L(s) = 1 | + (−2.40 + 1.39i)2-s + (0.732 + 0.196i)3-s + (2.86 − 4.96i)4-s + (−2.03 + 0.545i)6-s + (0.989 − 1.71i)7-s + 10.3i·8-s + (−2.10 − 1.21i)9-s + (2.64 + 0.707i)11-s + (3.07 − 3.07i)12-s + (−2.22 − 2.83i)13-s + 5.50i·14-s + (−8.71 − 15.0i)16-s + (−1.09 − 4.08i)17-s + 6.74·18-s + (−0.742 − 2.77i)19-s + ⋯ |
L(s) = 1 | + (−1.70 + 0.983i)2-s + (0.422 + 0.113i)3-s + (1.43 − 2.48i)4-s + (−0.831 + 0.222i)6-s + (0.373 − 0.647i)7-s + 3.67i·8-s + (−0.700 − 0.404i)9-s + (0.796 + 0.213i)11-s + (0.887 − 0.887i)12-s + (−0.618 − 0.785i)13-s + 1.47i·14-s + (−2.17 − 3.77i)16-s + (−0.265 − 0.990i)17-s + 1.58·18-s + (−0.170 − 0.635i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.916 + 0.400i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.916 + 0.400i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.594945 - 0.124476i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.594945 - 0.124476i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (2.22 + 2.83i)T \) |
good | 2 | \( 1 + (2.40 - 1.39i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.732 - 0.196i)T + (2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (-0.989 + 1.71i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.64 - 0.707i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (1.09 + 4.08i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (0.742 + 2.77i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.847 + 3.16i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (-0.288 + 0.166i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.77 - 3.77i)T + 31iT^{2} \) |
| 37 | \( 1 + (-0.311 - 0.539i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.894 + 3.33i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-8.21 + 2.20i)T + (37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 - 5.83T + 47T^{2} \) |
| 53 | \( 1 + (3.61 - 3.61i)T - 53iT^{2} \) |
| 59 | \( 1 + (7.72 - 2.07i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-5.34 + 9.26i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.989 - 0.571i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (6.43 - 1.72i)T + (61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + 4.34iT - 73T^{2} \) |
| 79 | \( 1 + 4.93iT - 79T^{2} \) |
| 83 | \( 1 - 2.83T + 83T^{2} \) |
| 89 | \( 1 + (1.09 - 4.07i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-9.06 - 5.23i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.08312837055001339999677312908, −10.33214894898547214363341507153, −9.313285399221144442108975743255, −8.830367910778784644325070977775, −7.79254717518643503677845386754, −7.08295624909933827580847613326, −6.11105901229674715121371181410, −4.82718382926233899460624027077, −2.58096298308969495190405929070, −0.72536732297640508592625551859,
1.68493232645163641704289376954, 2.64628615553345176519771624518, 3.99340004946958061129253089232, 6.15920743117702652790001412998, 7.43820401238795152493203106143, 8.283290760627646066878766839411, 8.922589510914158692256207335716, 9.619358118528718850202368391813, 10.71464597291855206379529850089, 11.54059868148415102966201097558