L(s) = 1 | + (1.06 − 0.616i)2-s + (2.26 + 0.608i)3-s + (−0.240 + 0.416i)4-s + (2.79 − 0.749i)6-s + (−1.20 + 2.09i)7-s + 3.05i·8-s + (2.18 + 1.25i)9-s + (0.721 + 0.193i)11-s + (−0.798 + 0.798i)12-s + (1.41 − 3.31i)13-s + 2.98i·14-s + (1.40 + 2.43i)16-s + (−1.22 − 4.58i)17-s + 3.10·18-s + (−1.17 − 4.37i)19-s + ⋯ |
L(s) = 1 | + (0.754 − 0.435i)2-s + (1.31 + 0.351i)3-s + (−0.120 + 0.208i)4-s + (1.14 − 0.305i)6-s + (−0.456 + 0.791i)7-s + 1.08i·8-s + (0.727 + 0.419i)9-s + (0.217 + 0.0582i)11-s + (−0.230 + 0.230i)12-s + (0.393 − 0.919i)13-s + 0.796i·14-s + (0.350 + 0.607i)16-s + (−0.297 − 1.11i)17-s + 0.732·18-s + (−0.269 − 1.00i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.958 - 0.284i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.958 - 0.284i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.49750 + 0.362590i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.49750 + 0.362590i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (-1.41 + 3.31i)T \) |
good | 2 | \( 1 + (-1.06 + 0.616i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-2.26 - 0.608i)T + (2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (1.20 - 2.09i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.721 - 0.193i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (1.22 + 4.58i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (1.17 + 4.37i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.90 + 7.11i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (4.31 - 2.49i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-6.01 - 6.01i)T + 31iT^{2} \) |
| 37 | \( 1 + (0.298 + 0.517i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.40 - 5.25i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (11.4 - 3.05i)T + (37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 - 11.2T + 47T^{2} \) |
| 53 | \( 1 + (0.469 - 0.469i)T - 53iT^{2} \) |
| 59 | \( 1 + (-9.49 + 2.54i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (0.729 - 1.26i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.37 - 1.94i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2.47 - 0.664i)T + (61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 - 4.94iT - 73T^{2} \) |
| 79 | \( 1 - 10.7iT - 79T^{2} \) |
| 83 | \( 1 + 1.96T + 83T^{2} \) |
| 89 | \( 1 + (3.40 - 12.6i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (10.1 + 5.87i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.87365828906271811301855917774, −10.82902263473165023950992879518, −9.594437526756608603732742717536, −8.728559383895008478513806636547, −8.301295487348698559797042393976, −6.84725606662394394083864973074, −5.33754997862170207875944410616, −4.29465651650452568681850799261, −3.00553280975107337393690568252, −2.65148191372397547409508826359,
1.71271449448353471769079742467, 3.61696231779963715803531807800, 4.06416023648813076989350287342, 5.75960175575807401678370713476, 6.73560066865895250904659082191, 7.61708166082410542414267501489, 8.709033538642588450171008524732, 9.578605817023167896671973005897, 10.41815974438426991991752484074, 11.80797540033269070483803022188