L(s) = 1 | + (1.98 + 1.14i)2-s + (−1.80 + 0.483i)3-s + (1.62 + 2.82i)4-s + (−4.14 − 1.10i)6-s + (1.60 + 2.78i)7-s + 2.88i·8-s + (0.430 − 0.248i)9-s + (−3.45 + 0.925i)11-s + (−4.30 − 4.30i)12-s + (3.07 + 1.87i)13-s + 7.37i·14-s + (−0.0520 + 0.0901i)16-s + (−1.55 + 5.80i)17-s + 1.13·18-s + (2.03 − 7.60i)19-s + ⋯ |
L(s) = 1 | + (1.40 + 0.810i)2-s + (−1.04 + 0.279i)3-s + (0.814 + 1.41i)4-s + (−1.69 − 0.453i)6-s + (0.607 + 1.05i)7-s + 1.02i·8-s + (0.143 − 0.0827i)9-s + (−1.04 + 0.279i)11-s + (−1.24 − 1.24i)12-s + (0.853 + 0.520i)13-s + 1.97i·14-s + (−0.0130 + 0.0225i)16-s + (−0.376 + 1.40i)17-s + 0.268·18-s + (0.467 − 1.74i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.507 - 0.861i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.507 - 0.861i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.976845 + 1.70837i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.976845 + 1.70837i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (-3.07 - 1.87i)T \) |
good | 2 | \( 1 + (-1.98 - 1.14i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (1.80 - 0.483i)T + (2.59 - 1.5i)T^{2} \) |
| 7 | \( 1 + (-1.60 - 2.78i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (3.45 - 0.925i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (1.55 - 5.80i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-2.03 + 7.60i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (0.296 + 1.10i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (-0.877 - 0.506i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.47 + 4.47i)T - 31iT^{2} \) |
| 37 | \( 1 + (-0.372 + 0.645i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.65 - 6.16i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (1.25 + 0.335i)T + (37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 - 8.22T + 47T^{2} \) |
| 53 | \( 1 + (3.01 + 3.01i)T + 53iT^{2} \) |
| 59 | \( 1 + (-6.45 - 1.72i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-0.928 - 1.60i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7.23 + 4.17i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (9.01 + 2.41i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + 7.93iT - 73T^{2} \) |
| 79 | \( 1 + 10.1iT - 79T^{2} \) |
| 83 | \( 1 + 9.01T + 83T^{2} \) |
| 89 | \( 1 + (-0.176 - 0.657i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (11.7 - 6.80i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.93693353228119297049344577512, −11.38046185390878573729876636229, −10.46477027702814074671075907533, −8.867003888246850131080897732168, −7.86232192048740112486384495533, −6.52615604660527885286679114490, −5.85970820696923203347633386440, −5.06127318434415731834996075960, −4.35184877878072989892781004089, −2.62416131962745063571804271269,
1.13417157938198563209953370160, 2.98838382934730281520383605101, 4.20075608598791522499848096993, 5.29292998660401928782710531129, 5.83255811514215769640181787360, 7.13061874227932383321476245384, 8.272014272643172747813890824349, 10.20857261023960906286361481881, 10.75747461682353290670296465720, 11.45629399171549908113566611242