 0.0257615 + 0.0257615i
\(565\) 0 0
\(566\) 2.33353 + 8.70886i 0.00412285 + 0.0153867i
\(567\) −41.0592 41.0592i −0.0724149 0.0724149i
\(568\) −579.974 334.848i −1.02108 0.589521i
\(569\) 744.104 429.609i 1.30774 0.755024i 0.326021 0.945362i \(-0.394292\pi\)
0.981719 + 0.190338i \(0.0609585\pi\)
\(570\) 0 0
\(571\) 835.548i 1.46331i 0.681677 + 0.731654i \(0.261251\pi\)
−0.681677 + 0.731654i \(0.738749\pi\)
\(572\) −940.058 1321.34i −1.64346 2.31003i
\(573\) 6.28932i 0.0109761i
\(574\) 36.0746 134.632i 0.0628477 0.234551i
\(575\) 0 0
\(576\) 592.555 + 342.112i 1.02874 + 0.593944i
\(577\) −105.641 + 105.641i −0.183087 + 0.183087i −0.792699 0.609613i \(-0.791325\pi\)
0.609613 + 0.792699i \(0.291325\pi\)
\(578\) −253.493 946.049i −0.438570 1.63676i
\(579\) −0.194085 0.724334i −0.000335207 0.00125101i
\(580\) 0 0
\(581\) −4.28874 + 7.42831i −0.00738165 + 0.0127854i
\(582\) −8.26546 14.3162i −0.0142018 0.0245983i
\(583\) −132.988 + 496.316i −0.228109 + 0.851314i
\(584\) 949.510i 1.62587i
\(585\) 0 0
\(586\) −365.088 −0.623017
\(587\) −335.366 89.8610i −0.571322 0.153085i −0.0384190 0.999262i \(-0.512232\pi\)
−0.532903 + 0.846177i \(0.678899\pi\)
\(588\) −10.6964 + 6.17554i −0.0181911 + 0.0105026i
\(589\) 180.800 + 104.385i 0.306962 + 0.177224i
\(590\) 0 0
\(591\) 3.92574 1.05190i 0.00664253 0.00177986i
\(592\) −538.860 + 144.387i −0.910237 + 0.243897i
\(593\) −143.809 143.809i −0.242511 0.242511i 0.575377 0.817888i \(-0.304855\pi\)
−0.817888 + 0.575377i \(0.804855\pi\)
\(594\) 16.4107 28.4242i 0.0276275 0.0478522i
\(595\) 0 0
\(596\) 1219.19 + 326.680i 2.04562 + 0.548122i
\(597\) −0.898846 −0.00150560
\(598\) 5.67880 + 59.7447i 0.00949632 + 0.0999075i
\(599\) 927.612 1.54860 0.774300 0.632818i \(-0.218102\pi\)
0.774300 + 0.632818i \(0.218102\pi\)
\(600\) 0 0
\(601\) 53.2308 + 92.1984i 0.0885703 + 0.153408i 0.906907 0.421331i \(-0.138437\pi\)
−0.818337 + 0.574739i \(0.805104\pi\)
\(602\) 32.3140 55.9696i 0.0536778 0.0929727i
\(603\) 628.546 628.546i 1.04236 1.04236i
\(604\) −1936.35 + 518.843i −3.20587 + 0.859011i
\(605\) 0 0
\(606\) −7.21370 + 7.21370i −0.0119038 + 0.0119038i
\(607\) −1023.85 591.121i −1.68674 0.973841i −0.956987 0.290132i \(-0.906301\pi\)
−0.729755 0.683709i \(-0.760366\pi\)
\(608\) −24.8514 43.0439i −0.0408740 0.0707959i
\(609\) −1.08590 0.290967i −0.00178309 0.000477779i
\(610\) 0 0
\(611\) −607.887 854.441i −0.994905 1.39843i
\(612\) 119.621i 0.195459i
\(613\) −690.777 185.093i −1.12688 0.301947i −0.353215 0.935542i \(-0.614912\pi\)
−0.773665 + 0.633595i \(0.781578\pi\)
\(614\) −359.890 623.348i −0.586140 1.01522i
\(615\) 0 0
\(616\) −104.430 104.430i −0.169530 0.169530i
\(617\) 190.111 + 709.503i 0.308121 + 1.14992i 0.930225 + 0.366989i \(0.119611\pi\)
−0.622104 + 0.782934i \(0.713722\pi\)
\(618\) −11.6339 + 3.11729i −0.0188251 + 0.00504416i
\(619\) −446.560 + 446.560i −0.721421 + 0.721421i −0.968895 0.247474i \(-0.920400\pi\)
0.247474 + 0.968895i \(0.420400\pi\)
\(620\) 0 0
\(621\) −0.693053 + 0.400134i −0.00111603 + 0.000644338i
\(622\) 140.141 523.015i 0.225308 0.840860i
\(623\) −68.0641 −0.109252
\(624\) −4.21976 3.48720i −0.00676244 0.00558847i
\(625\) 0 0
\(626\) −128.505 + 479.586i −0.205279 + 0.766112i
\(627\) −3.14487 + 1.81569i −0.00501574 + 0.00289584i
\(628\) −82.4071 + 142.733i −0.131221 + 0.227282i
\(629\) −53.1640 53.1640i −0.0845214 0.0845214i
\(630\) 0 0
\(631\) 16.5174 + 61.6436i 0.0261765 + 0.0976920i 0.977778 0.209642i \(-0.0672298\pi\)
−0.951602 + 0.307334i \(0.900563\pi\)
\(632\) 375.710 + 375.710i 0.594477 + 0.594477i
\(633\) 0.783973 + 0.452627i 0.00123850 + 0.000715050i
\(634\) 1616.97 933.561i 2.55043 1.47249i
\(635\) 0 0
\(636\) 8.10524i 0.0127441i
\(637\) 590.668 220.016i 0.927266 0.345395i
\(638\) 2628.51i 4.11992i
\(639\) −122.310 + 456.466i −0.191408 + 0.714344i
\(640\) 0 0
\(641\) 581.799 + 335.902i 0.907643 + 0.524028i 0.879672 0.475581i \(-0.157762\pi\)
0.0279707 + 0.999609i \(0.491096\pi\)
\(642\) 10.2944 10.2944i 0.0160349 0.0160349i
\(643\) 143.059 + 533.905i 0.222487 + 0.830334i 0.983396 + 0.181475i \(0.0580870\pi\)
−0.760908 + 0.648859i \(0.775246\pi\)
\(644\) 1.93296 + 7.21391i 0.00300149 + 0.0112017i
\(645\) 0 0
\(646\) −20.0897 + 34.7964i −0.0310987 + 0.0538644i
\(647\) −122.042 211.383i −0.188628 0.326713i 0.756165 0.654381i \(-0.227071\pi\)
−0.944793 + 0.327668i \(0.893737\pi\)
\(648\) −267.256 + 997.411i −0.412431 + 1.53921i
\(649\) 1516.68i 2.33696i
\(650\) 0 0
\(651\) −0.724081 −0.00111226
\(652\) 573.986 + 153.799i 0.880347 + 0.235888i
\(653\) −957.406 + 552.758i −1.46617 + 0.846491i −0.999284 0.0378295i \(-0.987956\pi\)
−0.466881 + 0.884320i \(0.654622\pi\)
\(654\) −11.1576 6.44185i −0.0170606 0.00984992i
\(655\) 0 0
\(656\) −700.095 + 187.590i −1.06722 + 0.285960i
\(657\) 647.188 173.414i 0.985066 0.263948i
\(658\) −140.056 140.056i −0.212851 0.212851i
\(659\) −352.219 + 610.061i −0.534475 + 0.925737i 0.464714 + 0.885461i \(0.346157\pi\)
−0.999189 + 0.0402762i \(0.987176\pi\)
\(660\) 0 0
\(661\) −1116.82 299.251i −1.68959 0.452724i −0.719307 0.694693i \(-0.755540\pi\)
−0.970284 + 0.241968i \(0.922207\pi\)
\(662\) −255.157 −0.385434
\(663\) 0.122660 0.727503i 0.000185007 0.00109729i
\(664\) 152.533 0.229719
\(665\) 0 0
\(666\) 673.109 + 1165.86i 1.01067 + 1.75054i
\(667\) 32.0448 55.5032i 0.0480432 0.0832132i
\(668\) 1349.69 1349.69i 2.02050 2.02050i
\(669\) −0.965424 + 0.258685i −0.00144309 + 0.000386674i
\(670\) 0 0
\(671\) −489.085 + 489.085i −0.728890 + 0.728890i
\(672\) 0.149290 + 0.0861924i 0.000222157 + 0.000128263i
\(673\) 463.497 + 802.800i 0.688703 + 1.19287i 0.972258 + 0.233912i \(0.0751528\pi\)
−0.283555 + 0.958956i \(0.591514\pi\)
\(674\) 421.429 + 112.921i 0.625265 + 0.167539i
\(675\) 0 0
\(676\) 854.016 + 987.315i 1.26334 + 1.46053i
\(677\) 168.337i 0.248651i 0.992241 + 0.124326i \(0.0396767\pi\)
−0.992241 + 0.124326i \(0.960323\pi\)
\(678\) 15.5423 + 4.16455i 0.0229238 + 0.00614240i
\(679\) 52.4921 + 90.9190i 0.0773079 + 0.133901i
\(680\) 0 0
\(681\) −8.76074 8.76074i −0.0128645 0.0128645i
\(682\) 438.172 + 1635.28i 0.642481 + 2.39777i
\(683\) −360.167 + 96.5064i −0.527331 + 0.141298i −0.512655 0.858595i \(-0.671338\pi\)
−0.0146753 + 0.999892i \(0.504671\pi\)
\(684\) 335.156 335.156i 0.489994 0.489994i
\(685\) 0 0
\(686\) 207.308 119.689i 0.302198 0.174474i
\(687\) 1.99561 7.44770i 0.00290481 0.0108409i
\(688\) −336.070 −0.488474
\(689\) 68.7700 407.879i 0.0998113 0.591987i
\(690\) 0 0
\(691\) 186.588 696.355i 0.270026 1.00775i −0.689076 0.724689i \(-0.741984\pi\)
0.959102 0.283061i \(-0.0913497\pi\)
\(692\) −738.967 + 426.643i −1.06787 + 0.616536i
\(693\) −52.1073 + 90.2524i −0.0751909 + 0.130234i
\(694\) 683.511 + 683.511i 0.984886 + 0.984886i
\(695\) 0 0
\(696\) 5.17427 + 19.3106i 0.00743429 + 0.0277452i
\(697\) −69.0715 69.0715i −0.0990982 0.0990982i
\(698\) 449.608 + 259.581i 0.644138 + 0.371893i
\(699\) 3.31897 1.91621i 0.00474816 0.00274135i
\(700\) 0 0
\(701\) 589.719i 0.841254i 0.907234 + 0.420627i \(0.138190\pi\)
−0.907234 + 0.420627i \(0.861810\pi\)
\(702\) −10.9864 + 24.0293i −0.0156501 + 0.0342297i
\(703\) 297.911i 0.423771i
\(704\) 317.793 1186.02i 0.451411 1.68469i
\(705\) 0 0
\(706\) −1292.08 745.981i −1.83014 1.05663i
\(707\) 45.8126 45.8126i 0.0647986 0.0647986i
\(708\) 6.19216 + 23.1095i 0.00874600 + 0.0326405i
\(709\) 40.7548 + 152.099i 0.0574821 + 0.214526i 0.988693 0.149955i \(-0.0479129\pi\)
−0.931211 + 0.364481i \(0.881246\pi\)
\(710\) 0 0
\(711\) 187.467 324.702i 0.263667 0.456684i
\(712\) 605.191 + 1048.22i 0.849988 + 1.47222i
\(713\) 10.6837 39.8722i 0.0149842 0.0559217i
\(714\) 0.139355i 0.000195175i
\(715\) 0 0
\(716\) −1639.18 −2.28936
\(717\) 10.1343 + 2.71547i 0.0141343 + 0.00378727i
\(718\) −507.685 + 293.112i −0.707083 + 0.408234i
\(719\) 721.138 + 416.349i 1.00297 + 0.579067i 0.909127 0.416519i \(-0.136750\pi\)
0.0938470 + 0.995587i \(0.470084\pi\)
\(720\) 0 0
\(721\) 73.8843 19.7972i 0.102475 0.0274580i
\(722\) 1040.20 278.720i 1.44072 0.386039i
\(723\) −4.05345 4.05345i −0.00560643 0.00560643i
\(724\) 200.145 346.661i 0.276443 0.478813i
\(725\) 0 0
\(726\) −15.2465 4.08529i −0.0210007 0.00562713i
\(727\) 61.3646 0.0844079 0.0422040 0.999109i \(-0.486562\pi\)
0.0422040 + 0.999109i \(0.486562\pi\)
\(728\) 91.6454 + 75.7357i 0.125887 + 0.104033i
\(729\) 728.472 0.999275
\(730\) 0 0
\(731\) −22.6464 39.2248i −0.0309801 0.0536591i
\(732\) −5.45533 + 9.44890i −0.00745263 + 0.0129083i
\(733\) 256.277 256.277i 0.349628 0.349628i −0.510343 0.859971i \(-0.670482\pi\)
0.859971 + 0.510343i \(0.170482\pi\)
\(734\) −2062.30 + 552.592i −2.80968 + 0.752851i
\(735\) 0 0
\(736\) −6.94902 + 6.94902i −0.00944160 + 0.00944160i
\(737\) −1381.44 797.576i −1.87441 1.08219i
\(738\) 874.514 + 1514.70i 1.18498 + 2.05244i
\(739\) −306.125 82.0259i −0.414242 0.110996i 0.0456779 0.998956i \(-0.485455\pi\)
−0.459920 + 0.887960i \(0.652122\pi\)
\(740\) 0 0
\(741\) 2.38199 1.69466i 0.00321457 0.00228698i
\(742\) 78.1301i 0.105297i
\(743\) 991.663 + 265.715i 1.33467 + 0.357625i 0.854456 0.519524i \(-0.173891\pi\)
0.480219 + 0.877149i \(0.340557\pi\)
\(744\) 6.43816 + 11.1512i 0.00865344 + 0.0149882i
\(745\) 0 0
\(746\) −1613.19 1613.19i −2.16246 2.16246i
\(747\) −27.8579 103.967i −0.0372930 0.139179i
\(748\) −207.349 + 55.5589i −0.277204 + 0.0742767i
\(749\) −65.3776 + 65.3776i −0.0872865 + 0.0872865i
\(750\) 0 0
\(751\) −444.296 + 256.514i −0.591605 + 0.341563i −0.765732 0.643160i \(-0.777623\pi\)
0.174127 + 0.984723i \(0.444290\pi\)
\(752\) −266.576 + 994.877i −0.354490 + 1.32297i
\(753\) 5.52177 0.00733303
\(754\) −200.224 2106.49i −0.265550 2.79375i
\(755\) 0 0
\(756\) −0.851004 + 3.17599i −0.00112567 + 0.00420105i
\(757\) 0.322110 0.185970i 0.000425508 0.000245667i −0.499787 0.866148i \(-0.666588\pi\)
0.500213 + 0.865903i \(0.333255\pi\)
\(758\) 658.727 1140.95i 0.869032 1.50521i
\(759\) 0.507708 + 0.507708i 0.000668918 + 0.000668918i
\(760\) 0 0
\(761\) −100.429 374.806i −0.131970 0.492518i 0.868022 0.496525i \(-0.165391\pi\)
−0.999992 + 0.00400744i \(0.998724\pi\)
\(762\) 7.90223 + 7.90223i 0.0103704 + 0.0103704i
\(763\) 70.8595 + 40.9107i 0.0928696 + 0.0536183i
\(764\) −1275.78 + 736.569i −1.66986 + 0.964096i
\(765\) 0 0
\(766\) 25.4204i 0.0331859i
\(767\) −115.532 1215.47i −0.150629 1.58471i
\(768\) 16.0763i 0.0209327i
\(769\) 290.354 1083.62i 0.377574 1.40913i −0.471973 0.881613i \(-0.656458\pi\)
0.849547 0.527512i \(-0.176875\pi\)
\(770\) 0 0
\(771\) −5.33338 3.07923i −0.00691748 0.00399381i
\(772\) 124.199 124.199i 0.160880 0.160880i
\(773\) −252.729 943.196i −0.326945 1.22018i −0.912342 0.409429i \(-0.865728\pi\)
0.585397 0.810747i \(-0.300939\pi\)
\(774\) 209.899 + 783.352i 0.271187 + 1.01208i
\(775\) 0 0
\(776\) 933.466 1616.81i 1.20292 2.08352i
\(777\) 0.516623 + 0.894818i 0.000664895 + 0.00115163i
\(778\) −13.8219 + 51.5841i −0.0177660 + 0.0663035i
\(779\) 387.050i 0.496855i
\(780\) 0 0
\(781\) 848.037 1.08583
\(782\) 7.67371 + 2.05616i 0.00981293 + 0.00262937i
\(783\) 24.4358 14.1080i 0.0312079 0.0180179i
\(784\) −536.163 309.554i −0.683881 0.394839i
\(785\) 0 0
\(786\) 10.5331 2.82234i 0.0134009 0.00359076i
\(787\) 731.634 196.041i 0.929649 0.249099i 0.237944 0.971279i \(-0.423527\pi\)
0.691705 + 0.722180i \(0.256860\pi\)
\(788\) 673.135 + 673.135i 0.854232 + 0.854232i
\(789\) 2.31009 4.00119i 0.00292787 0.00507122i
\(790\) 0 0
\(791\) −98.7058 26.4481i −0.124786 0.0334363i
\(792\) 1853.25 2.33996
\(793\) 354.698 429.210i 0.447287 0.541248i
\(794\) −643.227 −0.810110
\(795\) 0 0
\(796\) −105.268 182.329i −0.132246 0.229056i
\(797\) 46.1830 79.9913i 0.0579460 0.100365i −0.835597 0.549343i \(-0.814878\pi\)
0.893543 + 0.448977i \(0.148212\pi\)
\(798\) 0.390446 0.390446i 0.000489280 0.000489280i
\(799\) −134.082 + 35.9271i −0.167812 + 0.0449651i
\(800\) 0 0
\(801\) 603.941 603.941i 0.753984 0.753984i
\(802\) −900.569 519.944i −1.12290 0.648309i
\(803\) −601.183 1041.28i −0.748671 1.29674i
\(804\) −24.3051 6.51252i −0.0302302 0.00810015i
\(805\) 0 0
\(806\) −475.718 1277.14i −0.590221 1.58454i
\(807\) 1.62449i 0.00201299i
\(808\) −1112.88 298.196i −1.37733 0.369054i
\(809\) −23.1844 40.1565i −0.0286580 0.0496372i 0.851341 0.524613i \(-0.175790\pi\)
−0.879999 + 0.474976i \(0.842457\pi\)
\(810\) 0 0
\(811\) 70.9896 + 70.9896i 0.0875334 + 0.0875334i 0.749518 0.661984i \(-0.230285\pi\)
−0.661984 + 0.749518i \(0.730285\pi\)
\(812\) −68.1528 254.350i −0.0839320 0.313238i
\(813\) −14.8577 + 3.98111i −0.0182752 + 0.00489681i
\(814\) 1708.25 1708.25i 2.09858 2.09858i
\(815\) 0 0
\(816\) −0.627569 + 0.362327i −0.000769079 + 0.000444028i
\(817\) 46.4494 173.351i 0.0568536 0.212181i
\(818\) −440.317 −0.538285
\(819\) 34.8840 76.2977i 0.0425933 0.0931596i
\(820\) 0 0
\(821\) −256.139 + 955.924i −0.311984 + 1.16434i 0.614780 + 0.788698i \(0.289245\pi\)
−0.926765 + 0.375643i \(0.877422\pi\)
\(822\) −13.5865 + 7.84417i −0.0165286 + 0.00954278i
\(823\) 231.270 400.572i 0.281009 0.486722i −0.690625 0.723213i \(-0.742664\pi\)
0.971633 + 0.236492i \(0.0759977\pi\)
\(824\) −961.829 961.829i −1.16727 1.16727i
\(825\) 0 0
\(826\) −59.6891 222.763i −0.0722628 0.269689i
\(827\) 929.759 + 929.759i 1.12426 + 1.12426i 0.991094 + 0.133161i \(0.0425127\pi\)
0.133161 + 0.991094i \(0.457487\pi\)
\(828\) −81.1614 46.8586i −0.0980210 0.0565925i
\(829\) −385.154 + 222.369i −0.464600 + 0.268237i −0.713977 0.700170i \(-0.753108\pi\)
0.249376 + 0.968407i \(0.419774\pi\)
\(830\) 0 0
\(831\) 0.729599i 0.000877977i
\(832\) −164.336 + 974.686i −0.197519 + 1.17150i
\(833\) 83.4385i 0.100166i
\(834\) −2.13905 + 7.98304i −0.00256481 + 0.00957199i
\(835\) 0 0
\(836\) −736.618 425.286i −0.881121 0.508716i
\(837\) 12.8505 12.8505i 0.0153530 0.0153530i
\(838\) 145.350 + 542.453i 0.173449 + 0.647319i
\(839\) 241.488 + 901.245i 0.287828 + 1.07419i 0.946748 + 0.321976i \(0.104347\pi\)
−0.658920 + 0.752213i \(0.728986\pi\)
\(840\) 0 0
\(841\) −709.342 + 1228.62i −0.843450 + 1.46090i
\(842\) −77.7236 134.621i −0.0923084 0.159883i
\(843\) 2.57527 9.61105i 0.00305489 0.0114010i
\(844\) 212.036i 0.251228i
\(845\) 0 0
\(846\) 2485.47 2.93791
\(847\) 96.8273 + 25.9448i 0.114318 + 0.0306314i
\(848\) −351.850 + 203.141i −0.414918 + 0.239553i
\(849\) −0.0752018 0.0434178i −8.85769e−5 5.11399e-5i
\(850\) 0 0
\(851\) −56.8967 + 15.2454i −0.0668587 + 0.0179147i
\(852\) 12.9214 3.46228i 0.0151660 0.00406371i
\(853\) 130.680 + 130.680i 0.153201 + 0.153201i 0.779546 0.626345i \(-0.215450\pi\)
−0.626345 + 0.779546i \(0.715450\pi\)
\(854\) 52.5864 91.0823i 0.0615766 0.106654i
\(855\) 0 0
\(856\) 1588.15 + 425.544i 1.85532 + 0.497131i
\(857\) 1553.51 1.81273 0.906365 0.422496i \(-0.138846\pi\)
0.906365 + 0.422496i \(0.138846\pi\)
\(858\) 23.3759 + 3.94126i 0.0272446 + 0.00459355i
\(859\) 781.729 0.910045 0.455023 0.890480i \(-0.349631\pi\)
0.455023 + 0.890480i \(0.349631\pi\)
\(860\) 0 0
\(861\) 0.671205 + 1.16256i 0.000779565 + 0.00135025i
\(862\) 401.858 696.038i 0.466192 0.807469i
\(863\) −534.675 + 534.675i −0.619554 + 0.619554i −0.945417 0.325863i \(-0.894345\pi\)
0.325863 + 0.945417i \(0.394345\pi\)
\(864\) −4.17918 + 1.11981i −0.00483701 + 0.00129607i
\(865\) 0 0
\(866\) 209.730 209.730i 0.242182 0.242182i
\(867\) 8.16923 + 4.71651i 0.00942241 + 0.00544003i
\(868\) −84.8001 146.878i −0.0976960 0.169214i
\(869\) −649.903 174.141i −0.747874 0.200392i
\(870\) 0 0
\(871\) 1167.84 + 533.948i 1.34081 + 0.613029i
\(872\) 1455.03i 1.66861i
\(873\) −1272.50 340.967i −1.45762 0.390569i
\(874\) 15.7393 + 27.2613i 0.0180083 + 0.0311914i
\(875\) 0 0
\(876\) −13.4114 13.4114i −0.0153098 0.0153098i
\(877\) −75.4171 281.460i −0.0859944 0.320935i 0.909506 0.415690i \(-0.136460\pi\)
−0.995501 + 0.0947548i \(0.969793\pi\)
\(878\) 359.465 96.3183i 0.409413 0.109702i
\(879\) 2.48635 2.48635i 0.00282861 0.00282861i
\(880\) 0 0
\(881\) −523.282 + 302.117i −0.593964 + 0.342925i −0.766663 0.642049i \(-0.778084\pi\)
0.172699 + 0.984975i \(0.444751\pi\)
\(882\) −386.675 + 1443.09i −0.438407 + 1.63616i
\(883\) −1287.07 −1.45761 −0.728803 0.684724i \(-0.759923\pi\)
−0.728803 + 0.684724i \(0.759923\pi\)
\(884\) 161.938 60.3197i 0.183187 0.0682349i
\(885\) 0 0
\(886\) 314.840 1175.00i 0.355350 1.32618i
\(887\) −190.472 + 109.969i −0.214737 + 0.123979i −0.603511 0.797355i \(-0.706232\pi\)
0.388774 + 0.921333i \(0.372899\pi\)
\(888\) 9.18711 15.9125i 0.0103458 0.0179195i
\(889\) −50.1853 50.1853i −0.0564514 0.0564514i
\(890\) 0 0
\(891\) −338.426 1263.02i −0.379827 1.41753i
\(892\) −165.538 165.538i −0.185581 0.185581i
\(893\) −476.332 275.011i −0.533407 0.307963i
\(894\) −15.9795 + 9.22578i −0.0178742 + 0.0103197i
\(895\) 0 0
\(896\) 165.794i 0.185038i
\(897\) −0.445553 0.368204i −0.000496714 0.000410484i
\(898\) 726.314i 0.808813i
\(899\) −376.689 + 1405.82i −0.419009 + 1.56376i
\(900\) 0 0
\(901\) −47.4196 27.3777i −0.0526300 0.0303859i
\(902\) 2219.38 2219.38i 2.46051 2.46051i
\(903\) 0.161101 + 0.601237i 0.000178406 + 0.000665821i
\(904\) 470.327 + 1755.28i 0.520273 + 1.94169i
\(905\) 0 0
\(906\) 14.6526 25.3791i 0.0161729 0.0280123i
\(907\) −489.570 847.960i −0.539768 0.934906i −0.998916 0.0465461i \(-0.985179\pi\)
0.459148 0.888360i \(-0.348155\pi\)
\(908\) 751.089 2803.10i 0.827190 3.08712i
\(909\) 813.003i 0.894392i
\(910\) 0 0
\(911\) 444.018 0.487396 0.243698 0.969851i \(-0.421639\pi\)
0.243698 + 0.969851i \(0.421639\pi\)
\(912\) −2.77350 0.743157i −0.00304112 0.000814865i
\(913\) −167.275 + 96.5765i −0.183215 + 0.105779i
\(914\) −934.548 539.562i −1.02248 0.590330i
\(915\) 0 0
\(916\) 1744.46 467.428i 1.90444 0.510292i
\(917\) −66.8934 + 17.9240i −0.0729481 + 0.0195464i
\(918\) 2.47318 + 2.47318i 0.00269409 + 0.00269409i
\(919\) 355.023 614.917i 0.386314 0.669115i −0.605637 0.795741i \(-0.707081\pi\)
0.991951 + 0.126626i \(0.0404148\pi\)
\(920\) 0 0
\(921\) 6.69613 + 1.79422i 0.00727050 + 0.00194813i
\(922\) −2386.80 −2.58872
\(923\) −679.618 + 64.5985i −0.736314 + 0.0699875i
\(924\) 2.95005 0.00319269
\(925\) 0 0
\(926\) −1562.32 2706.03i −1.68718 2.92227i
\(927\) −479.921 + 831.248i −0.517714 + 0.896707i
\(928\) 245.010 245.010i 0.264019 0.264019i
\(929\) 287.421 77.0142i 0.309387 0.0829001i −0.100785 0.994908i \(-0.532135\pi\)
0.410172 + 0.912008i \(0.365469\pi\)
\(930\) 0 0
\(931\) 233.779 233.779i 0.251105 0.251105i
\(932\) 777.396 + 448.830i 0.834116 + 0.481577i
\(933\) 2.60748 + 4.51628i 0.00279472 + 0.00484060i
\(934\) 1888.58 + 506.045i 2.02204 + 0.541804i
\(935\) 0 0
\(936\) −1485.19 + 141.169i −1.58675 + 0.150822i
\(937\) 194.851i 0.207952i 0.994580 + 0.103976i \(0.0331565\pi\)
−0.994580 + 0.103976i \(0.966844\pi\)
\(938\) 234.288 + 62.7772i 0.249774 + 0.0669266i
\(939\) −2.39097 4.14127i −0.00254629 0.00441030i
\(940\) 0 0
\(941\) 415.396 + 415.396i 0.441441 + 0.441441i 0.892496 0.451055i \(-0.148952\pi\)
−0.451055 + 0.892496i \(0.648952\pi\)
\(942\) −0.623586 2.32726i −0.000661981 0.00247055i
\(943\) −73.9211 + 19.8071i −0.0783893 + 0.0210044i
\(944\) −847.993 + 847.993i −0.898298 + 0.898298i
\(945\) 0 0
\(946\) 1260.36 727.668i 1.33230 0.769205i
\(947\) 214.904 802.031i 0.226931 0.846918i −0.754691 0.656081i \(-0.772213\pi\)
0.981622 0.190837i \(-0.0611202\pi\)
\(948\) −10.6134 −0.0111956
\(949\) 561.108 + 788.689i 0.591262 + 0.831073i
\(950\) 0 0
\(951\) −4.65424 + 17.3699i −0.00489405 + 0.0182648i
\(952\) 13.6296 7.86907i 0.0143168 0.00826583i
\(953\) −523.182 + 906.178i −0.548985 + 0.950869i 0.449360 + 0.893351i \(0.351652\pi\)
−0.998344 + 0.0575183i \(0.981681\pi\)
\(954\) 693.259 + 693.259i 0.726686 + 0.726686i
\(955\) 0 0
\(956\) 636.041 + 2373.74i 0.665315 + 2.48299i
\(957\) −17.9009 17.9009i −0.0187052 0.0187052i
\(958\) 123.837 + 71.4973i 0.129266 + 0.0746319i
\(959\) 86.2848 49.8166i 0.0899737 0.0519464i
\(960\) 0 0
\(961\) 23.5985i 0.0245562i
\(962\) −1238.87 + 1499.12i −1.28780 + 1.55833i
\(963\) 1160.21i 1.20478i
\(964\) 347.517 1296.95i 0.360495 1.34538i
\(965\) 0 0
\(966\) −0.0945505 0.0545887i −9.78783e−5 5.65101e-5i
\(967\) −710.111 + 710.111i −0.734344 + 0.734344i −0.971477 0.237133i \(-0.923792\pi\)
0.237133 + 0.971477i \(0.423792\pi\)
\(968\) −461.376 1721.88i −0.476628 1.77880i
\(969\) −0.100157 0.373790i −0.000103361 0.000385749i
\(970\) 0 0
\(971\) −759.207 + 1314.99i −0.781882 + 1.35426i 0.148963 + 0.988843i \(0.452407\pi\)
−0.930844 + 0.365416i \(0.880927\pi\)
\(972\) −30.9455 53.5992i −0.0318369 0.0551432i
\(973\) 13.5846 50.6985i 0.0139616 0.0521054i
\(974\) 1259.84i 1.29347i
\(975\) 0 0
\(976\) −546.905 −0.560354
\(977\) −169.508 45.4195i −0.173498 0.0464887i 0.171024 0.985267i \(-0.445292\pi\)
−0.344522 + 0.938778i \(0.611959\pi\)
\(978\) −7.52306 + 4.34344i −0.00769229 + 0.00444114i
\(979\) −1327.36 766.354i −1.35584 0.782793i
\(980\) 0 0
\(981\) −991.752 + 265.739i −1.01096 + 0.270886i
\(982\) −1047.49 + 280.674i −1.06669 + 0.285819i
\(983\) 657.150 + 657.150i 0.668515 + 0.668515i 0.957372 0.288857i \(-0.0932753\pi\)
−0.288857 + 0.957372i \(0.593275\pi\)
\(984\) 11.9360 20.6738i 0.0121301 0.0210100i
\(985\) 0 0
\(986\) −270.561 72.4967i −0.274403 0.0735260i
\(987\) 1.90764 0.00193277
\(988\) 622.722 + 284.714i 0.630286 + 0.288172i
\(989\) −35.4847 −0.0358794
\(990\) 0 0
\(991\) −241.005 417.433i −0.243194 0.421224i 0.718428 0.695601i \(-0.244862\pi\)
−0.961622 + 0.274377i \(0.911528\pi\)
\(992\) 111.586 193.272i 0.112485 0.194830i
\(993\) 1.73769 1.73769i 0.00174994 0.00174994i
\(994\) −124.555 + 33.3745i −0.125307 + 0.0335759i
\(995\) 0 0
\(996\) −2.15446 + 2.15446i −0.00216311 + 0.00216311i
\(997\) −574.298 331.571i −0.576026 0.332569i 0.183526 0.983015i \(-0.441249\pi\)
−0.759553 + 0.650446i \(0.774582\pi\)
\(998\) 1033.02 + 1789.24i 1.03509 + 1.79283i
\(999\) −25.0493 6.71194i −0.0250744 0.00671866i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.3.w.e.24.1 40
5.2 odd 4 65.3.p.a.11.10 yes 40
5.3 odd 4 325.3.t.d.76.1 40
5.4 even 2 325.3.w.f.24.10 40
13.6 odd 12 325.3.w.f.149.10 40
65.19 odd 12 inner 325.3.w.e.149.1 40
65.32 even 12 65.3.p.a.6.10 40
65.58 even 12 325.3.t.d.201.1 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.3.p.a.6.10 40 65.32 even 12
65.3.p.a.11.10 yes 40 5.2 odd 4
325.3.t.d.76.1 40 5.3 odd 4
325.3.t.d.201.1 40 65.58 even 12
325.3.w.e.24.1 40 1.1 even 1 trivial
325.3.w.e.149.1 40 65.19 odd 12 inner
325.3.w.f.24.10 40 5.4 even 2
325.3.w.f.149.10 40 13.6 odd 12