Properties

Label 325.3.t.d.201.1
Level $325$
Weight $3$
Character 325.201
Analytic conductor $8.856$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,3,Mod(76,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.76"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 325.t (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,-12,40,-36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.85560859171\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 201.1
Character \(\chi\) \(=\) 325.201
Dual form 325.3.t.d.76.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.886220 - 3.30742i) q^{2} +(0.0164891 - 0.0285599i) q^{3} +(-6.68953 + 3.86220i) q^{4} +(-0.109072 - 0.0292259i) q^{6} +(-0.185607 + 0.692695i) q^{7} +(9.01754 + 9.01754i) q^{8} +(4.49946 + 7.79329i) q^{9} +(15.5985 - 4.17961i) q^{11} +0.254736i q^{12} +(2.16135 + 12.8191i) q^{13} +2.45552 q^{14} +(6.38443 - 11.0582i) q^{16} +(1.49033 - 0.860444i) q^{17} +(21.7882 - 21.7882i) q^{18} +(6.58643 + 1.76483i) q^{19} +(0.0167228 + 0.0167228i) q^{21} +(-27.6475 - 47.8868i) q^{22} +(-1.16760 - 0.674114i) q^{23} +(0.406230 - 0.108849i) q^{24} +(40.4826 - 18.5090i) q^{26} +0.593570 q^{27} +(-1.43370 - 5.35066i) q^{28} +(23.7681 - 41.1675i) q^{29} +(-21.6495 + 21.6495i) q^{31} +(7.04075 + 1.88656i) q^{32} +(0.137836 - 0.514410i) q^{33} +(-4.16661 - 4.16661i) q^{34} +(-60.1985 - 34.7556i) q^{36} +(42.2011 - 11.3078i) q^{37} -23.3481i q^{38} +(0.401750 + 0.149647i) q^{39} +(-14.6912 - 54.8283i) q^{41} +(0.0404892 - 0.0701294i) q^{42} +(-22.7934 + 13.1597i) q^{43} +(-88.2044 + 88.2044i) q^{44} +(-1.19483 + 4.45916i) q^{46} +(57.0372 + 57.0372i) q^{47} +(-0.210547 - 0.364677i) q^{48} +(41.9899 + 24.2429i) q^{49} -0.0567516i q^{51} +(-63.9683 - 77.4061i) q^{52} -31.8181 q^{53} +(-0.526034 - 1.96319i) q^{54} +(-7.92012 + 4.57268i) q^{56} +(0.159007 - 0.159007i) q^{57} +(-157.222 - 42.1275i) q^{58} +(-24.3081 + 90.7191i) q^{59} +(-21.4156 - 37.0929i) q^{61} +(90.7902 + 52.4177i) q^{62} +(-6.23350 + 1.67026i) q^{63} -76.0341i q^{64} -1.82352 q^{66} +(-25.5657 - 95.4126i) q^{67} +(-6.64642 + 11.5119i) q^{68} +(-0.0385053 + 0.0222310i) q^{69} +(50.7246 + 13.5916i) q^{71} +(-29.7022 + 110.850i) q^{72} +(52.6480 + 52.6480i) q^{73} +(-74.7989 - 129.556i) q^{74} +(-50.8763 + 13.6323i) q^{76} +11.5808i q^{77} +(0.138905 - 1.46137i) q^{78} +41.6643 q^{79} +(-40.4853 + 70.1226i) q^{81} +(-168.321 + 97.1800i) q^{82} +(-8.45759 + 8.45759i) q^{83} +(-0.176455 - 0.0472809i) q^{84} +(63.7247 + 63.7247i) q^{86} +(-0.783826 - 1.35763i) q^{87} +(178.350 + 102.971i) q^{88} +(91.6776 - 24.5649i) q^{89} +(-9.28087 - 0.882157i) q^{91} +10.4143 q^{92} +(0.261327 + 0.975287i) q^{93} +(138.098 - 239.194i) q^{94} +(0.169975 - 0.169975i) q^{96} +(141.407 + 37.8898i) q^{97} +(42.9690 - 160.363i) q^{98} +(102.758 + 102.758i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 12 q^{6} + 40 q^{7} - 36 q^{8} - 72 q^{9} - 12 q^{11} + 12 q^{13} + 48 q^{14} + 128 q^{16} - 60 q^{17} + 136 q^{18} + 68 q^{19} - 48 q^{21} + 48 q^{22} + 48 q^{23} - 56 q^{24} - 84 q^{26} - 24 q^{27}+ \cdots - 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.886220 3.30742i −0.443110 1.65371i −0.720878 0.693062i \(-0.756261\pi\)
0.277768 0.960648i \(-0.410405\pi\)
\(3\) 0.0164891 0.0285599i 0.00549635 0.00951996i −0.863264 0.504752i \(-0.831584\pi\)
0.868760 + 0.495232i \(0.164917\pi\)
\(4\) −6.68953 + 3.86220i −1.67238 + 0.965551i
\(5\) 0 0
\(6\) −0.109072 0.0292259i −0.0181787 0.00487098i
\(7\) −0.185607 + 0.692695i −0.0265153 + 0.0989564i −0.977915 0.209001i \(-0.932979\pi\)
0.951400 + 0.307957i \(0.0996455\pi\)
\(8\) 9.01754 + 9.01754i 1.12719 + 1.12719i
\(9\) 4.49946 + 7.79329i 0.499940 + 0.865921i
\(10\) 0 0
\(11\) 15.5985 4.17961i 1.41805 0.379965i 0.533257 0.845953i \(-0.320968\pi\)
0.884791 + 0.465988i \(0.154301\pi\)
\(12\) 0.254736i 0.0212280i
\(13\) 2.16135 + 12.8191i 0.166257 + 0.986082i
\(14\) 2.45552 0.175394
\(15\) 0 0
\(16\) 6.38443 11.0582i 0.399027 0.691135i
\(17\) 1.49033 0.860444i 0.0876666 0.0506143i −0.455526 0.890223i \(-0.650549\pi\)
0.543192 + 0.839608i \(0.317215\pi\)
\(18\) 21.7882 21.7882i 1.21045 1.21045i
\(19\) 6.58643 + 1.76483i 0.346654 + 0.0928857i 0.427945 0.903805i \(-0.359238\pi\)
−0.0812910 + 0.996690i \(0.525904\pi\)
\(20\) 0 0
\(21\) 0.0167228 + 0.0167228i 0.000796324 + 0.000796324i
\(22\) −27.6475 47.8868i −1.25670 2.17667i
\(23\) −1.16760 0.674114i −0.0507652 0.0293093i 0.474403 0.880308i \(-0.342664\pi\)
−0.525168 + 0.850999i \(0.675997\pi\)
\(24\) 0.406230 0.108849i 0.0169263 0.00453538i
\(25\) 0 0
\(26\) 40.4826 18.5090i 1.55702 0.711884i
\(27\) 0.593570 0.0219841
\(28\) −1.43370 5.35066i −0.0512037 0.191095i
\(29\) 23.7681 41.1675i 0.819588 1.41957i −0.0863974 0.996261i \(-0.527535\pi\)
0.905986 0.423308i \(-0.139131\pi\)
\(30\) 0 0
\(31\) −21.6495 + 21.6495i −0.698371 + 0.698371i −0.964059 0.265688i \(-0.914401\pi\)
0.265688 + 0.964059i \(0.414401\pi\)
\(32\) 7.04075 + 1.88656i 0.220023 + 0.0589551i
\(33\) 0.137836 0.514410i 0.00417684 0.0155882i
\(34\) −4.16661 4.16661i −0.122547 0.122547i
\(35\) 0 0
\(36\) −60.1985 34.7556i −1.67218 0.965435i
\(37\) 42.2011 11.3078i 1.14057 0.305615i 0.361390 0.932415i \(-0.382302\pi\)
0.779180 + 0.626800i \(0.215636\pi\)
\(38\) 23.3481i 0.614424i
\(39\) 0.401750 + 0.149647i 0.0103013 + 0.00383709i
\(40\) 0 0
\(41\) −14.6912 54.8283i −0.358322 1.33728i −0.876252 0.481853i \(-0.839964\pi\)
0.517930 0.855423i \(-0.326703\pi\)
\(42\) 0.0404892 0.0701294i 0.000964029 0.00166975i
\(43\) −22.7934 + 13.1597i −0.530078 + 0.306041i −0.741048 0.671452i \(-0.765671\pi\)
0.210970 + 0.977492i \(0.432338\pi\)
\(44\) −88.2044 + 88.2044i −2.00465 + 2.00465i
\(45\) 0 0
\(46\) −1.19483 + 4.45916i −0.0259745 + 0.0969382i
\(47\) 57.0372 + 57.0372i 1.21356 + 1.21356i 0.969848 + 0.243710i \(0.0783643\pi\)
0.243710 + 0.969848i \(0.421636\pi\)
\(48\) −0.210547 0.364677i −0.00438639 0.00759744i
\(49\) 41.9899 + 24.2429i 0.856936 + 0.494752i
\(50\) 0 0
\(51\) 0.0567516i 0.00111278i
\(52\) −63.9683 77.4061i −1.23016 1.48858i
\(53\) −31.8181 −0.600342 −0.300171 0.953885i \(-0.597044\pi\)
−0.300171 + 0.953885i \(0.597044\pi\)
\(54\) −0.526034 1.96319i −0.00974137 0.0363553i
\(55\) 0 0
\(56\) −7.92012 + 4.57268i −0.141431 + 0.0816551i
\(57\) 0.159007 0.159007i 0.00278960 0.00278960i
\(58\) −157.222 42.1275i −2.71072 0.726336i
\(59\) −24.3081 + 90.7191i −0.412002 + 1.53761i 0.378764 + 0.925493i \(0.376349\pi\)
−0.790766 + 0.612119i \(0.790317\pi\)
\(60\) 0 0
\(61\) −21.4156 37.0929i −0.351075 0.608080i 0.635363 0.772214i \(-0.280850\pi\)
−0.986438 + 0.164134i \(0.947517\pi\)
\(62\) 90.7902 + 52.4177i 1.46436 + 0.845447i
\(63\) −6.23350 + 1.67026i −0.0989445 + 0.0265121i
\(64\) 76.0341i 1.18803i
\(65\) 0 0
\(66\) −1.82352 −0.0276291
\(67\) −25.5657 95.4126i −0.381578 1.42407i −0.843491 0.537143i \(-0.819504\pi\)
0.461913 0.886925i \(-0.347163\pi\)
\(68\) −6.64642 + 11.5119i −0.0977415 + 0.169293i
\(69\) −0.0385053 + 0.0222310i −0.000558047 + 0.000322189i
\(70\) 0 0
\(71\) 50.7246 + 13.5916i 0.714431 + 0.191431i 0.597685 0.801731i \(-0.296087\pi\)
0.116745 + 0.993162i \(0.462754\pi\)
\(72\) −29.7022 + 110.850i −0.412531 + 1.53959i
\(73\) 52.6480 + 52.6480i 0.721205 + 0.721205i 0.968851 0.247646i \(-0.0796568\pi\)
−0.247646 + 0.968851i \(0.579657\pi\)
\(74\) −74.7989 129.556i −1.01080 1.75075i
\(75\) 0 0
\(76\) −50.8763 + 13.6323i −0.669425 + 0.179372i
\(77\) 11.5808i 0.150400i
\(78\) 0.138905 1.46137i 0.00178084 0.0187356i
\(79\) 41.6643 0.527397 0.263698 0.964605i \(-0.415058\pi\)
0.263698 + 0.964605i \(0.415058\pi\)
\(80\) 0 0
\(81\) −40.4853 + 70.1226i −0.499819 + 0.865711i
\(82\) −168.321 + 97.1800i −2.05269 + 1.18512i
\(83\) −8.45759 + 8.45759i −0.101899 + 0.101899i −0.756218 0.654320i \(-0.772955\pi\)
0.654320 + 0.756218i \(0.272955\pi\)
\(84\) −0.176455 0.0472809i −0.00210065 0.000562868i
\(85\) 0 0
\(86\) 63.7247 + 63.7247i 0.740985 + 0.740985i
\(87\) −0.783826 1.35763i −0.00900949 0.0156049i
\(88\) 178.350 + 102.971i 2.02671 + 1.17012i
\(89\) 91.6776 24.5649i 1.03009 0.276011i 0.296087 0.955161i \(-0.404318\pi\)
0.733999 + 0.679150i \(0.237652\pi\)
\(90\) 0 0
\(91\) −9.28087 0.882157i −0.101988 0.00969403i
\(92\) 10.4143 0.113199
\(93\) 0.261327 + 0.975287i 0.00280997 + 0.0104870i
\(94\) 138.098 239.194i 1.46913 2.54461i
\(95\) 0 0
\(96\) 0.169975 0.169975i 0.00177058 0.00177058i
\(97\) 141.407 + 37.8898i 1.45780 + 0.390616i 0.898729 0.438504i \(-0.144492\pi\)
0.559070 + 0.829120i \(0.311158\pi\)
\(98\) 42.9690 160.363i 0.438460 1.63635i
\(99\) 102.758 + 102.758i 1.03796 + 1.03796i
\(100\) 0 0
\(101\) 78.2407 + 45.1723i 0.774660 + 0.447250i 0.834535 0.550956i \(-0.185737\pi\)
−0.0598743 + 0.998206i \(0.519070\pi\)
\(102\) −0.187701 + 0.0502944i −0.00184021 + 0.000493083i
\(103\) 106.662i 1.03555i −0.855516 0.517777i \(-0.826760\pi\)
0.855516 0.517777i \(-0.173240\pi\)
\(104\) −96.1064 + 135.086i −0.924100 + 1.29891i
\(105\) 0 0
\(106\) 28.1979 + 105.236i 0.266018 + 0.992792i
\(107\) 64.4638 111.655i 0.602465 1.04350i −0.389982 0.920823i \(-0.627519\pi\)
0.992447 0.122677i \(-0.0391480\pi\)
\(108\) −3.97071 + 2.29249i −0.0367658 + 0.0212268i
\(109\) −80.6778 + 80.6778i −0.740164 + 0.740164i −0.972609 0.232446i \(-0.925327\pi\)
0.232446 + 0.972609i \(0.425327\pi\)
\(110\) 0 0
\(111\) 0.372908 1.39171i 0.00335953 0.0125380i
\(112\) 6.47494 + 6.47494i 0.0578119 + 0.0578119i
\(113\) 71.2477 + 123.405i 0.630510 + 1.09208i 0.987448 + 0.157947i \(0.0504877\pi\)
−0.356937 + 0.934128i \(0.616179\pi\)
\(114\) −0.666819 0.384988i −0.00584929 0.00337709i
\(115\) 0 0
\(116\) 367.189i 3.16542i
\(117\) −90.1778 + 74.5228i −0.770751 + 0.636947i
\(118\) 321.589 2.72533
\(119\) 0.319409 + 1.19205i 0.00268411 + 0.0100172i
\(120\) 0 0
\(121\) 121.056 69.8917i 1.00046 0.577617i
\(122\) −103.703 + 103.703i −0.850022 + 0.850022i
\(123\) −1.80813 0.484488i −0.0147003 0.00393893i
\(124\) 61.2103 228.440i 0.493631 1.84226i
\(125\) 0 0
\(126\) 11.0485 + 19.1366i 0.0876866 + 0.151878i
\(127\) −85.7085 49.4838i −0.674870 0.389636i 0.123049 0.992401i \(-0.460733\pi\)
−0.797919 + 0.602764i \(0.794066\pi\)
\(128\) −223.314 + 59.8367i −1.74464 + 0.467474i
\(129\) 0.867967i 0.00672843i
\(130\) 0 0
\(131\) −96.5698 −0.737174 −0.368587 0.929593i \(-0.620158\pi\)
−0.368587 + 0.929593i \(0.620158\pi\)
\(132\) 1.06470 + 3.97352i 0.00806591 + 0.0301024i
\(133\) −2.44497 + 4.23482i −0.0183833 + 0.0318408i
\(134\) −292.913 + 169.113i −2.18591 + 1.26204i
\(135\) 0 0
\(136\) 21.1982 + 5.68004i 0.155869 + 0.0417650i
\(137\) −35.9585 + 134.199i −0.262471 + 0.979555i 0.701309 + 0.712857i \(0.252599\pi\)
−0.963780 + 0.266698i \(0.914068\pi\)
\(138\) 0.107651 + 0.107651i 0.000780083 + 0.000780083i
\(139\) −36.5951 63.3846i −0.263274 0.456005i 0.703836 0.710363i \(-0.251469\pi\)
−0.967110 + 0.254358i \(0.918136\pi\)
\(140\) 0 0
\(141\) 2.56947 0.688486i 0.0182232 0.00488288i
\(142\) 179.813i 1.26629i
\(143\) 87.2926 + 190.925i 0.610438 + 1.33514i
\(144\) 114.906 0.797958
\(145\) 0 0
\(146\) 127.471 220.787i 0.873091 1.51224i
\(147\) 1.38475 0.799484i 0.00942005 0.00543867i
\(148\) −238.633 + 238.633i −1.61238 + 1.61238i
\(149\) −157.836 42.2920i −1.05930 0.283839i −0.313210 0.949684i \(-0.601405\pi\)
−0.746090 + 0.665845i \(0.768071\pi\)
\(150\) 0 0
\(151\) −183.510 183.510i −1.21530 1.21530i −0.969261 0.246036i \(-0.920872\pi\)
−0.246036 0.969261i \(-0.579128\pi\)
\(152\) 43.4790 + 75.3078i 0.286046 + 0.495446i
\(153\) 13.4114 + 7.74306i 0.0876560 + 0.0506082i
\(154\) 38.3025 10.2631i 0.248718 0.0666437i
\(155\) 0 0
\(156\) −3.26548 + 0.550573i −0.0209326 + 0.00352932i
\(157\) 21.3368 0.135903 0.0679516 0.997689i \(-0.478354\pi\)
0.0679516 + 0.997689i \(0.478354\pi\)
\(158\) −36.9238 137.801i −0.233695 0.872161i
\(159\) −0.524651 + 0.908722i −0.00329969 + 0.00571524i
\(160\) 0 0
\(161\) 0.683670 0.683670i 0.00424640 0.00424640i
\(162\) 267.804 + 71.7578i 1.65311 + 0.442950i
\(163\) 19.9108 74.3081i 0.122152 0.455878i −0.877570 0.479448i \(-0.840837\pi\)
0.999722 + 0.0235705i \(0.00750342\pi\)
\(164\) 310.036 + 310.036i 1.89046 + 1.89046i
\(165\) 0 0
\(166\) 35.4681 + 20.4775i 0.213663 + 0.123358i
\(167\) −238.687 + 63.9559i −1.42926 + 0.382969i −0.888759 0.458374i \(-0.848432\pi\)
−0.540501 + 0.841343i \(0.681765\pi\)
\(168\) 0.301597i 0.00179522i
\(169\) −159.657 + 55.4129i −0.944717 + 0.327887i
\(170\) 0 0
\(171\) 15.8815 + 59.2707i 0.0928745 + 0.346612i
\(172\) 101.651 176.065i 0.590996 1.02363i
\(173\) −95.6665 + 55.2331i −0.552986 + 0.319266i −0.750325 0.661069i \(-0.770103\pi\)
0.197340 + 0.980335i \(0.436770\pi\)
\(174\) −3.79560 + 3.79560i −0.0218138 + 0.0218138i
\(175\) 0 0
\(176\) 53.3689 199.176i 0.303233 1.13168i
\(177\) 2.19011 + 2.19011i 0.0123735 + 0.0123735i
\(178\) −162.493 281.446i −0.912883 1.58116i
\(179\) 183.778 + 106.104i 1.02669 + 0.592761i 0.916035 0.401098i \(-0.131371\pi\)
0.110656 + 0.993859i \(0.464705\pi\)
\(180\) 0 0
\(181\) 51.8213i 0.286306i 0.989701 + 0.143153i \(0.0457240\pi\)
−0.989701 + 0.143153i \(0.954276\pi\)
\(182\) 5.30723 + 31.4775i 0.0291606 + 0.172953i
\(183\) −1.41249 −0.00771853
\(184\) −4.45003 16.6077i −0.0241849 0.0902594i
\(185\) 0 0
\(186\) 2.99409 1.72864i 0.0160973 0.00929375i
\(187\) 19.6507 19.6507i 0.105084 0.105084i
\(188\) −601.842 161.263i −3.20129 0.857782i
\(189\) −0.110171 + 0.411163i −0.000582914 + 0.00217547i
\(190\) 0 0
\(191\) −95.3560 165.161i −0.499246 0.864720i 0.500753 0.865590i \(-0.333056\pi\)
−1.00000 0.000870149i \(0.999723\pi\)
\(192\) −2.17152 1.25373i −0.0113100 0.00652984i
\(193\) 21.9641 5.88526i 0.113804 0.0304936i −0.201468 0.979495i \(-0.564571\pi\)
0.315271 + 0.949002i \(0.397904\pi\)
\(194\) 501.269i 2.58386i
\(195\) 0 0
\(196\) −374.524 −1.91083
\(197\) 31.8969 + 119.041i 0.161913 + 0.604267i 0.998414 + 0.0563018i \(0.0179309\pi\)
−0.836501 + 0.547966i \(0.815402\pi\)
\(198\) 248.797 430.929i 1.25655 2.17641i
\(199\) 23.6042 13.6279i 0.118614 0.0684820i −0.439519 0.898233i \(-0.644851\pi\)
0.558133 + 0.829751i \(0.311518\pi\)
\(200\) 0 0
\(201\) −3.14653 0.843109i −0.0156544 0.00419457i
\(202\) 80.0652 298.807i 0.396362 1.47924i
\(203\) 24.1050 + 24.1050i 0.118744 + 0.118744i
\(204\) 0.219186 + 0.379642i 0.00107444 + 0.00186099i
\(205\) 0 0
\(206\) −352.776 + 94.5261i −1.71251 + 0.458864i
\(207\) 12.1326i 0.0586116i
\(208\) 155.554 + 57.9420i 0.747857 + 0.278567i
\(209\) 110.115 0.526866
\(210\) 0 0
\(211\) 13.7251 23.7725i 0.0650477 0.112666i −0.831667 0.555274i \(-0.812613\pi\)
0.896715 + 0.442608i \(0.145947\pi\)
\(212\) 212.849 122.888i 1.00400 0.579661i
\(213\) 1.22458 1.22458i 0.00574918 0.00574918i
\(214\) −426.417 114.258i −1.99260 0.533917i
\(215\) 0 0
\(216\) 5.35254 + 5.35254i 0.0247803 + 0.0247803i
\(217\) −10.9782 19.0148i −0.0505908 0.0876258i
\(218\) 338.334 + 195.337i 1.55199 + 0.896042i
\(219\) 2.37174 0.635505i 0.0108298 0.00290185i
\(220\) 0 0
\(221\) 14.2512 + 17.2450i 0.0644851 + 0.0780315i
\(222\) −4.93346 −0.0222228
\(223\) 7.84413 + 29.2747i 0.0351755 + 0.131277i 0.981281 0.192582i \(-0.0616863\pi\)
−0.946105 + 0.323859i \(0.895020\pi\)
\(224\) −2.61362 + 4.52693i −0.0116680 + 0.0202095i
\(225\) 0 0
\(226\) 345.010 345.010i 1.52659 1.52659i
\(227\) −362.889 97.2358i −1.59863 0.428351i −0.654001 0.756494i \(-0.726911\pi\)
−0.944628 + 0.328142i \(0.893577\pi\)
\(228\) −0.449566 + 1.67780i −0.00197178 + 0.00735879i
\(229\) −165.325 165.325i −0.721942 0.721942i 0.247059 0.969001i \(-0.420536\pi\)
−0.969001 + 0.247059i \(0.920536\pi\)
\(230\) 0 0
\(231\) 0.330746 + 0.190956i 0.00143180 + 0.000826651i
\(232\) 585.559 156.900i 2.52396 0.676293i
\(233\) 116.211i 0.498759i −0.968406 0.249379i \(-0.919773\pi\)
0.968406 0.249379i \(-0.0802266\pi\)
\(234\) 326.396 + 232.212i 1.39485 + 0.992360i
\(235\) 0 0
\(236\) −187.766 700.752i −0.795618 2.96929i
\(237\) 0.687006 1.18993i 0.00289876 0.00502080i
\(238\) 3.65954 2.11284i 0.0153762 0.00887747i
\(239\) −224.962 + 224.962i −0.941263 + 0.941263i −0.998368 0.0571055i \(-0.981813\pi\)
0.0571055 + 0.998368i \(0.481813\pi\)
\(240\) 0 0
\(241\) −44.9894 + 167.903i −0.186678 + 0.696692i 0.807587 + 0.589748i \(0.200773\pi\)
−0.994265 + 0.106944i \(0.965894\pi\)
\(242\) −338.444 338.444i −1.39853 1.39853i
\(243\) 4.00620 + 6.93893i 0.0164864 + 0.0285553i
\(244\) 286.520 + 165.423i 1.17426 + 0.677962i
\(245\) 0 0
\(246\) 6.40962i 0.0260554i
\(247\) −8.38791 + 88.2463i −0.0339592 + 0.357272i
\(248\) −390.450 −1.57440
\(249\) 0.102090 + 0.381005i 0.000410000 + 0.00153014i
\(250\) 0 0
\(251\) 145.005 83.7187i 0.577709 0.333541i −0.182513 0.983203i \(-0.558423\pi\)
0.760223 + 0.649663i \(0.225090\pi\)
\(252\) 35.2483 35.2483i 0.139874 0.139874i
\(253\) −21.0304 5.63508i −0.0831241 0.0222730i
\(254\) −87.7071 + 327.327i −0.345304 + 1.28869i
\(255\) 0 0
\(256\) 243.742 + 422.173i 0.952117 + 1.64911i
\(257\) −161.725 93.3719i −0.629279 0.363315i 0.151194 0.988504i \(-0.451688\pi\)
−0.780473 + 0.625190i \(0.785022\pi\)
\(258\) 2.87073 0.769210i 0.0111269 0.00298144i
\(259\) 31.3313i 0.120970i
\(260\) 0 0
\(261\) 427.773 1.63898
\(262\) 85.5821 + 319.397i 0.326649 + 1.21907i
\(263\) 70.0491 121.329i 0.266346 0.461326i −0.701569 0.712601i \(-0.747517\pi\)
0.967915 + 0.251276i \(0.0808502\pi\)
\(264\) 5.88165 3.39577i 0.0222790 0.0128628i
\(265\) 0 0
\(266\) 16.1731 + 4.33357i 0.0608012 + 0.0162916i
\(267\) 0.810106 3.02336i 0.00303410 0.0113234i
\(268\) 539.526 + 539.526i 2.01316 + 2.01316i
\(269\) 24.6298 + 42.6600i 0.0915604 + 0.158587i 0.908168 0.418606i \(-0.137481\pi\)
−0.816607 + 0.577193i \(0.804148\pi\)
\(270\) 0 0
\(271\) −450.532 + 120.720i −1.66248 + 0.445460i −0.963068 0.269258i \(-0.913222\pi\)
−0.699412 + 0.714718i \(0.746555\pi\)
\(272\) 21.9738i 0.0807859i
\(273\) −0.178227 + 0.250515i −0.000652846 + 0.000917636i
\(274\) 475.719 1.73620
\(275\) 0 0
\(276\) 0.171721 0.297430i 0.000622179 0.00107765i
\(277\) −19.1597 + 11.0619i −0.0691686 + 0.0399345i −0.534185 0.845367i \(-0.679382\pi\)
0.465017 + 0.885302i \(0.346048\pi\)
\(278\) −177.208 + 177.208i −0.637440 + 0.637440i
\(279\) −266.132 71.3098i −0.953877 0.255591i
\(280\) 0 0
\(281\) 213.347 + 213.347i 0.759241 + 0.759241i 0.976184 0.216943i \(-0.0696086\pi\)
−0.216943 + 0.976184i \(0.569609\pi\)
\(282\) −4.55423 7.88815i −0.0161497 0.0279722i
\(283\) 2.28036 + 1.31656i 0.00805779 + 0.00465217i 0.504023 0.863690i \(-0.331852\pi\)
−0.495966 + 0.868342i \(0.665186\pi\)
\(284\) −391.817 + 104.987i −1.37964 + 0.369673i
\(285\) 0 0
\(286\) 554.109 457.915i 1.93744 1.60110i
\(287\) 40.7061 0.141833
\(288\) 16.9770 + 63.3591i 0.0589480 + 0.219997i
\(289\) −143.019 + 247.717i −0.494876 + 0.857151i
\(290\) 0 0
\(291\) 3.41379 3.41379i 0.0117312 0.0117312i
\(292\) −555.528 148.853i −1.90249 0.509771i
\(293\) 27.5961 102.990i 0.0941847 0.351502i −0.902710 0.430250i \(-0.858425\pi\)
0.996895 + 0.0787477i \(0.0250921\pi\)
\(294\) −3.87142 3.87142i −0.0131681 0.0131681i
\(295\) 0 0
\(296\) 482.518 + 278.582i 1.63013 + 0.941155i
\(297\) 9.25882 2.48089i 0.0311745 0.00835318i
\(298\) 559.509i 1.87755i
\(299\) 6.11793 16.4245i 0.0204613 0.0549316i
\(300\) 0 0
\(301\) −4.88508 18.2314i −0.0162295 0.0605694i
\(302\) −444.314 + 769.574i −1.47124 + 2.54826i
\(303\) 2.58023 1.48970i 0.00851561 0.00491649i
\(304\) 61.5664 61.5664i 0.202521 0.202521i
\(305\) 0 0
\(306\) 13.7241 51.2191i 0.0448500 0.167383i
\(307\) 148.641 + 148.641i 0.484174 + 0.484174i 0.906462 0.422288i \(-0.138773\pi\)
−0.422288 + 0.906462i \(0.638773\pi\)
\(308\) −44.7274 77.4701i −0.145219 0.251526i
\(309\) −3.04626 1.75876i −0.00985843 0.00569177i
\(310\) 0 0
\(311\) 158.134i 0.508469i −0.967143 0.254234i \(-0.918177\pi\)
0.967143 0.254234i \(-0.0818235\pi\)
\(312\) 2.27335 + 4.97224i 0.00728638 + 0.0159367i
\(313\) 145.003 0.463269 0.231634 0.972803i \(-0.425593\pi\)
0.231634 + 0.972803i \(0.425593\pi\)
\(314\) −18.9091 70.5697i −0.0602201 0.224744i
\(315\) 0 0
\(316\) −278.715 + 160.916i −0.882010 + 0.509229i
\(317\) 385.578 385.578i 1.21633 1.21633i 0.247427 0.968907i \(-0.420415\pi\)
0.968907 0.247427i \(-0.0795851\pi\)
\(318\) 3.47048 + 0.929913i 0.0109135 + 0.00292425i
\(319\) 198.683 741.494i 0.622830 2.32443i
\(320\) 0 0
\(321\) −2.12589 3.68215i −0.00662272 0.0114709i
\(322\) −2.86707 1.65530i −0.00890394 0.00514069i
\(323\) 11.3345 3.03707i 0.0350913 0.00940269i
\(324\) 625.450i 1.93040i
\(325\) 0 0
\(326\) −263.413 −0.808017
\(327\) 0.973848 + 3.63445i 0.00297813 + 0.0111145i
\(328\) 361.938 626.895i 1.10347 1.91127i
\(329\) −50.0959 + 28.9229i −0.152267 + 0.0879115i
\(330\) 0 0
\(331\) 71.9790 + 19.2867i 0.217459 + 0.0582680i 0.365904 0.930653i \(-0.380760\pi\)
−0.148444 + 0.988921i \(0.547427\pi\)
\(332\) 23.9124 89.2422i 0.0720253 0.268802i
\(333\) 278.007 + 278.007i 0.834854 + 0.834854i
\(334\) 423.058 + 732.758i 1.26664 + 2.19388i
\(335\) 0 0
\(336\) 0.291689 0.0781578i 0.000868122 0.000232613i
\(337\) 127.419i 0.378098i −0.981968 0.189049i \(-0.939459\pi\)
0.981968 0.189049i \(-0.0605406\pi\)
\(338\) 324.765 + 478.945i 0.960843 + 1.41700i
\(339\) 4.69923 0.0138620
\(340\) 0 0
\(341\) −247.214 + 428.187i −0.724967 + 1.25568i
\(342\) 181.958 105.054i 0.532042 0.307175i
\(343\) −49.4338 + 49.4338i −0.144122 + 0.144122i
\(344\) −324.208 86.8714i −0.942466 0.252533i
\(345\) 0 0
\(346\) 267.461 + 267.461i 0.773008 + 0.773008i
\(347\) −141.151 244.481i −0.406776 0.704557i 0.587750 0.809042i \(-0.300014\pi\)
−0.994526 + 0.104486i \(0.966680\pi\)
\(348\) 10.4869 + 6.05459i 0.0301347 + 0.0173983i
\(349\) 146.454 39.2423i 0.419640 0.112442i −0.0428192 0.999083i \(-0.513634\pi\)
0.462459 + 0.886641i \(0.346967\pi\)
\(350\) 0 0
\(351\) 1.28291 + 7.60902i 0.00365501 + 0.0216781i
\(352\) 117.710 0.334405
\(353\) −112.774 420.878i −0.319473 1.19229i −0.919753 0.392499i \(-0.871611\pi\)
0.600280 0.799790i \(-0.295056\pi\)
\(354\) 5.30269 9.18453i 0.0149794 0.0259450i
\(355\) 0 0
\(356\) −518.406 + 518.406i −1.45620 + 1.45620i
\(357\) 0.0393116 + 0.0105335i 0.000110116 + 2.95056e-5i
\(358\) 188.063 701.862i 0.525316 1.96051i
\(359\) −121.061 121.061i −0.337217 0.337217i 0.518102 0.855319i \(-0.326639\pi\)
−0.855319 + 0.518102i \(0.826639\pi\)
\(360\) 0 0
\(361\) −272.369 157.252i −0.754484 0.435602i
\(362\) 171.395 45.9251i 0.473466 0.126865i
\(363\) 4.60979i 0.0126992i
\(364\) 65.4918 29.9434i 0.179922 0.0822621i
\(365\) 0 0
\(366\) 1.25178 + 4.67170i 0.00342016 + 0.0127642i
\(367\) −311.769 + 540.000i −0.849507 + 1.47139i 0.0321410 + 0.999483i \(0.489767\pi\)
−0.881648 + 0.471907i \(0.843566\pi\)
\(368\) −14.9089 + 8.60767i −0.0405134 + 0.0233904i
\(369\) 361.190 361.190i 0.978836 0.978836i
\(370\) 0 0
\(371\) 5.90567 22.0403i 0.0159183 0.0594077i
\(372\) −5.51492 5.51492i −0.0148250 0.0148250i
\(373\) −333.140 577.015i −0.893136 1.54696i −0.836095 0.548584i \(-0.815167\pi\)
−0.0570403 0.998372i \(-0.518166\pi\)
\(374\) −82.4078 47.5782i −0.220342 0.127214i
\(375\) 0 0
\(376\) 1028.67i 2.73583i
\(377\) 579.100 + 215.707i 1.53607 + 0.572168i
\(378\) 1.45752 0.00385588
\(379\) 99.5832 + 371.649i 0.262752 + 0.980605i 0.963612 + 0.267306i \(0.0861334\pi\)
−0.700859 + 0.713299i \(0.747200\pi\)
\(380\) 0 0
\(381\) −2.82650 + 1.63188i −0.00741864 + 0.00428316i
\(382\) −461.752 + 461.752i −1.20877 + 1.20877i
\(383\) 7.17101 + 1.92147i 0.0187233 + 0.00501689i 0.268169 0.963372i \(-0.413582\pi\)
−0.249445 + 0.968389i \(0.580248\pi\)
\(384\) −1.97330 + 7.36446i −0.00513881 + 0.0191783i
\(385\) 0 0
\(386\) −38.9300 67.4288i −0.100855 0.174686i
\(387\) −205.115 118.423i −0.530014 0.306004i
\(388\) −1092.28 + 292.676i −2.81516 + 0.754320i
\(389\) 15.5965i 0.0400938i −0.999799 0.0200469i \(-0.993618\pi\)
0.999799 0.0200469i \(-0.00638155\pi\)
\(390\) 0 0
\(391\) −2.32015 −0.00593389
\(392\) 160.034 + 597.256i 0.408251 + 1.52361i
\(393\) −1.59235 + 2.75802i −0.00405177 + 0.00701787i
\(394\) 365.450 210.993i 0.927538 0.535514i
\(395\) 0 0
\(396\) −1084.27 290.530i −2.73807 0.733663i
\(397\) −48.6200 + 181.452i −0.122469 + 0.457059i −0.999737 0.0229416i \(-0.992697\pi\)
0.877268 + 0.480000i \(0.159363\pi\)
\(398\) −65.9918 65.9918i −0.165809 0.165809i
\(399\) 0.0806307 + 0.139656i 0.000202082 + 0.000350016i
\(400\) 0 0
\(401\) 293.349 78.6027i 0.731544 0.196017i 0.126227 0.992001i \(-0.459713\pi\)
0.605317 + 0.795985i \(0.293046\pi\)
\(402\) 11.1541i 0.0277464i
\(403\) −324.318 230.734i −0.804761 0.572542i
\(404\) −697.858 −1.72737
\(405\) 0 0
\(406\) 58.3630 101.088i 0.143751 0.248984i
\(407\) 611.013 352.769i 1.50126 0.866753i
\(408\) 0.511760 0.511760i 0.00125431 0.00125431i
\(409\) −124.212 33.2825i −0.303697 0.0813753i 0.103752 0.994603i \(-0.466915\pi\)
−0.407449 + 0.913228i \(0.633582\pi\)
\(410\) 0 0
\(411\) 3.23979 + 3.23979i 0.00788269 + 0.00788269i
\(412\) 411.951 + 713.519i 0.999880 + 1.73184i
\(413\) −58.3289 33.6762i −0.141232 0.0815405i
\(414\) −40.1276 + 10.7521i −0.0969265 + 0.0259714i
\(415\) 0 0
\(416\) −8.96649 + 94.3334i −0.0215541 + 0.226763i
\(417\) −2.41368 −0.00578819
\(418\) −97.5861 364.196i −0.233460 0.871283i
\(419\) 82.0055 142.038i 0.195717 0.338992i −0.751418 0.659826i \(-0.770630\pi\)
0.947135 + 0.320834i \(0.103963\pi\)
\(420\) 0 0
\(421\) 32.1013 32.1013i 0.0762501 0.0762501i −0.667953 0.744203i \(-0.732829\pi\)
0.744203 + 0.667953i \(0.232829\pi\)
\(422\) −90.7891 24.3269i −0.215140 0.0576466i
\(423\) −187.871 + 701.144i −0.444139 + 1.65755i
\(424\) −286.921 286.921i −0.676701 0.676701i
\(425\) 0 0
\(426\) −5.13543 2.96494i −0.0120550 0.00695996i
\(427\) 29.6689 7.94976i 0.0694822 0.0186177i
\(428\) 995.889i 2.32684i
\(429\) 6.89217 + 0.655109i 0.0160657 + 0.00152706i
\(430\) 0 0
\(431\) −60.7510 226.726i −0.140953 0.526046i −0.999902 0.0139840i \(-0.995549\pi\)
0.858949 0.512062i \(-0.171118\pi\)
\(432\) 3.78961 6.56379i 0.00877224 0.0151940i
\(433\) −75.0171 + 43.3111i −0.173250 + 0.100026i −0.584117 0.811669i \(-0.698559\pi\)
0.410868 + 0.911695i \(0.365226\pi\)
\(434\) −53.1608 + 53.1608i −0.122490 + 0.122490i
\(435\) 0 0
\(436\) 228.103 851.291i 0.523172 1.95250i
\(437\) −6.50062 6.50062i −0.0148756 0.0148756i
\(438\) −4.20376 7.28113i −0.00959763 0.0166236i
\(439\) 94.1234 + 54.3422i 0.214404 + 0.123786i 0.603357 0.797472i \(-0.293830\pi\)
−0.388952 + 0.921258i \(0.627163\pi\)
\(440\) 0 0
\(441\) 436.319i 0.989385i
\(442\) 44.4066 62.4176i 0.100467 0.141216i
\(443\) −355.262 −0.801945 −0.400973 0.916090i \(-0.631328\pi\)
−0.400973 + 0.916090i \(0.631328\pi\)
\(444\) 2.88050 + 10.7502i 0.00648760 + 0.0242121i
\(445\) 0 0
\(446\) 89.8721 51.8877i 0.201507 0.116340i
\(447\) −3.81042 + 3.81042i −0.00852442 + 0.00852442i
\(448\) 52.6684 + 14.1125i 0.117563 + 0.0315010i
\(449\) 54.9003 204.891i 0.122272 0.456327i −0.877455 0.479658i \(-0.840761\pi\)
0.999728 + 0.0233313i \(0.00742726\pi\)
\(450\) 0 0
\(451\) −458.323 793.838i −1.01624 1.76017i
\(452\) −953.227 550.346i −2.10891 1.21758i
\(453\) −8.26692 + 2.21512i −0.0182493 + 0.00488988i
\(454\) 1286.40i 2.83348i
\(455\) 0 0
\(456\) 2.86771 0.00628883
\(457\) 81.5684 + 304.417i 0.178487 + 0.666121i 0.995931 + 0.0901143i \(0.0287232\pi\)
−0.817445 + 0.576007i \(0.804610\pi\)
\(458\) −400.284 + 693.312i −0.873983 + 1.51378i
\(459\) 0.884617 0.510734i 0.00192727 0.00111271i
\(460\) 0 0
\(461\) 673.308 + 180.412i 1.46054 + 0.391350i 0.899676 0.436559i \(-0.143803\pi\)
0.560862 + 0.827909i \(0.310470\pi\)
\(462\) 0.338459 1.26315i 0.000732595 0.00273408i
\(463\) −645.269 645.269i −1.39367 1.39367i −0.816923 0.576746i \(-0.804322\pi\)
−0.576746 0.816923i \(-0.695678\pi\)
\(464\) −303.491 525.662i −0.654076 1.13289i
\(465\) 0 0
\(466\) −384.358 + 102.988i −0.824802 + 0.221005i
\(467\) 571.015i 1.22273i −0.791349 0.611365i \(-0.790621\pi\)
0.791349 0.611365i \(-0.209379\pi\)
\(468\) 315.425 846.808i 0.673986 1.80942i
\(469\) 70.8370 0.151038
\(470\) 0 0
\(471\) 0.351824 0.609376i 0.000746972 0.00129379i
\(472\) −1037.26 + 598.864i −2.19759 + 1.26878i
\(473\) −300.540 + 300.540i −0.635392 + 0.635392i
\(474\) −4.54443 1.21768i −0.00958741 0.00256894i
\(475\) 0 0
\(476\) −6.74064 6.74064i −0.0141610 0.0141610i
\(477\) −143.164 247.968i −0.300135 0.519849i
\(478\) 943.409 + 544.677i 1.97366 + 1.13949i
\(479\) 40.3383 10.8086i 0.0842137 0.0225650i −0.216466 0.976290i \(-0.569453\pi\)
0.300680 + 0.953725i \(0.402786\pi\)
\(480\) 0 0
\(481\) 236.166 + 516.539i 0.490990 + 1.07389i
\(482\) 595.196 1.23485
\(483\) −0.00825247 0.0307986i −1.70859e−5 6.37653e-5i
\(484\) −539.872 + 935.086i −1.11544 + 1.93200i
\(485\) 0 0
\(486\) 19.3996 19.3996i 0.0399169 0.0399169i
\(487\) 355.398 + 95.2286i 0.729770 + 0.195541i 0.604527 0.796585i \(-0.293362\pi\)
0.125243 + 0.992126i \(0.460029\pi\)
\(488\) 141.371 527.602i 0.289694 1.08115i
\(489\) −1.79392 1.79392i −0.00366855 0.00366855i
\(490\) 0 0
\(491\) 274.278 + 158.355i 0.558612 + 0.322515i 0.752588 0.658491i \(-0.228805\pi\)
−0.193976 + 0.981006i \(0.562138\pi\)
\(492\) 13.9668 3.74239i 0.0283878 0.00760648i
\(493\) 81.8043i 0.165932i
\(494\) 299.301 50.4633i 0.605872 0.102152i
\(495\) 0 0
\(496\) 101.184 + 377.623i 0.204000 + 0.761337i
\(497\) −18.8297 + 32.6140i −0.0378867 + 0.0656217i
\(498\) 1.16967 0.675309i 0.00234873 0.00135604i
\(499\) 426.657 426.657i 0.855023 0.855023i −0.135723 0.990747i \(-0.543336\pi\)
0.990747 + 0.135723i \(0.0433358\pi\)
\(500\) 0 0
\(501\) −2.10914 + 7.87143i −0.00420987 + 0.0157114i
\(502\) −405.399 405.399i −0.807568 0.807568i
\(503\) 368.899 + 638.951i 0.733397 + 1.27028i 0.955423 + 0.295240i \(0.0953996\pi\)
−0.222026 + 0.975041i \(0.571267\pi\)
\(504\) −71.2725 41.1492i −0.141414 0.0816452i
\(505\) 0 0
\(506\) 74.5502i 0.147332i
\(507\) −1.05001 + 5.47350i −0.00207103 + 0.0107959i
\(508\) 764.466 1.50486
\(509\) −21.0926 78.7186i −0.0414392 0.154653i 0.942106 0.335315i \(-0.108843\pi\)
−0.983545 + 0.180662i \(0.942176\pi\)
\(510\) 0 0
\(511\) −46.2408 + 26.6972i −0.0904908 + 0.0522449i
\(512\) 526.388 526.388i 1.02810 1.02810i
\(513\) 3.90951 + 1.04755i 0.00762087 + 0.00204201i
\(514\) −165.496 + 617.640i −0.321977 + 1.20163i
\(515\) 0 0
\(516\) −3.35227 5.80630i −0.00649664 0.0112525i
\(517\) 1128.09 + 651.303i 2.18199 + 1.25977i
\(518\) 103.626 27.7664i 0.200050 0.0536031i
\(519\) 3.64297i 0.00701920i
\(520\) 0 0
\(521\) 461.334 0.885477 0.442739 0.896651i \(-0.354007\pi\)
0.442739 + 0.896651i \(0.354007\pi\)
\(522\) −379.102 1414.83i −0.726248 2.71040i
\(523\) 297.903 515.982i 0.569603 0.986582i −0.427002 0.904251i \(-0.640430\pi\)
0.996605 0.0823312i \(-0.0262365\pi\)
\(524\) 646.007 372.972i 1.23284 0.711779i
\(525\) 0 0
\(526\) −463.364 124.158i −0.880919 0.236042i
\(527\) −13.6368 + 50.8931i −0.0258762 + 0.0965714i
\(528\) −4.80843 4.80843i −0.00910687 0.00910687i
\(529\) −263.591 456.553i −0.498282 0.863050i
\(530\) 0 0
\(531\) −816.374 + 218.747i −1.53743 + 0.411952i
\(532\) 37.7720i 0.0709999i
\(533\) 671.095 306.831i 1.25909 0.575667i
\(534\) −10.7174 −0.0200701
\(535\) 0 0
\(536\) 629.847 1090.93i 1.17509 2.03531i
\(537\) 6.06064 3.49911i 0.0112861 0.00651604i
\(538\) 119.267 119.267i 0.221686 0.221686i
\(539\) 756.306 + 202.652i 1.40317 + 0.375977i
\(540\) 0 0
\(541\) 257.907 + 257.907i 0.476723 + 0.476723i 0.904082 0.427359i \(-0.140556\pi\)
−0.427359 + 0.904082i \(0.640556\pi\)
\(542\) 798.542 + 1383.11i 1.47332 + 2.55187i
\(543\) 1.48001 + 0.854485i 0.00272562 + 0.00157364i
\(544\) 12.1163 3.24656i 0.0222727 0.00596794i
\(545\) 0 0
\(546\) 0.986505 + 0.367460i 0.00180679 + 0.000673005i
\(547\) −700.642 −1.28088 −0.640441 0.768007i \(-0.721248\pi\)
−0.640441 + 0.768007i \(0.721248\pi\)
\(548\) −277.758 1036.61i −0.506858 1.89162i
\(549\) 192.717 333.795i 0.351033 0.608006i
\(550\) 0 0
\(551\) 229.200 229.200i 0.415971 0.415971i
\(552\) −0.547692 0.146754i −0.000992195 0.000265858i
\(553\) −7.73320 + 28.8607i −0.0139841 + 0.0521893i
\(554\) 53.5660 + 53.5660i 0.0966894 + 0.0966894i
\(555\) 0 0
\(556\) 489.609 + 282.676i 0.880591 + 0.508410i
\(557\) −349.414 + 93.6252i −0.627314 + 0.168088i −0.558451 0.829538i \(-0.688604\pi\)
−0.0688635 + 0.997626i \(0.521937\pi\)
\(558\) 943.405i 1.69069i
\(559\) −217.960 263.747i −0.389911 0.471819i
\(560\) 0 0
\(561\) −0.237200 0.885242i −0.000422816 0.00157797i
\(562\) 516.555 894.700i 0.919137 1.59199i
\(563\) 720.971 416.253i 1.28059 0.739348i 0.303632 0.952789i \(-0.401801\pi\)
0.976956 + 0.213441i \(0.0684672\pi\)
\(564\) −14.5295 + 14.5295i −0.0257615 + 0.0257615i
\(565\) 0 0
\(566\) 2.33353 8.70886i 0.00412285 0.0153867i
\(567\) −41.0592 41.0592i −0.0724149 0.0724149i
\(568\) 334.848 + 579.974i 0.589521 + 1.02108i
\(569\) −744.104 429.609i −1.30774 0.755024i −0.326021 0.945362i \(-0.605708\pi\)
−0.981719 + 0.190338i \(0.939041\pi\)
\(570\) 0 0
\(571\) 835.548i 1.46331i −0.681677 0.731654i \(-0.738749\pi\)
0.681677 0.731654i \(-0.261251\pi\)
\(572\) −1321.34 940.058i −2.31003 1.64346i
\(573\) −6.28932 −0.0109761
\(574\) −36.0746 134.632i −0.0628477 0.234551i
\(575\) 0 0
\(576\) 592.555 342.112i 1.02874 0.593944i
\(577\) 105.641 105.641i 0.183087 0.183087i −0.609613 0.792699i \(-0.708675\pi\)
0.792699 + 0.609613i \(0.208675\pi\)
\(578\) 946.049 + 253.493i 1.63676 + 0.438570i
\(579\) 0.194085 0.724334i 0.000335207 0.00125101i
\(580\) 0 0
\(581\) −4.28874 7.42831i −0.00738165 0.0127854i
\(582\) −14.3162 8.26546i −0.0245983 0.0142018i
\(583\) −496.316 + 132.988i −0.851314 + 0.228109i
\(584\) 949.510i 1.62587i
\(585\) 0 0
\(586\) −365.088 −0.623017
\(587\) −89.8610 335.366i −0.153085 0.571322i −0.999262 0.0384190i \(-0.987768\pi\)
0.846177 0.532903i \(-0.178899\pi\)
\(588\) −6.17554 + 10.6964i −0.0105026 + 0.0181911i
\(589\) −180.800 + 104.385i −0.306962 + 0.177224i
\(590\) 0 0
\(591\) 3.92574 + 1.05190i 0.00664253 + 0.00177986i
\(592\) 144.387 538.860i 0.243897 0.910237i
\(593\) 143.809 + 143.809i 0.242511 + 0.242511i 0.817888 0.575377i \(-0.195145\pi\)
−0.575377 + 0.817888i \(0.695145\pi\)
\(594\) −16.4107 28.4242i −0.0276275 0.0478522i
\(595\) 0 0
\(596\) 1219.19 326.680i 2.04562 0.548122i
\(597\) 0.898846i 0.00150560i
\(598\) −59.7447 5.67880i −0.0999075 0.00949632i
\(599\) −927.612 −1.54860 −0.774300 0.632818i \(-0.781898\pi\)
−0.774300 + 0.632818i \(0.781898\pi\)
\(600\) 0 0
\(601\) 53.2308 92.1984i 0.0885703 0.153408i −0.818337 0.574739i \(-0.805104\pi\)
0.906907 + 0.421331i \(0.138437\pi\)
\(602\) −55.9696 + 32.3140i −0.0929727 + 0.0536778i
\(603\) 628.546 628.546i 1.04236 1.04236i
\(604\) 1936.35 + 518.843i 3.20587 + 0.859011i
\(605\) 0 0
\(606\) −7.21370 7.21370i −0.0119038 0.0119038i
\(607\) −591.121 1023.85i −0.973841 1.68674i −0.683709 0.729755i \(-0.739634\pi\)
−0.290132 0.956987i \(-0.593699\pi\)
\(608\) 43.0439 + 24.8514i 0.0707959 + 0.0408740i
\(609\) 1.08590 0.290967i 0.00178309 0.000477779i
\(610\) 0 0
\(611\) −607.887 + 854.441i −0.994905 + 1.39843i
\(612\) −119.621 −0.195459
\(613\) 185.093 + 690.777i 0.301947 + 1.12688i 0.935542 + 0.353215i \(0.114912\pi\)
−0.633595 + 0.773665i \(0.718422\pi\)
\(614\) 359.890 623.348i 0.586140 1.01522i
\(615\) 0 0
\(616\) −104.430 + 104.430i −0.169530 + 0.169530i
\(617\) 709.503 + 190.111i 1.14992 + 0.308121i 0.782934 0.622104i \(-0.213722\pi\)
0.366989 + 0.930225i \(0.380389\pi\)
\(618\) −3.11729 + 11.6339i −0.00504416 + 0.0188251i
\(619\) 446.560 + 446.560i 0.721421 + 0.721421i 0.968895 0.247474i \(-0.0796003\pi\)
−0.247474 + 0.968895i \(0.579600\pi\)
\(620\) 0 0
\(621\) −0.693053 0.400134i −0.00111603 0.000644338i
\(622\) −523.015 + 140.141i −0.840860 + 0.225308i
\(623\) 68.0641i 0.109252i
\(624\) 4.21976 3.48720i 0.00676244 0.00558847i
\(625\) 0 0
\(626\) −128.505 479.586i −0.205279 0.766112i
\(627\) 1.81569 3.14487i 0.00289584 0.00501574i
\(628\) −142.733 + 82.4071i −0.227282 + 0.131221i
\(629\) 53.1640 53.1640i 0.0845214 0.0845214i
\(630\) 0 0
\(631\) 16.5174 61.6436i 0.0261765 0.0976920i −0.951602 0.307334i \(-0.900563\pi\)
0.977778 + 0.209642i \(0.0672298\pi\)
\(632\) 375.710 + 375.710i 0.594477 + 0.594477i
\(633\) −0.452627 0.783973i −0.000715050 0.00123850i
\(634\) −1616.97 933.561i −2.55043 1.47249i
\(635\) 0 0
\(636\) 8.10524i 0.0127441i
\(637\) −220.016 + 590.668i −0.345395 + 0.927266i
\(638\) −2628.51 −4.11992
\(639\) 122.310 + 456.466i 0.191408 + 0.714344i
\(640\) 0 0
\(641\) 581.799 335.902i 0.907643 0.524028i 0.0279707 0.999609i \(-0.491096\pi\)
0.879672 + 0.475581i \(0.157762\pi\)
\(642\) −10.2944 + 10.2944i −0.0160349 + 0.0160349i
\(643\) −533.905 143.059i −0.830334 0.222487i −0.181475 0.983396i \(-0.558087\pi\)
−0.648859 + 0.760908i \(0.724754\pi\)
\(644\) −1.93296 + 7.21391i −0.00300149 + 0.0112017i
\(645\) 0 0
\(646\) −20.0897 34.7964i −0.0310987 0.0538644i
\(647\) −211.383 122.042i −0.326713 0.188628i 0.327668 0.944793i \(-0.393737\pi\)
−0.654381 + 0.756165i \(0.727071\pi\)
\(648\) −997.411 + 267.256i −1.53921 + 0.412431i
\(649\) 1516.68i 2.33696i
\(650\) 0 0
\(651\) −0.724081 −0.00111226
\(652\) 153.799 + 573.986i 0.235888 + 0.880347i
\(653\) −552.758 + 957.406i −0.846491 + 1.46617i 0.0378295 + 0.999284i \(0.487956\pi\)
−0.884320 + 0.466881i \(0.845378\pi\)
\(654\) 11.1576 6.44185i 0.0170606 0.00984992i
\(655\) 0 0
\(656\) −700.095 187.590i −1.06722 0.285960i
\(657\) −173.414 + 647.188i −0.263948 + 0.985066i
\(658\) 140.056 + 140.056i 0.212851 + 0.212851i
\(659\) 352.219 + 610.061i 0.534475 + 0.925737i 0.999189 + 0.0402762i \(0.0128238\pi\)
−0.464714 + 0.885461i \(0.653843\pi\)
\(660\) 0 0
\(661\) −1116.82 + 299.251i −1.68959 + 0.452724i −0.970284 0.241968i \(-0.922207\pi\)
−0.719307 + 0.694693i \(0.755540\pi\)
\(662\) 255.157i 0.385434i
\(663\) 0.727503 0.122660i 0.00109729 0.000185007i
\(664\) −152.533 −0.229719
\(665\) 0 0
\(666\) 673.109 1165.86i 1.01067 1.75054i
\(667\) −55.5032 + 32.0448i −0.0832132 + 0.0480432i
\(668\) 1349.69 1349.69i 2.02050 2.02050i
\(669\) 0.965424 + 0.258685i 0.00144309 + 0.000386674i
\(670\) 0 0
\(671\) −489.085 489.085i −0.728890 0.728890i
\(672\) 0.0861924 + 0.149290i 0.000128263 + 0.000222157i
\(673\) −802.800 463.497i −1.19287 0.688703i −0.233912 0.972258i \(-0.575153\pi\)
−0.958956 + 0.283555i \(0.908486\pi\)
\(674\) −421.429 + 112.921i −0.625265 + 0.167539i
\(675\) 0 0
\(676\) 854.016 987.315i 1.26334 1.46053i
\(677\) 168.337 0.248651 0.124326 0.992241i \(-0.460323\pi\)
0.124326 + 0.992241i \(0.460323\pi\)
\(678\) −4.16455 15.5423i −0.00614240 0.0229238i
\(679\) −52.4921 + 90.9190i −0.0773079 + 0.133901i
\(680\) 0 0
\(681\) −8.76074 + 8.76074i −0.0128645 + 0.0128645i
\(682\) 1635.28 + 438.172i 2.39777 + 0.642481i
\(683\) −96.5064 + 360.167i −0.141298 + 0.527331i 0.858595 + 0.512655i \(0.171338\pi\)
−0.999892 + 0.0146753i \(0.995329\pi\)
\(684\) −335.156 335.156i −0.489994 0.489994i
\(685\) 0 0
\(686\) 207.308 + 119.689i 0.302198 + 0.174474i
\(687\) −7.44770 + 1.99561i −0.0108409 + 0.00290481i
\(688\) 336.070i 0.488474i
\(689\) −68.7700 407.879i −0.0998113 0.591987i
\(690\) 0 0
\(691\) 186.588 + 696.355i 0.270026 + 1.00775i 0.959102 + 0.283061i \(0.0913497\pi\)
−0.689076 + 0.724689i \(0.741984\pi\)
\(692\) 426.643 738.967i 0.616536 1.06787i
\(693\) −90.2524 + 52.1073i −0.130234 + 0.0751909i
\(694\) −683.511 + 683.511i −0.984886 + 0.984886i
\(695\) 0 0
\(696\) 5.17427 19.3106i 0.00743429 0.0277452i
\(697\) −69.0715 69.0715i −0.0990982 0.0990982i
\(698\) −259.581 449.608i −0.371893 0.644138i
\(699\) −3.31897 1.91621i −0.00474816 0.00274135i
\(700\) 0 0
\(701\) 589.719i 0.841254i −0.907234 0.420627i \(-0.861810\pi\)
0.907234 0.420627i \(-0.138190\pi\)
\(702\) 24.0293 10.9864i 0.0342297 0.0156501i
\(703\) 297.911 0.423771
\(704\) −317.793 1186.02i −0.451411 1.68469i
\(705\) 0 0
\(706\) −1292.08 + 745.981i −1.83014 + 1.05663i
\(707\) −45.8126 + 45.8126i −0.0647986 + 0.0647986i
\(708\) −23.1095 6.19216i −0.0326405 0.00874600i
\(709\) −40.7548 + 152.099i −0.0574821 + 0.214526i −0.988693 0.149955i \(-0.952087\pi\)
0.931211 + 0.364481i \(0.118754\pi\)
\(710\) 0 0
\(711\) 187.467 + 324.702i 0.263667 + 0.456684i
\(712\) 1048.22 + 605.191i 1.47222 + 0.849988i
\(713\) 39.8722 10.6837i 0.0559217 0.0149842i
\(714\) 0.139355i 0.000195175i
\(715\) 0 0
\(716\) −1639.18 −2.28936
\(717\) 2.71547 + 10.1343i 0.00378727 + 0.0141343i
\(718\) −293.112 + 507.685i −0.408234 + 0.707083i
\(719\) −721.138 + 416.349i −1.00297 + 0.579067i −0.909127 0.416519i \(-0.863250\pi\)
−0.0938470 + 0.995587i \(0.529916\pi\)
\(720\) 0 0
\(721\) 73.8843 + 19.7972i 0.102475 + 0.0274580i
\(722\) −278.720 + 1040.20i −0.386039 + 1.44072i
\(723\) 4.05345 + 4.05345i 0.00560643 + 0.00560643i
\(724\) −200.145 346.661i −0.276443 0.478813i
\(725\) 0 0
\(726\) −15.2465 + 4.08529i −0.0210007 + 0.00562713i
\(727\) 61.3646i 0.0844079i 0.999109 + 0.0422040i \(0.0134379\pi\)
−0.999109 + 0.0422040i \(0.986562\pi\)
\(728\) −75.7357 91.6454i −0.104033 0.125887i
\(729\) −728.472 −0.999275
\(730\) 0 0
\(731\) −22.6464 + 39.2248i −0.0309801 + 0.0536591i
\(732\) 9.44890 5.45533i 0.0129083 0.00745263i
\(733\) 256.277 256.277i 0.349628 0.349628i −0.510343 0.859971i \(-0.670482\pi\)
0.859971 + 0.510343i \(0.170482\pi\)
\(734\) 2062.30 + 552.592i 2.80968 + 0.752851i
\(735\) 0 0
\(736\) −6.94902 6.94902i −0.00944160 0.00944160i
\(737\) −797.576 1381.44i −1.08219 1.87441i
\(738\) −1514.70 874.514i −2.05244 1.18498i
\(739\) 306.125 82.0259i 0.414242 0.110996i −0.0456779 0.998956i \(-0.514545\pi\)
0.459920 + 0.887960i \(0.347878\pi\)
\(740\) 0 0
\(741\) 2.38199 + 1.69466i 0.00321457 + 0.00228698i
\(742\) −78.1301 −0.105297
\(743\) −265.715 991.663i −0.357625 1.33467i −0.877149 0.480219i \(-0.840557\pi\)
0.519524 0.854456i \(-0.326109\pi\)
\(744\) −6.43816 + 11.1512i −0.00865344 + 0.0149882i
\(745\) 0 0
\(746\) −1613.19 + 1613.19i −2.16246 + 2.16246i
\(747\) −103.967 27.8579i −0.139179 0.0372930i
\(748\) −55.5589 + 207.349i −0.0742767 + 0.277204i
\(749\) 65.3776 + 65.3776i 0.0872865 + 0.0872865i
\(750\) 0 0
\(751\) −444.296 256.514i −0.591605 0.341563i 0.174127 0.984723i \(-0.444290\pi\)
−0.765732 + 0.643160i \(0.777623\pi\)
\(752\) 994.877 266.576i 1.32297 0.354490i
\(753\) 5.52177i 0.00733303i
\(754\) 200.224 2106.49i 0.265550 2.79375i
\(755\) 0 0
\(756\) −0.851004 3.17599i −0.00112567 0.00420105i
\(757\) −0.185970 + 0.322110i −0.000245667 + 0.000425508i −0.866148 0.499787i \(-0.833412\pi\)
0.865903 + 0.500213i \(0.166745\pi\)
\(758\) 1140.95 658.727i 1.50521 0.869032i
\(759\) −0.507708 + 0.507708i −0.000668918 + 0.000668918i
\(760\) 0 0
\(761\) −100.429 + 374.806i −0.131970 + 0.492518i −0.999992 0.00400744i \(-0.998724\pi\)
0.868022 + 0.496525i \(0.165391\pi\)
\(762\) 7.90223 + 7.90223i 0.0103704 + 0.0103704i
\(763\) −40.9107 70.8595i −0.0536183 0.0928696i
\(764\) 1275.78 + 736.569i 1.66986 + 0.964096i
\(765\) 0 0
\(766\) 25.4204i 0.0331859i
\(767\) −1215.47 115.532i −1.58471 0.150629i
\(768\) 16.0763 0.0209327
\(769\) −290.354 1083.62i −0.377574 1.40913i −0.849547 0.527512i \(-0.823125\pi\)
0.471973 0.881613i \(-0.343542\pi\)
\(770\) 0 0
\(771\) −5.33338 + 3.07923i −0.00691748 + 0.00399381i
\(772\) −124.199 + 124.199i −0.160880 + 0.160880i
\(773\) 943.196 + 252.729i 1.22018 + 0.326945i 0.810747 0.585397i \(-0.199061\pi\)
0.409429 + 0.912342i \(0.365728\pi\)
\(774\) −209.899 + 783.352i −0.271187 + 1.01208i
\(775\) 0 0
\(776\) 933.466 + 1616.81i 1.20292 + 2.08352i
\(777\) 0.894818 + 0.516623i 0.00115163 + 0.000664895i
\(778\) −51.5841 + 13.8219i −0.0663035 + 0.0177660i
\(779\) 387.050i 0.496855i
\(780\) 0 0
\(781\) 848.037 1.08583
\(782\) 2.05616 + 7.67371i 0.00262937 + 0.00981293i
\(783\) 14.1080 24.4358i 0.0180179 0.0312079i
\(784\) 536.163 309.554i 0.683881 0.394839i
\(785\) 0 0
\(786\) 10.5331 + 2.82234i 0.0134009 + 0.00359076i
\(787\) −196.041 + 731.634i −0.249099 + 0.929649i 0.722180 + 0.691705i \(0.243140\pi\)
−0.971279 + 0.237944i \(0.923527\pi\)
\(788\) −673.135 673.135i −0.854232 0.854232i
\(789\) −2.31009 4.00119i −0.00292787 0.00507122i
\(790\) 0 0
\(791\) −98.7058 + 26.4481i −0.124786 + 0.0334363i
\(792\) 1853.25i 2.33996i
\(793\) 429.210 354.698i 0.541248 0.447287i
\(794\) 643.227 0.810110
\(795\) 0 0
\(796\) −105.268 + 182.329i −0.132246 + 0.229056i
\(797\) −79.9913 + 46.1830i −0.100365 + 0.0579460i −0.549343 0.835597i \(-0.685122\pi\)
0.448977 + 0.893543i \(0.351788\pi\)
\(798\) 0.390446 0.390446i 0.000489280 0.000489280i
\(799\) 134.082 + 35.9271i 0.167812 + 0.0449651i
\(800\) 0 0
\(801\) 603.941 + 603.941i 0.753984 + 0.753984i
\(802\) −519.944 900.569i −0.648309 1.12290i
\(803\) 1041.28 + 601.183i 1.29674 + 0.748671i
\(804\) 24.3051 6.51252i 0.0302302 0.00810015i
\(805\) 0 0
\(806\) −475.718 + 1277.14i −0.590221 + 1.58454i
\(807\) 1.62449 0.00201299
\(808\) 298.196 + 1112.88i 0.369054 + 1.37733i
\(809\) 23.1844 40.1565i 0.0286580 0.0496372i −0.851341 0.524613i \(-0.824210\pi\)
0.879999 + 0.474976i \(0.157543\pi\)
\(810\) 0 0
\(811\) 70.9896 70.9896i 0.0875334 0.0875334i −0.661984 0.749518i \(-0.730285\pi\)
0.749518 + 0.661984i \(0.230285\pi\)
\(812\) −254.350 68.1528i −0.313238 0.0839320i
\(813\) −3.98111 + 14.8577i −0.00489681 + 0.0182752i
\(814\) −1708.25 1708.25i −2.09858 2.09858i
\(815\) 0 0
\(816\) −0.627569 0.362327i −0.000769079 0.000444028i
\(817\) −173.351 + 46.4494i −0.212181 + 0.0568536i
\(818\) 440.317i 0.538285i
\(819\) −34.8840 76.2977i −0.0425933 0.0931596i
\(820\) 0 0
\(821\) −256.139 955.924i −0.311984 1.16434i −0.926765 0.375643i \(-0.877422\pi\)
0.614780 0.788698i \(-0.289245\pi\)
\(822\) 7.84417 13.5865i 0.00954278 0.0165286i
\(823\) 400.572 231.270i 0.486722 0.281009i −0.236492 0.971633i \(-0.575998\pi\)
0.723213 + 0.690625i \(0.242664\pi\)
\(824\) 961.829 961.829i 1.16727 1.16727i
\(825\) 0 0
\(826\) −59.6891 + 222.763i −0.0722628 + 0.269689i
\(827\) 929.759 + 929.759i 1.12426 + 1.12426i 0.991094 + 0.133161i \(0.0425127\pi\)
0.133161 + 0.991094i \(0.457487\pi\)
\(828\) 46.8586 + 81.1614i 0.0565925 + 0.0980210i
\(829\) 385.154 + 222.369i 0.464600 + 0.268237i 0.713977 0.700170i \(-0.246892\pi\)
−0.249376 + 0.968407i \(0.580226\pi\)
\(830\) 0 0
\(831\) 0.729599i 0.000877977i
\(832\) 974.686 164.336i 1.17150 0.197519i
\(833\) 83.4385 0.100166
\(834\) 2.13905 + 7.98304i 0.00256481 + 0.00957199i
\(835\) 0 0
\(836\) −736.618 + 425.286i −0.881121 + 0.508716i
\(837\) −12.8505 + 12.8505i −0.0153530 + 0.0153530i
\(838\) −542.453 145.350i −0.647319 0.173449i
\(839\) −241.488 + 901.245i −0.287828 + 1.07419i 0.658920 + 0.752213i \(0.271014\pi\)
−0.946748 + 0.321976i \(0.895653\pi\)
\(840\) 0 0
\(841\) −709.342 1228.62i −0.843450 1.46090i
\(842\) −134.621 77.7236i −0.159883 0.0923084i
\(843\) 9.61105 2.57527i 0.0114010 0.00305489i
\(844\) 212.036i 0.251228i
\(845\) 0 0
\(846\) 2485.47 2.93791
\(847\) 25.9448 + 96.8273i 0.0306314 + 0.114318i
\(848\) −203.141 + 351.850i −0.239553 + 0.414918i
\(849\) 0.0752018 0.0434178i 8.85769e−5 5.11399e-5i
\(850\) 0 0
\(851\) −56.8967 15.2454i −0.0668587 0.0179147i
\(852\) −3.46228 + 12.9214i −0.00406371 + 0.0151660i
\(853\) −130.680 130.680i −0.153201 0.153201i 0.626345 0.779546i \(-0.284550\pi\)
−0.779546 + 0.626345i \(0.784550\pi\)
\(854\) −52.5864 91.0823i −0.0615766 0.106654i
\(855\) 0 0
\(856\) 1588.15 425.544i 1.85532 0.497131i
\(857\) 1553.51i 1.81273i 0.422496 + 0.906365i \(0.361154\pi\)
−0.422496 + 0.906365i \(0.638846\pi\)
\(858\) −3.94126 23.3759i −0.00459355 0.0272446i
\(859\) −781.729 −0.910045 −0.455023 0.890480i \(-0.650369\pi\)
−0.455023 + 0.890480i \(0.650369\pi\)
\(860\) 0 0
\(861\) 0.671205 1.16256i 0.000779565 0.00135025i
\(862\) −696.038 + 401.858i −0.807469 + 0.466192i
\(863\) −534.675 + 534.675i −0.619554 + 0.619554i −0.945417 0.325863i \(-0.894345\pi\)
0.325863 + 0.945417i \(0.394345\pi\)
\(864\) 4.17918 + 1.11981i 0.00483701 + 0.00129607i
\(865\) 0 0
\(866\) 209.730 + 209.730i 0.242182 + 0.242182i
\(867\) 4.71651 + 8.16923i 0.00544003 + 0.00942241i
\(868\) 146.878 + 84.8001i 0.169214 + 0.0976960i
\(869\) 649.903 174.141i 0.747874 0.200392i
\(870\) 0 0
\(871\) 1167.84 533.948i 1.34081 0.613029i
\(872\) −1455.03 −1.66861
\(873\) 340.967 + 1272.50i 0.390569 + 1.45762i
\(874\) −15.7393 + 27.2613i −0.0180083 + 0.0311914i
\(875\) 0 0
\(876\) −13.4114 + 13.4114i −0.0153098 + 0.0153098i
\(877\) −281.460 75.4171i −0.320935 0.0859944i 0.0947548 0.995501i \(-0.469793\pi\)
−0.415690 + 0.909506i \(0.636460\pi\)
\(878\) 96.3183 359.465i 0.109702 0.409413i
\(879\) −2.48635 2.48635i −0.00282861 0.00282861i
\(880\) 0 0
\(881\) −523.282 302.117i −0.593964 0.342925i 0.172699 0.984975i \(-0.444751\pi\)
−0.766663 + 0.642049i \(0.778084\pi\)
\(882\) 1443.09 386.675i 1.63616 0.438407i
\(883\) 1287.07i 1.45761i 0.684724 + 0.728803i \(0.259923\pi\)
−0.684724 + 0.728803i \(0.740077\pi\)
\(884\) −161.938 60.3197i −0.183187 0.0682349i
\(885\) 0 0
\(886\) 314.840 + 1175.00i 0.355350 + 1.32618i
\(887\) 109.969 190.472i 0.123979 0.214737i −0.797355 0.603511i \(-0.793768\pi\)
0.921333 + 0.388774i \(0.127101\pi\)
\(888\) 15.9125 9.18711i 0.0179195 0.0103458i
\(889\) 50.1853 50.1853i 0.0564514 0.0564514i
\(890\) 0 0
\(891\) −338.426 + 1263.02i −0.379827 + 1.41753i
\(892\) −165.538 165.538i −0.185581 0.185581i
\(893\) 275.011 + 476.332i 0.307963 + 0.533407i
\(894\) 15.9795 + 9.22578i 0.0178742 + 0.0103197i
\(895\) 0 0
\(896\) 165.794i 0.185038i
\(897\) −0.368204 0.445553i −0.000410484 0.000496714i
\(898\) −726.314 −0.808813
\(899\) 376.689 + 1405.82i 0.419009 + 1.56376i
\(900\) 0 0
\(901\) −47.4196 + 27.3777i −0.0526300 + 0.0303859i
\(902\) −2219.38 + 2219.38i −2.46051 + 2.46051i
\(903\) −0.601237 0.161101i −0.000665821 0.000178406i
\(904\) −470.327 + 1755.28i −0.520273 + 1.94169i
\(905\) 0 0
\(906\) 14.6526 + 25.3791i 0.0161729 + 0.0280123i
\(907\) −847.960 489.570i −0.934906 0.539768i −0.0465461 0.998916i \(-0.514821\pi\)
−0.888360 + 0.459148i \(0.848155\pi\)
\(908\) 2803.10 751.089i 3.08712 0.827190i
\(909\) 813.003i 0.894392i
\(910\) 0 0
\(911\) 444.018 0.487396 0.243698 0.969851i \(-0.421639\pi\)
0.243698 + 0.969851i \(0.421639\pi\)
\(912\) −0.743157 2.77350i −0.000814865 0.00304112i
\(913\) −96.5765 + 167.275i −0.105779 + 0.183215i
\(914\) 934.548 539.562i 1.02248 0.590330i
\(915\) 0 0
\(916\) 1744.46 + 467.428i 1.90444 + 0.510292i
\(917\) 17.9240 66.8934i 0.0195464 0.0729481i
\(918\) −2.47318 2.47318i −0.00269409 0.00269409i
\(919\) −355.023 614.917i −0.386314 0.669115i 0.605637 0.795741i \(-0.292919\pi\)
−0.991951 + 0.126626i \(0.959585\pi\)
\(920\) 0 0
\(921\) 6.69613 1.79422i 0.00727050 0.00194813i
\(922\) 2386.80i 2.58872i
\(923\) −64.5985 + 679.618i −0.0699875 + 0.736314i
\(924\) −2.95005 −0.00319269
\(925\) 0 0
\(926\) −1562.32 + 2706.03i −1.68718 + 2.92227i
\(927\) 831.248 479.921i 0.896707 0.517714i
\(928\) 245.010 245.010i 0.264019 0.264019i
\(929\) −287.421 77.0142i −0.309387 0.0829001i 0.100785 0.994908i \(-0.467865\pi\)
−0.410172 + 0.912008i \(0.634531\pi\)
\(930\) 0 0
\(931\) 233.779 + 233.779i 0.251105 + 0.251105i
\(932\) 448.830 + 777.396i 0.481577 + 0.834116i
\(933\) −4.51628 2.60748i −0.00484060 0.00279472i
\(934\) −1888.58 + 506.045i −2.02204 + 0.541804i
\(935\) 0 0
\(936\) −1485.19 141.169i −1.58675 0.150822i
\(937\) 194.851 0.207952 0.103976 0.994580i \(-0.466844\pi\)
0.103976 + 0.994580i \(0.466844\pi\)
\(938\) −62.7772 234.288i −0.0669266 0.249774i
\(939\) 2.39097 4.14127i 0.00254629 0.00441030i
\(940\) 0 0
\(941\) 415.396 415.396i 0.441441 0.441441i −0.451055 0.892496i \(-0.648952\pi\)
0.892496 + 0.451055i \(0.148952\pi\)
\(942\) −2.32726 0.623586i −0.00247055 0.000661981i
\(943\) −19.8071 + 73.9211i −0.0210044 + 0.0783893i
\(944\) 847.993 + 847.993i 0.898298 + 0.898298i
\(945\) 0 0
\(946\) 1260.36 + 727.668i 1.33230 + 0.769205i
\(947\) −802.031 + 214.904i −0.846918 + 0.226931i −0.656081 0.754691i \(-0.727787\pi\)
−0.190837 + 0.981622i \(0.561120\pi\)
\(948\) 10.6134i 0.0111956i
\(949\) −561.108 + 788.689i −0.591262 + 0.831073i
\(950\) 0 0
\(951\) −4.65424 17.3699i −0.00489405 0.0182648i
\(952\) −7.86907 + 13.6296i −0.00826583 + 0.0143168i
\(953\) −906.178 + 523.182i −0.950869 + 0.548985i −0.893351 0.449360i \(-0.851652\pi\)
−0.0575183 + 0.998344i \(0.518319\pi\)
\(954\) −693.259 + 693.259i −0.726686 + 0.726686i
\(955\) 0 0
\(956\) 636.041 2373.74i 0.665315 2.48299i
\(957\) −17.9009 17.9009i −0.0187052 0.0187052i
\(958\) −71.4973 123.837i −0.0746319 0.129266i
\(959\) −86.2848 49.8166i −0.0899737 0.0519464i
\(960\) 0 0
\(961\) 23.5985i 0.0245562i
\(962\) 1499.12 1238.87i 1.55833 1.28780i
\(963\) 1160.21 1.20478
\(964\) −347.517 1296.95i −0.360495 1.34538i
\(965\) 0 0
\(966\) −0.0945505 + 0.0545887i −9.78783e−5 + 5.65101e-5i
\(967\) 710.111 710.111i 0.734344 0.734344i −0.237133 0.971477i \(-0.576208\pi\)
0.971477 + 0.237133i \(0.0762078\pi\)
\(968\) 1721.88 + 461.376i 1.77880 + 0.476628i
\(969\) 0.100157 0.373790i 0.000103361 0.000385749i
\(970\) 0 0
\(971\) −759.207 1314.99i −0.781882 1.35426i −0.930844 0.365416i \(-0.880927\pi\)
0.148963 0.988843i \(-0.452407\pi\)
\(972\) −53.5992 30.9455i −0.0551432 0.0318369i
\(973\) 50.6985 13.5846i 0.0521054 0.0139616i
\(974\) 1259.84i 1.29347i
\(975\) 0 0
\(976\) −546.905 −0.560354
\(977\) −45.4195 169.508i −0.0464887 0.173498i 0.938778 0.344522i \(-0.111959\pi\)
−0.985267 + 0.171024i \(0.945292\pi\)
\(978\) −4.34344 + 7.52306i −0.00444114 + 0.00769229i
\(979\) 1327.36 766.354i 1.35584 0.782793i
\(980\) 0 0
\(981\) −991.752 265.739i −1.01096 0.270886i
\(982\) 280.674 1047.49i 0.285819 1.06669i
\(983\) −657.150 657.150i −0.668515 0.668515i 0.288857 0.957372i \(-0.406725\pi\)
−0.957372 + 0.288857i \(0.906725\pi\)
\(984\) −11.9360 20.6738i −0.0121301 0.0210100i
\(985\) 0 0
\(986\) −270.561 + 72.4967i −0.274403 + 0.0735260i
\(987\) 1.90764i 0.00193277i
\(988\) −284.714 622.722i −0.288172 0.630286i
\(989\) 35.4847 0.0358794
\(990\) 0 0
\(991\) −241.005 + 417.433i −0.243194 + 0.421224i −0.961622 0.274377i \(-0.911528\pi\)
0.718428 + 0.695601i \(0.244862\pi\)
\(992\) −193.272 + 111.586i −0.194830 + 0.112485i
\(993\) 1.73769 1.73769i 0.00174994 0.00174994i
\(994\) 124.555 + 33.3745i 0.125307 + 0.0335759i
\(995\) 0 0
\(996\) −2.15446 2.15446i −0.00216311 0.00216311i
\(997\) −331.571 574.298i −0.332569 0.576026i 0.650446 0.759553i \(-0.274582\pi\)
−0.983015 + 0.183526i \(0.941249\pi\)
\(998\) −1789.24 1033.02i −1.79283 1.03509i
\(999\) 25.0493 6.71194i 0.0250744 0.00671866i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.3.t.d.201.1 40
5.2 odd 4 325.3.w.f.149.10 40
5.3 odd 4 325.3.w.e.149.1 40
5.4 even 2 65.3.p.a.6.10 40
13.11 odd 12 inner 325.3.t.d.76.1 40
65.24 odd 12 65.3.p.a.11.10 yes 40
65.37 even 12 325.3.w.e.24.1 40
65.63 even 12 325.3.w.f.24.10 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.3.p.a.6.10 40 5.4 even 2
65.3.p.a.11.10 yes 40 65.24 odd 12
325.3.t.d.76.1 40 13.11 odd 12 inner
325.3.t.d.201.1 40 1.1 even 1 trivial
325.3.w.e.24.1 40 65.37 even 12
325.3.w.e.149.1 40 5.3 odd 4
325.3.w.f.24.10 40 65.63 even 12
325.3.w.f.149.10 40 5.2 odd 4