L(s) = 1 | + (−2.40 − 1.39i)2-s + (0.732 − 0.196i)3-s + (2.86 + 4.96i)4-s + (−2.03 − 0.545i)6-s + (0.989 + 1.71i)7-s − 10.3i·8-s + (−2.10 + 1.21i)9-s + (2.64 − 0.707i)11-s + (3.07 + 3.07i)12-s + (−2.22 + 2.83i)13-s − 5.50i·14-s + (−8.71 + 15.0i)16-s + (−1.09 + 4.08i)17-s + 6.74·18-s + (−0.742 + 2.77i)19-s + ⋯ |
L(s) = 1 | + (−1.70 − 0.983i)2-s + (0.422 − 0.113i)3-s + (1.43 + 2.48i)4-s + (−0.831 − 0.222i)6-s + (0.373 + 0.647i)7-s − 3.67i·8-s + (−0.700 + 0.404i)9-s + (0.796 − 0.213i)11-s + (0.887 + 0.887i)12-s + (−0.618 + 0.785i)13-s − 1.47i·14-s + (−2.17 + 3.77i)16-s + (−0.265 + 0.990i)17-s + 1.58·18-s + (−0.170 + 0.635i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.916 - 0.400i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.916 - 0.400i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.594945 + 0.124476i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.594945 + 0.124476i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (2.22 - 2.83i)T \) |
good | 2 | \( 1 + (2.40 + 1.39i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.732 + 0.196i)T + (2.59 - 1.5i)T^{2} \) |
| 7 | \( 1 + (-0.989 - 1.71i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.64 + 0.707i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (1.09 - 4.08i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (0.742 - 2.77i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.847 - 3.16i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (-0.288 - 0.166i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.77 + 3.77i)T - 31iT^{2} \) |
| 37 | \( 1 + (-0.311 + 0.539i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.894 - 3.33i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-8.21 - 2.20i)T + (37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 - 5.83T + 47T^{2} \) |
| 53 | \( 1 + (3.61 + 3.61i)T + 53iT^{2} \) |
| 59 | \( 1 + (7.72 + 2.07i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-5.34 - 9.26i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.989 + 0.571i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (6.43 + 1.72i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 - 4.34iT - 73T^{2} \) |
| 79 | \( 1 - 4.93iT - 79T^{2} \) |
| 83 | \( 1 - 2.83T + 83T^{2} \) |
| 89 | \( 1 + (1.09 + 4.07i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-9.06 + 5.23i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.54059868148415102966201097558, −10.71464597291855206379529850089, −9.619358118528718850202368391813, −8.922589510914158692256207335716, −8.283290760627646066878766839411, −7.43820401238795152493203106143, −6.15920743117702652790001412998, −3.99340004946958061129253089232, −2.64628615553345176519771624518, −1.68493232645163641704289376954,
0.72536732297640508592625551859, 2.58096298308969495190405929070, 4.82718382926233899460624027077, 6.11105901229674715121371181410, 7.08295624909933827580847613326, 7.79254717518643503677845386754, 8.830367910778784644325070977775, 9.313285399221144442108975743255, 10.33214894898547214363341507153, 11.08312837055001339999677312908