Newspace parameters
Level: | \( N \) | \(=\) | \( 325 = 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 325.x (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.59513806569\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | −2.20489 | − | 1.27299i | −0.473014 | − | 1.76531i | 2.24102 | + | 3.88157i | 0 | −1.20429 | + | 4.49446i | 1.77897 | + | 3.08127i | − | 6.31926i | −0.294506 | + | 0.170033i | 0 | |||||
7.2 | −1.89212 | − | 1.09242i | 0.360067 | + | 1.34379i | 1.38675 | + | 2.40193i | 0 | 0.786686 | − | 2.93595i | −1.29136 | − | 2.23670i | − | 1.68998i | 0.921960 | − | 0.532294i | 0 | |||||
7.3 | −1.52518 | − | 0.880562i | −0.845033 | − | 3.15371i | 0.550780 | + | 0.953979i | 0 | −1.48821 | + | 5.55407i | 0.694909 | + | 1.20362i | 1.58226i | −6.63370 | + | 3.82997i | 0 | ||||||
7.4 | −1.10480 | − | 0.637857i | 0.381652 | + | 1.42434i | −0.186277 | − | 0.322641i | 0 | 0.486878 | − | 1.81705i | −0.0287274 | − | 0.0497573i | 3.02670i | 0.714982 | − | 0.412795i | 0 | ||||||
7.5 | −0.107612 | − | 0.0621297i | −0.652423 | − | 2.43488i | −0.992280 | − | 1.71868i | 0 | −0.0810697 | + | 0.302556i | −1.31142 | − | 2.27145i | 0.495119i | −2.90489 | + | 1.67714i | 0 | ||||||
7.6 | 0.107612 | + | 0.0621297i | 0.652423 | + | 2.43488i | −0.992280 | − | 1.71868i | 0 | −0.0810697 | + | 0.302556i | 1.31142 | + | 2.27145i | − | 0.495119i | −2.90489 | + | 1.67714i | 0 | |||||
7.7 | 1.10480 | + | 0.637857i | −0.381652 | − | 1.42434i | −0.186277 | − | 0.322641i | 0 | 0.486878 | − | 1.81705i | 0.0287274 | + | 0.0497573i | − | 3.02670i | 0.714982 | − | 0.412795i | 0 | |||||
7.8 | 1.52518 | + | 0.880562i | 0.845033 | + | 3.15371i | 0.550780 | + | 0.953979i | 0 | −1.48821 | + | 5.55407i | −0.694909 | − | 1.20362i | − | 1.58226i | −6.63370 | + | 3.82997i | 0 | |||||
7.9 | 1.89212 | + | 1.09242i | −0.360067 | − | 1.34379i | 1.38675 | + | 2.40193i | 0 | 0.786686 | − | 2.93595i | 1.29136 | + | 2.23670i | 1.68998i | 0.921960 | − | 0.532294i | 0 | ||||||
7.10 | 2.20489 | + | 1.27299i | 0.473014 | + | 1.76531i | 2.24102 | + | 3.88157i | 0 | −1.20429 | + | 4.49446i | −1.77897 | − | 3.08127i | 6.31926i | −0.294506 | + | 0.170033i | 0 | ||||||
93.1 | −2.20489 | + | 1.27299i | −0.473014 | + | 1.76531i | 2.24102 | − | 3.88157i | 0 | −1.20429 | − | 4.49446i | 1.77897 | − | 3.08127i | 6.31926i | −0.294506 | − | 0.170033i | 0 | ||||||
93.2 | −1.89212 | + | 1.09242i | 0.360067 | − | 1.34379i | 1.38675 | − | 2.40193i | 0 | 0.786686 | + | 2.93595i | −1.29136 | + | 2.23670i | 1.68998i | 0.921960 | + | 0.532294i | 0 | ||||||
93.3 | −1.52518 | + | 0.880562i | −0.845033 | + | 3.15371i | 0.550780 | − | 0.953979i | 0 | −1.48821 | − | 5.55407i | 0.694909 | − | 1.20362i | − | 1.58226i | −6.63370 | − | 3.82997i | 0 | |||||
93.4 | −1.10480 | + | 0.637857i | 0.381652 | − | 1.42434i | −0.186277 | + | 0.322641i | 0 | 0.486878 | + | 1.81705i | −0.0287274 | + | 0.0497573i | − | 3.02670i | 0.714982 | + | 0.412795i | 0 | |||||
93.5 | −0.107612 | + | 0.0621297i | −0.652423 | + | 2.43488i | −0.992280 | + | 1.71868i | 0 | −0.0810697 | − | 0.302556i | −1.31142 | + | 2.27145i | − | 0.495119i | −2.90489 | − | 1.67714i | 0 | |||||
93.6 | 0.107612 | − | 0.0621297i | 0.652423 | − | 2.43488i | −0.992280 | + | 1.71868i | 0 | −0.0810697 | − | 0.302556i | 1.31142 | − | 2.27145i | 0.495119i | −2.90489 | − | 1.67714i | 0 | ||||||
93.7 | 1.10480 | − | 0.637857i | −0.381652 | + | 1.42434i | −0.186277 | + | 0.322641i | 0 | 0.486878 | + | 1.81705i | 0.0287274 | − | 0.0497573i | 3.02670i | 0.714982 | + | 0.412795i | 0 | ||||||
93.8 | 1.52518 | − | 0.880562i | 0.845033 | − | 3.15371i | 0.550780 | − | 0.953979i | 0 | −1.48821 | − | 5.55407i | −0.694909 | + | 1.20362i | 1.58226i | −6.63370 | − | 3.82997i | 0 | ||||||
93.9 | 1.89212 | − | 1.09242i | −0.360067 | + | 1.34379i | 1.38675 | − | 2.40193i | 0 | 0.786686 | + | 2.93595i | 1.29136 | − | 2.23670i | − | 1.68998i | 0.921960 | + | 0.532294i | 0 | |||||
93.10 | 2.20489 | − | 1.27299i | 0.473014 | − | 1.76531i | 2.24102 | − | 3.88157i | 0 | −1.20429 | − | 4.49446i | −1.77897 | + | 3.08127i | − | 6.31926i | −0.294506 | − | 0.170033i | 0 | |||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
65.o | even | 12 | 1 | inner |
65.t | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 325.2.x.c | yes | 40 |
5.b | even | 2 | 1 | inner | 325.2.x.c | yes | 40 |
5.c | odd | 4 | 2 | 325.2.s.c | ✓ | 40 | |
13.f | odd | 12 | 1 | 325.2.s.c | ✓ | 40 | |
65.o | even | 12 | 1 | inner | 325.2.x.c | yes | 40 |
65.s | odd | 12 | 1 | 325.2.s.c | ✓ | 40 | |
65.t | even | 12 | 1 | inner | 325.2.x.c | yes | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
325.2.s.c | ✓ | 40 | 5.c | odd | 4 | 2 | |
325.2.s.c | ✓ | 40 | 13.f | odd | 12 | 1 | |
325.2.s.c | ✓ | 40 | 65.s | odd | 12 | 1 | |
325.2.x.c | yes | 40 | 1.a | even | 1 | 1 | trivial |
325.2.x.c | yes | 40 | 5.b | even | 2 | 1 | inner |
325.2.x.c | yes | 40 | 65.o | even | 12 | 1 | inner |
325.2.x.c | yes | 40 | 65.t | even | 12 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{40} - 32 T_{2}^{38} + 596 T_{2}^{36} - 7464 T_{2}^{34} + 69980 T_{2}^{32} - 505888 T_{2}^{30} + \cdots + 6561 \)
acting on \(S_{2}^{\mathrm{new}}(325, [\chi])\).