Properties

Label 325.2.d.b.324.1
Level $325$
Weight $2$
Character 325.324
Analytic conductor $2.595$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(324,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.324"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 324.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 325.324
Dual form 325.2.d.b.324.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -2.00000i q^{3} -1.00000 q^{4} +2.00000i q^{6} +5.00000 q^{7} +3.00000 q^{8} -1.00000 q^{9} +3.00000i q^{11} +2.00000i q^{12} +(-2.00000 - 3.00000i) q^{13} -5.00000 q^{14} -1.00000 q^{16} -5.00000i q^{17} +1.00000 q^{18} -4.00000i q^{19} -10.0000i q^{21} -3.00000i q^{22} +4.00000i q^{23} -6.00000i q^{24} +(2.00000 + 3.00000i) q^{26} -4.00000i q^{27} -5.00000 q^{28} +1.00000 q^{29} -1.00000i q^{31} -5.00000 q^{32} +6.00000 q^{33} +5.00000i q^{34} +1.00000 q^{36} -4.00000 q^{37} +4.00000i q^{38} +(-6.00000 + 4.00000i) q^{39} +8.00000i q^{41} +10.0000i q^{42} -4.00000i q^{43} -3.00000i q^{44} -4.00000i q^{46} +7.00000 q^{47} +2.00000i q^{48} +18.0000 q^{49} -10.0000 q^{51} +(2.00000 + 3.00000i) q^{52} -3.00000i q^{53} +4.00000i q^{54} +15.0000 q^{56} -8.00000 q^{57} -1.00000 q^{58} +3.00000i q^{59} +1.00000 q^{61} +1.00000i q^{62} -5.00000 q^{63} +7.00000 q^{64} -6.00000 q^{66} -3.00000 q^{67} +5.00000i q^{68} +8.00000 q^{69} -8.00000i q^{71} -3.00000 q^{72} +4.00000 q^{73} +4.00000 q^{74} +4.00000i q^{76} +15.0000i q^{77} +(6.00000 - 4.00000i) q^{78} -10.0000 q^{79} -11.0000 q^{81} -8.00000i q^{82} -9.00000 q^{83} +10.0000i q^{84} +4.00000i q^{86} -2.00000i q^{87} +9.00000i q^{88} +18.0000i q^{89} +(-10.0000 - 15.0000i) q^{91} -4.00000i q^{92} -2.00000 q^{93} -7.00000 q^{94} +10.0000i q^{96} +14.0000 q^{97} -18.0000 q^{98} -3.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{4} + 10 q^{7} + 6 q^{8} - 2 q^{9} - 4 q^{13} - 10 q^{14} - 2 q^{16} + 2 q^{18} + 4 q^{26} - 10 q^{28} + 2 q^{29} - 10 q^{32} + 12 q^{33} + 2 q^{36} - 8 q^{37} - 12 q^{39} + 14 q^{47}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) 2.00000i 1.15470i −0.816497 0.577350i \(-0.804087\pi\)
0.816497 0.577350i \(-0.195913\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 2.00000i 0.816497i
\(7\) 5.00000 1.88982 0.944911 0.327327i \(-0.106148\pi\)
0.944911 + 0.327327i \(0.106148\pi\)
\(8\) 3.00000 1.06066
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 3.00000i 0.904534i 0.891883 + 0.452267i \(0.149385\pi\)
−0.891883 + 0.452267i \(0.850615\pi\)
\(12\) 2.00000i 0.577350i
\(13\) −2.00000 3.00000i −0.554700 0.832050i
\(14\) −5.00000 −1.33631
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 5.00000i 1.21268i −0.795206 0.606339i \(-0.792637\pi\)
0.795206 0.606339i \(-0.207363\pi\)
\(18\) 1.00000 0.235702
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 0 0
\(21\) 10.0000i 2.18218i
\(22\) 3.00000i 0.639602i
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 6.00000i 1.22474i
\(25\) 0 0
\(26\) 2.00000 + 3.00000i 0.392232 + 0.588348i
\(27\) 4.00000i 0.769800i
\(28\) −5.00000 −0.944911
\(29\) 1.00000 0.185695 0.0928477 0.995680i \(-0.470403\pi\)
0.0928477 + 0.995680i \(0.470403\pi\)
\(30\) 0 0
\(31\) 1.00000i 0.179605i −0.995960 0.0898027i \(-0.971376\pi\)
0.995960 0.0898027i \(-0.0286236\pi\)
\(32\) −5.00000 −0.883883
\(33\) 6.00000 1.04447
\(34\) 5.00000i 0.857493i
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 4.00000i 0.648886i
\(39\) −6.00000 + 4.00000i −0.960769 + 0.640513i
\(40\) 0 0
\(41\) 8.00000i 1.24939i 0.780869 + 0.624695i \(0.214777\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 10.0000i 1.54303i
\(43\) 4.00000i 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 3.00000i 0.452267i
\(45\) 0 0
\(46\) 4.00000i 0.589768i
\(47\) 7.00000 1.02105 0.510527 0.859861i \(-0.329450\pi\)
0.510527 + 0.859861i \(0.329450\pi\)
\(48\) 2.00000i 0.288675i
\(49\) 18.0000 2.57143
\(50\) 0 0
\(51\) −10.0000 −1.40028
\(52\) 2.00000 + 3.00000i 0.277350 + 0.416025i
\(53\) 3.00000i 0.412082i −0.978543 0.206041i \(-0.933942\pi\)
0.978543 0.206041i \(-0.0660580\pi\)
\(54\) 4.00000i 0.544331i
\(55\) 0 0
\(56\) 15.0000 2.00446
\(57\) −8.00000 −1.05963
\(58\) −1.00000 −0.131306
\(59\) 3.00000i 0.390567i 0.980747 + 0.195283i \(0.0625627\pi\)
−0.980747 + 0.195283i \(0.937437\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 1.00000i 0.127000i
\(63\) −5.00000 −0.629941
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) −6.00000 −0.738549
\(67\) −3.00000 −0.366508 −0.183254 0.983066i \(-0.558663\pi\)
−0.183254 + 0.983066i \(0.558663\pi\)
\(68\) 5.00000i 0.606339i
\(69\) 8.00000 0.963087
\(70\) 0 0
\(71\) 8.00000i 0.949425i −0.880141 0.474713i \(-0.842552\pi\)
0.880141 0.474713i \(-0.157448\pi\)
\(72\) −3.00000 −0.353553
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 4.00000 0.464991
\(75\) 0 0
\(76\) 4.00000i 0.458831i
\(77\) 15.0000i 1.70941i
\(78\) 6.00000 4.00000i 0.679366 0.452911i
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 8.00000i 0.883452i
\(83\) −9.00000 −0.987878 −0.493939 0.869496i \(-0.664443\pi\)
−0.493939 + 0.869496i \(0.664443\pi\)
\(84\) 10.0000i 1.09109i
\(85\) 0 0
\(86\) 4.00000i 0.431331i
\(87\) 2.00000i 0.214423i
\(88\) 9.00000i 0.959403i
\(89\) 18.0000i 1.90800i 0.299813 + 0.953998i \(0.403076\pi\)
−0.299813 + 0.953998i \(0.596924\pi\)
\(90\) 0 0
\(91\) −10.0000 15.0000i −1.04828 1.57243i
\(92\) 4.00000i 0.417029i
\(93\) −2.00000 −0.207390
\(94\) −7.00000 −0.721995
\(95\) 0 0
\(96\) 10.0000i 1.02062i
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) −18.0000 −1.81827
\(99\) 3.00000i 0.301511i
\(100\) 0 0
\(101\) 1.00000 0.0995037 0.0497519 0.998762i \(-0.484157\pi\)
0.0497519 + 0.998762i \(0.484157\pi\)
\(102\) 10.0000 0.990148
\(103\) 4.00000i 0.394132i 0.980390 + 0.197066i \(0.0631413\pi\)
−0.980390 + 0.197066i \(0.936859\pi\)
\(104\) −6.00000 9.00000i −0.588348 0.882523i
\(105\) 0 0
\(106\) 3.00000i 0.291386i
\(107\) 16.0000i 1.54678i 0.633932 + 0.773389i \(0.281440\pi\)
−0.633932 + 0.773389i \(0.718560\pi\)
\(108\) 4.00000i 0.384900i
\(109\) 2.00000i 0.191565i −0.995402 0.0957826i \(-0.969465\pi\)
0.995402 0.0957826i \(-0.0305354\pi\)
\(110\) 0 0
\(111\) 8.00000i 0.759326i
\(112\) −5.00000 −0.472456
\(113\) 10.0000i 0.940721i 0.882474 + 0.470360i \(0.155876\pi\)
−0.882474 + 0.470360i \(0.844124\pi\)
\(114\) 8.00000 0.749269
\(115\) 0 0
\(116\) −1.00000 −0.0928477
\(117\) 2.00000 + 3.00000i 0.184900 + 0.277350i
\(118\) 3.00000i 0.276172i
\(119\) 25.0000i 2.29175i
\(120\) 0 0
\(121\) 2.00000 0.181818
\(122\) −1.00000 −0.0905357
\(123\) 16.0000 1.44267
\(124\) 1.00000i 0.0898027i
\(125\) 0 0
\(126\) 5.00000 0.445435
\(127\) 18.0000i 1.59724i −0.601834 0.798621i \(-0.705563\pi\)
0.601834 0.798621i \(-0.294437\pi\)
\(128\) 3.00000 0.265165
\(129\) −8.00000 −0.704361
\(130\) 0 0
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) −6.00000 −0.522233
\(133\) 20.0000i 1.73422i
\(134\) 3.00000 0.259161
\(135\) 0 0
\(136\) 15.0000i 1.28624i
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) −8.00000 −0.681005
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 14.0000i 1.17901i
\(142\) 8.00000i 0.671345i
\(143\) 9.00000 6.00000i 0.752618 0.501745i
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −4.00000 −0.331042
\(147\) 36.0000i 2.96923i
\(148\) 4.00000 0.328798
\(149\) 10.0000i 0.819232i 0.912258 + 0.409616i \(0.134337\pi\)
−0.912258 + 0.409616i \(0.865663\pi\)
\(150\) 0 0
\(151\) 13.0000i 1.05792i 0.848645 + 0.528962i \(0.177419\pi\)
−0.848645 + 0.528962i \(0.822581\pi\)
\(152\) 12.0000i 0.973329i
\(153\) 5.00000i 0.404226i
\(154\) 15.0000i 1.20873i
\(155\) 0 0
\(156\) 6.00000 4.00000i 0.480384 0.320256i
\(157\) 13.0000i 1.03751i 0.854922 + 0.518756i \(0.173605\pi\)
−0.854922 + 0.518756i \(0.826395\pi\)
\(158\) 10.0000 0.795557
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 20.0000i 1.57622i
\(162\) 11.0000 0.864242
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) 8.00000i 0.624695i
\(165\) 0 0
\(166\) 9.00000 0.698535
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 30.0000i 2.31455i
\(169\) −5.00000 + 12.0000i −0.384615 + 0.923077i
\(170\) 0 0
\(171\) 4.00000i 0.305888i
\(172\) 4.00000i 0.304997i
\(173\) 13.0000i 0.988372i 0.869356 + 0.494186i \(0.164534\pi\)
−0.869356 + 0.494186i \(0.835466\pi\)
\(174\) 2.00000i 0.151620i
\(175\) 0 0
\(176\) 3.00000i 0.226134i
\(177\) 6.00000 0.450988
\(178\) 18.0000i 1.34916i
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 3.00000 0.222988 0.111494 0.993765i \(-0.464436\pi\)
0.111494 + 0.993765i \(0.464436\pi\)
\(182\) 10.0000 + 15.0000i 0.741249 + 1.11187i
\(183\) 2.00000i 0.147844i
\(184\) 12.0000i 0.884652i
\(185\) 0 0
\(186\) 2.00000 0.146647
\(187\) 15.0000 1.09691
\(188\) −7.00000 −0.510527
\(189\) 20.0000i 1.45479i
\(190\) 0 0
\(191\) 10.0000 0.723575 0.361787 0.932261i \(-0.382167\pi\)
0.361787 + 0.932261i \(0.382167\pi\)
\(192\) 14.0000i 1.01036i
\(193\) 4.00000 0.287926 0.143963 0.989583i \(-0.454015\pi\)
0.143963 + 0.989583i \(0.454015\pi\)
\(194\) −14.0000 −1.00514
\(195\) 0 0
\(196\) −18.0000 −1.28571
\(197\) 8.00000 0.569976 0.284988 0.958531i \(-0.408010\pi\)
0.284988 + 0.958531i \(0.408010\pi\)
\(198\) 3.00000i 0.213201i
\(199\) 6.00000 0.425329 0.212664 0.977125i \(-0.431786\pi\)
0.212664 + 0.977125i \(0.431786\pi\)
\(200\) 0 0
\(201\) 6.00000i 0.423207i
\(202\) −1.00000 −0.0703598
\(203\) 5.00000 0.350931
\(204\) 10.0000 0.700140
\(205\) 0 0
\(206\) 4.00000i 0.278693i
\(207\) 4.00000i 0.278019i
\(208\) 2.00000 + 3.00000i 0.138675 + 0.208013i
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 3.00000i 0.206041i
\(213\) −16.0000 −1.09630
\(214\) 16.0000i 1.09374i
\(215\) 0 0
\(216\) 12.0000i 0.816497i
\(217\) 5.00000i 0.339422i
\(218\) 2.00000i 0.135457i
\(219\) 8.00000i 0.540590i
\(220\) 0 0
\(221\) −15.0000 + 10.0000i −1.00901 + 0.672673i
\(222\) 8.00000i 0.536925i
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) −25.0000 −1.67038
\(225\) 0 0
\(226\) 10.0000i 0.665190i
\(227\) −9.00000 −0.597351 −0.298675 0.954355i \(-0.596545\pi\)
−0.298675 + 0.954355i \(0.596545\pi\)
\(228\) 8.00000 0.529813
\(229\) 2.00000i 0.132164i 0.997814 + 0.0660819i \(0.0210498\pi\)
−0.997814 + 0.0660819i \(0.978950\pi\)
\(230\) 0 0
\(231\) 30.0000 1.97386
\(232\) 3.00000 0.196960
\(233\) 14.0000i 0.917170i 0.888650 + 0.458585i \(0.151644\pi\)
−0.888650 + 0.458585i \(0.848356\pi\)
\(234\) −2.00000 3.00000i −0.130744 0.196116i
\(235\) 0 0
\(236\) 3.00000i 0.195283i
\(237\) 20.0000i 1.29914i
\(238\) 25.0000i 1.62051i
\(239\) 5.00000i 0.323423i 0.986838 + 0.161712i \(0.0517014\pi\)
−0.986838 + 0.161712i \(0.948299\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −2.00000 −0.128565
\(243\) 10.0000i 0.641500i
\(244\) −1.00000 −0.0640184
\(245\) 0 0
\(246\) −16.0000 −1.02012
\(247\) −12.0000 + 8.00000i −0.763542 + 0.509028i
\(248\) 3.00000i 0.190500i
\(249\) 18.0000i 1.14070i
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 5.00000 0.314970
\(253\) −12.0000 −0.754434
\(254\) 18.0000i 1.12942i
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 15.0000i 0.935674i −0.883815 0.467837i \(-0.845033\pi\)
0.883815 0.467837i \(-0.154967\pi\)
\(258\) 8.00000 0.498058
\(259\) −20.0000 −1.24274
\(260\) 0 0
\(261\) −1.00000 −0.0618984
\(262\) −18.0000 −1.11204
\(263\) 6.00000i 0.369976i −0.982741 0.184988i \(-0.940775\pi\)
0.982741 0.184988i \(-0.0592246\pi\)
\(264\) 18.0000 1.10782
\(265\) 0 0
\(266\) 20.0000i 1.22628i
\(267\) 36.0000 2.20316
\(268\) 3.00000 0.183254
\(269\) 17.0000 1.03651 0.518254 0.855227i \(-0.326582\pi\)
0.518254 + 0.855227i \(0.326582\pi\)
\(270\) 0 0
\(271\) 29.0000i 1.76162i 0.473466 + 0.880812i \(0.343003\pi\)
−0.473466 + 0.880812i \(0.656997\pi\)
\(272\) 5.00000i 0.303170i
\(273\) −30.0000 + 20.0000i −1.81568 + 1.21046i
\(274\) 18.0000 1.08742
\(275\) 0 0
\(276\) −8.00000 −0.481543
\(277\) 2.00000i 0.120168i 0.998193 + 0.0600842i \(0.0191369\pi\)
−0.998193 + 0.0600842i \(0.980863\pi\)
\(278\) 4.00000 0.239904
\(279\) 1.00000i 0.0598684i
\(280\) 0 0
\(281\) 18.0000i 1.07379i −0.843649 0.536895i \(-0.819597\pi\)
0.843649 0.536895i \(-0.180403\pi\)
\(282\) 14.0000i 0.833688i
\(283\) 28.0000i 1.66443i −0.554455 0.832214i \(-0.687073\pi\)
0.554455 0.832214i \(-0.312927\pi\)
\(284\) 8.00000i 0.474713i
\(285\) 0 0
\(286\) −9.00000 + 6.00000i −0.532181 + 0.354787i
\(287\) 40.0000i 2.36113i
\(288\) 5.00000 0.294628
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 28.0000i 1.64139i
\(292\) −4.00000 −0.234082
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 36.0000i 2.09956i
\(295\) 0 0
\(296\) −12.0000 −0.697486
\(297\) 12.0000 0.696311
\(298\) 10.0000i 0.579284i
\(299\) 12.0000 8.00000i 0.693978 0.462652i
\(300\) 0 0
\(301\) 20.0000i 1.15278i
\(302\) 13.0000i 0.748066i
\(303\) 2.00000i 0.114897i
\(304\) 4.00000i 0.229416i
\(305\) 0 0
\(306\) 5.00000i 0.285831i
\(307\) −8.00000 −0.456584 −0.228292 0.973593i \(-0.573314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(308\) 15.0000i 0.854704i
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) 4.00000 0.226819 0.113410 0.993548i \(-0.463823\pi\)
0.113410 + 0.993548i \(0.463823\pi\)
\(312\) −18.0000 + 12.0000i −1.01905 + 0.679366i
\(313\) 17.0000i 0.960897i 0.877023 + 0.480448i \(0.159526\pi\)
−0.877023 + 0.480448i \(0.840474\pi\)
\(314\) 13.0000i 0.733632i
\(315\) 0 0
\(316\) 10.0000 0.562544
\(317\) −22.0000 −1.23564 −0.617822 0.786318i \(-0.711985\pi\)
−0.617822 + 0.786318i \(0.711985\pi\)
\(318\) 6.00000 0.336463
\(319\) 3.00000i 0.167968i
\(320\) 0 0
\(321\) 32.0000 1.78607
\(322\) 20.0000i 1.11456i
\(323\) −20.0000 −1.11283
\(324\) 11.0000 0.611111
\(325\) 0 0
\(326\) −12.0000 −0.664619
\(327\) −4.00000 −0.221201
\(328\) 24.0000i 1.32518i
\(329\) 35.0000 1.92961
\(330\) 0 0
\(331\) 20.0000i 1.09930i 0.835395 + 0.549650i \(0.185239\pi\)
−0.835395 + 0.549650i \(0.814761\pi\)
\(332\) 9.00000 0.493939
\(333\) 4.00000 0.219199
\(334\) 16.0000 0.875481
\(335\) 0 0
\(336\) 10.0000i 0.545545i
\(337\) 3.00000i 0.163420i 0.996656 + 0.0817102i \(0.0260382\pi\)
−0.996656 + 0.0817102i \(0.973962\pi\)
\(338\) 5.00000 12.0000i 0.271964 0.652714i
\(339\) 20.0000 1.08625
\(340\) 0 0
\(341\) 3.00000 0.162459
\(342\) 4.00000i 0.216295i
\(343\) 55.0000 2.96972
\(344\) 12.0000i 0.646997i
\(345\) 0 0
\(346\) 13.0000i 0.698884i
\(347\) 4.00000i 0.214731i −0.994220 0.107366i \(-0.965758\pi\)
0.994220 0.107366i \(-0.0342415\pi\)
\(348\) 2.00000i 0.107211i
\(349\) 2.00000i 0.107058i −0.998566 0.0535288i \(-0.982953\pi\)
0.998566 0.0535288i \(-0.0170469\pi\)
\(350\) 0 0
\(351\) −12.0000 + 8.00000i −0.640513 + 0.427008i
\(352\) 15.0000i 0.799503i
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) −6.00000 −0.318896
\(355\) 0 0
\(356\) 18.0000i 0.953998i
\(357\) −50.0000 −2.64628
\(358\) 12.0000 0.634220
\(359\) 23.0000i 1.21389i −0.794742 0.606947i \(-0.792394\pi\)
0.794742 0.606947i \(-0.207606\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) −3.00000 −0.157676
\(363\) 4.00000i 0.209946i
\(364\) 10.0000 + 15.0000i 0.524142 + 0.786214i
\(365\) 0 0
\(366\) 2.00000i 0.104542i
\(367\) 18.0000i 0.939592i 0.882775 + 0.469796i \(0.155673\pi\)
−0.882775 + 0.469796i \(0.844327\pi\)
\(368\) 4.00000i 0.208514i
\(369\) 8.00000i 0.416463i
\(370\) 0 0
\(371\) 15.0000i 0.778761i
\(372\) 2.00000 0.103695
\(373\) 31.0000i 1.60512i 0.596572 + 0.802560i \(0.296529\pi\)
−0.596572 + 0.802560i \(0.703471\pi\)
\(374\) −15.0000 −0.775632
\(375\) 0 0
\(376\) 21.0000 1.08299
\(377\) −2.00000 3.00000i −0.103005 0.154508i
\(378\) 20.0000i 1.02869i
\(379\) 27.0000i 1.38690i 0.720506 + 0.693448i \(0.243909\pi\)
−0.720506 + 0.693448i \(0.756091\pi\)
\(380\) 0 0
\(381\) −36.0000 −1.84434
\(382\) −10.0000 −0.511645
\(383\) −32.0000 −1.63512 −0.817562 0.575841i \(-0.804675\pi\)
−0.817562 + 0.575841i \(0.804675\pi\)
\(384\) 6.00000i 0.306186i
\(385\) 0 0
\(386\) −4.00000 −0.203595
\(387\) 4.00000i 0.203331i
\(388\) −14.0000 −0.710742
\(389\) −34.0000 −1.72387 −0.861934 0.507020i \(-0.830747\pi\)
−0.861934 + 0.507020i \(0.830747\pi\)
\(390\) 0 0
\(391\) 20.0000 1.01144
\(392\) 54.0000 2.72741
\(393\) 36.0000i 1.81596i
\(394\) −8.00000 −0.403034
\(395\) 0 0
\(396\) 3.00000i 0.150756i
\(397\) −8.00000 −0.401508 −0.200754 0.979642i \(-0.564339\pi\)
−0.200754 + 0.979642i \(0.564339\pi\)
\(398\) −6.00000 −0.300753
\(399\) −40.0000 −2.00250
\(400\) 0 0
\(401\) 26.0000i 1.29838i −0.760627 0.649189i \(-0.775108\pi\)
0.760627 0.649189i \(-0.224892\pi\)
\(402\) 6.00000i 0.299253i
\(403\) −3.00000 + 2.00000i −0.149441 + 0.0996271i
\(404\) −1.00000 −0.0497519
\(405\) 0 0
\(406\) −5.00000 −0.248146
\(407\) 12.0000i 0.594818i
\(408\) −30.0000 −1.48522
\(409\) 6.00000i 0.296681i −0.988936 0.148340i \(-0.952607\pi\)
0.988936 0.148340i \(-0.0473931\pi\)
\(410\) 0 0
\(411\) 36.0000i 1.77575i
\(412\) 4.00000i 0.197066i
\(413\) 15.0000i 0.738102i
\(414\) 4.00000i 0.196589i
\(415\) 0 0
\(416\) 10.0000 + 15.0000i 0.490290 + 0.735436i
\(417\) 8.00000i 0.391762i
\(418\) −12.0000 −0.586939
\(419\) 18.0000 0.879358 0.439679 0.898155i \(-0.355092\pi\)
0.439679 + 0.898155i \(0.355092\pi\)
\(420\) 0 0
\(421\) 4.00000i 0.194948i 0.995238 + 0.0974740i \(0.0310763\pi\)
−0.995238 + 0.0974740i \(0.968924\pi\)
\(422\) 12.0000 0.584151
\(423\) −7.00000 −0.340352
\(424\) 9.00000i 0.437079i
\(425\) 0 0
\(426\) 16.0000 0.775203
\(427\) 5.00000 0.241967
\(428\) 16.0000i 0.773389i
\(429\) −12.0000 18.0000i −0.579365 0.869048i
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 4.00000i 0.192450i
\(433\) 14.0000i 0.672797i 0.941720 + 0.336399i \(0.109209\pi\)
−0.941720 + 0.336399i \(0.890791\pi\)
\(434\) 5.00000i 0.240008i
\(435\) 0 0
\(436\) 2.00000i 0.0957826i
\(437\) 16.0000 0.765384
\(438\) 8.00000i 0.382255i
\(439\) −22.0000 −1.05000 −0.525001 0.851101i \(-0.675935\pi\)
−0.525001 + 0.851101i \(0.675935\pi\)
\(440\) 0 0
\(441\) −18.0000 −0.857143
\(442\) 15.0000 10.0000i 0.713477 0.475651i
\(443\) 24.0000i 1.14027i −0.821549 0.570137i \(-0.806890\pi\)
0.821549 0.570137i \(-0.193110\pi\)
\(444\) 8.00000i 0.379663i
\(445\) 0 0
\(446\) 16.0000 0.757622
\(447\) 20.0000 0.945968
\(448\) 35.0000 1.65359
\(449\) 6.00000i 0.283158i 0.989927 + 0.141579i \(0.0452178\pi\)
−0.989927 + 0.141579i \(0.954782\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) 10.0000i 0.470360i
\(453\) 26.0000 1.22159
\(454\) 9.00000 0.422391
\(455\) 0 0
\(456\) −24.0000 −1.12390
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 2.00000i 0.0934539i
\(459\) −20.0000 −0.933520
\(460\) 0 0
\(461\) 26.0000i 1.21094i −0.795868 0.605470i \(-0.792985\pi\)
0.795868 0.605470i \(-0.207015\pi\)
\(462\) −30.0000 −1.39573
\(463\) −19.0000 −0.883005 −0.441502 0.897260i \(-0.645554\pi\)
−0.441502 + 0.897260i \(0.645554\pi\)
\(464\) −1.00000 −0.0464238
\(465\) 0 0
\(466\) 14.0000i 0.648537i
\(467\) 18.0000i 0.832941i −0.909149 0.416470i \(-0.863267\pi\)
0.909149 0.416470i \(-0.136733\pi\)
\(468\) −2.00000 3.00000i −0.0924500 0.138675i
\(469\) −15.0000 −0.692636
\(470\) 0 0
\(471\) 26.0000 1.19802
\(472\) 9.00000i 0.414259i
\(473\) 12.0000 0.551761
\(474\) 20.0000i 0.918630i
\(475\) 0 0
\(476\) 25.0000i 1.14587i
\(477\) 3.00000i 0.137361i
\(478\) 5.00000i 0.228695i
\(479\) 3.00000i 0.137073i 0.997649 + 0.0685367i \(0.0218330\pi\)
−0.997649 + 0.0685367i \(0.978167\pi\)
\(480\) 0 0
\(481\) 8.00000 + 12.0000i 0.364769 + 0.547153i
\(482\) 0 0
\(483\) 40.0000 1.82006
\(484\) −2.00000 −0.0909091
\(485\) 0 0
\(486\) 10.0000i 0.453609i
\(487\) 15.0000 0.679715 0.339857 0.940477i \(-0.389621\pi\)
0.339857 + 0.940477i \(0.389621\pi\)
\(488\) 3.00000 0.135804
\(489\) 24.0000i 1.08532i
\(490\) 0 0
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) −16.0000 −0.721336
\(493\) 5.00000i 0.225189i
\(494\) 12.0000 8.00000i 0.539906 0.359937i
\(495\) 0 0
\(496\) 1.00000i 0.0449013i
\(497\) 40.0000i 1.79425i
\(498\) 18.0000i 0.806599i
\(499\) 19.0000i 0.850557i −0.905063 0.425278i \(-0.860176\pi\)
0.905063 0.425278i \(-0.139824\pi\)
\(500\) 0 0
\(501\) 32.0000i 1.42965i
\(502\) −12.0000 −0.535586
\(503\) 16.0000i 0.713405i −0.934218 0.356702i \(-0.883901\pi\)
0.934218 0.356702i \(-0.116099\pi\)
\(504\) −15.0000 −0.668153
\(505\) 0 0
\(506\) 12.0000 0.533465
\(507\) 24.0000 + 10.0000i 1.06588 + 0.444116i
\(508\) 18.0000i 0.798621i
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 20.0000 0.884748
\(512\) 11.0000 0.486136
\(513\) −16.0000 −0.706417
\(514\) 15.0000i 0.661622i
\(515\) 0 0
\(516\) 8.00000 0.352180
\(517\) 21.0000i 0.923579i
\(518\) 20.0000 0.878750
\(519\) 26.0000 1.14127
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 1.00000 0.0437688
\(523\) 22.0000i 0.961993i −0.876723 0.480996i \(-0.840275\pi\)
0.876723 0.480996i \(-0.159725\pi\)
\(524\) −18.0000 −0.786334
\(525\) 0 0
\(526\) 6.00000i 0.261612i
\(527\) −5.00000 −0.217803
\(528\) −6.00000 −0.261116
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 3.00000i 0.130189i
\(532\) 20.0000i 0.867110i
\(533\) 24.0000 16.0000i 1.03956 0.693037i
\(534\) −36.0000 −1.55787
\(535\) 0 0
\(536\) −9.00000 −0.388741
\(537\) 24.0000i 1.03568i
\(538\) −17.0000 −0.732922
\(539\) 54.0000i 2.32594i
\(540\) 0 0
\(541\) 38.0000i 1.63375i 0.576816 + 0.816874i \(0.304295\pi\)
−0.576816 + 0.816874i \(0.695705\pi\)
\(542\) 29.0000i 1.24566i
\(543\) 6.00000i 0.257485i
\(544\) 25.0000i 1.07187i
\(545\) 0 0
\(546\) 30.0000 20.0000i 1.28388 0.855921i
\(547\) 38.0000i 1.62476i −0.583127 0.812381i \(-0.698171\pi\)
0.583127 0.812381i \(-0.301829\pi\)
\(548\) 18.0000 0.768922
\(549\) −1.00000 −0.0426790
\(550\) 0 0
\(551\) 4.00000i 0.170406i
\(552\) 24.0000 1.02151
\(553\) −50.0000 −2.12622
\(554\) 2.00000i 0.0849719i
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) 24.0000 1.01691 0.508456 0.861088i \(-0.330216\pi\)
0.508456 + 0.861088i \(0.330216\pi\)
\(558\) 1.00000i 0.0423334i
\(559\) −12.0000 + 8.00000i −0.507546 + 0.338364i
\(560\) 0 0
\(561\) 30.0000i 1.26660i
\(562\) 18.0000i 0.759284i
\(563\) 30.0000i 1.26435i −0.774826 0.632175i \(-0.782163\pi\)
0.774826 0.632175i \(-0.217837\pi\)
\(564\) 14.0000i 0.589506i
\(565\) 0 0
\(566\) 28.0000i 1.17693i
\(567\) −55.0000 −2.30978
\(568\) 24.0000i 1.00702i
\(569\) 33.0000 1.38343 0.691716 0.722170i \(-0.256855\pi\)
0.691716 + 0.722170i \(0.256855\pi\)
\(570\) 0 0
\(571\) 2.00000 0.0836974 0.0418487 0.999124i \(-0.486675\pi\)
0.0418487 + 0.999124i \(0.486675\pi\)
\(572\) −9.00000 + 6.00000i −0.376309 + 0.250873i
\(573\) 20.0000i 0.835512i
\(574\) 40.0000i 1.66957i
\(575\) 0 0
\(576\) −7.00000 −0.291667
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 8.00000 0.332756
\(579\) 8.00000i 0.332469i
\(580\) 0 0
\(581\) −45.0000 −1.86691
\(582\) 28.0000i 1.16064i
\(583\) 9.00000 0.372742
\(584\) 12.0000 0.496564
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) −25.0000 −1.03186 −0.515930 0.856631i \(-0.672554\pi\)
−0.515930 + 0.856631i \(0.672554\pi\)
\(588\) 36.0000i 1.48461i
\(589\) −4.00000 −0.164817
\(590\) 0 0
\(591\) 16.0000i 0.658152i
\(592\) 4.00000 0.164399
\(593\) 8.00000 0.328521 0.164260 0.986417i \(-0.447476\pi\)
0.164260 + 0.986417i \(0.447476\pi\)
\(594\) −12.0000 −0.492366
\(595\) 0 0
\(596\) 10.0000i 0.409616i
\(597\) 12.0000i 0.491127i
\(598\) −12.0000 + 8.00000i −0.490716 + 0.327144i
\(599\) 14.0000 0.572024 0.286012 0.958226i \(-0.407670\pi\)
0.286012 + 0.958226i \(0.407670\pi\)
\(600\) 0 0
\(601\) 29.0000 1.18293 0.591467 0.806329i \(-0.298549\pi\)
0.591467 + 0.806329i \(0.298549\pi\)
\(602\) 20.0000i 0.815139i
\(603\) 3.00000 0.122169
\(604\) 13.0000i 0.528962i
\(605\) 0 0
\(606\) 2.00000i 0.0812444i
\(607\) 8.00000i 0.324710i 0.986732 + 0.162355i \(0.0519090\pi\)
−0.986732 + 0.162355i \(0.948091\pi\)
\(608\) 20.0000i 0.811107i
\(609\) 10.0000i 0.405220i
\(610\) 0 0
\(611\) −14.0000 21.0000i −0.566379 0.849569i
\(612\) 5.00000i 0.202113i
\(613\) 10.0000 0.403896 0.201948 0.979396i \(-0.435273\pi\)
0.201948 + 0.979396i \(0.435273\pi\)
\(614\) 8.00000 0.322854
\(615\) 0 0
\(616\) 45.0000i 1.81310i
\(617\) 4.00000 0.161034 0.0805170 0.996753i \(-0.474343\pi\)
0.0805170 + 0.996753i \(0.474343\pi\)
\(618\) −8.00000 −0.321807
\(619\) 28.0000i 1.12542i −0.826656 0.562708i \(-0.809760\pi\)
0.826656 0.562708i \(-0.190240\pi\)
\(620\) 0 0
\(621\) 16.0000 0.642058
\(622\) −4.00000 −0.160385
\(623\) 90.0000i 3.60577i
\(624\) 6.00000 4.00000i 0.240192 0.160128i
\(625\) 0 0
\(626\) 17.0000i 0.679457i
\(627\) 24.0000i 0.958468i
\(628\) 13.0000i 0.518756i
\(629\) 20.0000i 0.797452i
\(630\) 0 0
\(631\) 20.0000i 0.796187i −0.917345 0.398094i \(-0.869672\pi\)
0.917345 0.398094i \(-0.130328\pi\)
\(632\) −30.0000 −1.19334
\(633\) 24.0000i 0.953914i
\(634\) 22.0000 0.873732
\(635\) 0 0
\(636\) 6.00000 0.237915
\(637\) −36.0000 54.0000i −1.42637 2.13956i
\(638\) 3.00000i 0.118771i
\(639\) 8.00000i 0.316475i
\(640\) 0 0
\(641\) −15.0000 −0.592464 −0.296232 0.955116i \(-0.595730\pi\)
−0.296232 + 0.955116i \(0.595730\pi\)
\(642\) −32.0000 −1.26294
\(643\) 4.00000 0.157745 0.0788723 0.996885i \(-0.474868\pi\)
0.0788723 + 0.996885i \(0.474868\pi\)
\(644\) 20.0000i 0.788110i
\(645\) 0 0
\(646\) 20.0000 0.786889
\(647\) 14.0000i 0.550397i 0.961387 + 0.275198i \(0.0887435\pi\)
−0.961387 + 0.275198i \(0.911256\pi\)
\(648\) −33.0000 −1.29636
\(649\) −9.00000 −0.353281
\(650\) 0 0
\(651\) −10.0000 −0.391931
\(652\) −12.0000 −0.469956
\(653\) 31.0000i 1.21312i 0.795036 + 0.606562i \(0.207452\pi\)
−0.795036 + 0.606562i \(0.792548\pi\)
\(654\) 4.00000 0.156412
\(655\) 0 0
\(656\) 8.00000i 0.312348i
\(657\) −4.00000 −0.156055
\(658\) −35.0000 −1.36444
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 0 0
\(661\) 38.0000i 1.47803i −0.673690 0.739014i \(-0.735292\pi\)
0.673690 0.739014i \(-0.264708\pi\)
\(662\) 20.0000i 0.777322i
\(663\) 20.0000 + 30.0000i 0.776736 + 1.16510i
\(664\) −27.0000 −1.04780
\(665\) 0 0
\(666\) −4.00000 −0.154997
\(667\) 4.00000i 0.154881i
\(668\) 16.0000 0.619059
\(669\) 32.0000i 1.23719i
\(670\) 0 0
\(671\) 3.00000i 0.115814i
\(672\) 50.0000i 1.92879i
\(673\) 23.0000i 0.886585i −0.896377 0.443292i \(-0.853810\pi\)
0.896377 0.443292i \(-0.146190\pi\)
\(674\) 3.00000i 0.115556i
\(675\) 0 0
\(676\) 5.00000 12.0000i 0.192308 0.461538i
\(677\) 6.00000i 0.230599i −0.993331 0.115299i \(-0.963217\pi\)
0.993331 0.115299i \(-0.0367827\pi\)
\(678\) −20.0000 −0.768095
\(679\) 70.0000 2.68635
\(680\) 0 0
\(681\) 18.0000i 0.689761i
\(682\) −3.00000 −0.114876
\(683\) 41.0000 1.56882 0.784411 0.620242i \(-0.212966\pi\)
0.784411 + 0.620242i \(0.212966\pi\)
\(684\) 4.00000i 0.152944i
\(685\) 0 0
\(686\) −55.0000 −2.09991
\(687\) 4.00000 0.152610
\(688\) 4.00000i 0.152499i
\(689\) −9.00000 + 6.00000i −0.342873 + 0.228582i
\(690\) 0 0
\(691\) 17.0000i 0.646710i −0.946278 0.323355i \(-0.895189\pi\)
0.946278 0.323355i \(-0.104811\pi\)
\(692\) 13.0000i 0.494186i
\(693\) 15.0000i 0.569803i
\(694\) 4.00000i 0.151838i
\(695\) 0 0
\(696\) 6.00000i 0.227429i
\(697\) 40.0000 1.51511
\(698\) 2.00000i 0.0757011i
\(699\) 28.0000 1.05906
\(700\) 0 0
\(701\) −45.0000 −1.69963 −0.849813 0.527084i \(-0.823285\pi\)
−0.849813 + 0.527084i \(0.823285\pi\)
\(702\) 12.0000 8.00000i 0.452911 0.301941i
\(703\) 16.0000i 0.603451i
\(704\) 21.0000i 0.791467i
\(705\) 0 0
\(706\) −6.00000 −0.225813
\(707\) 5.00000 0.188044
\(708\) −6.00000 −0.225494
\(709\) 8.00000i 0.300446i −0.988652 0.150223i \(-0.952001\pi\)
0.988652 0.150223i \(-0.0479992\pi\)
\(710\) 0 0
\(711\) 10.0000 0.375029
\(712\) 54.0000i 2.02374i
\(713\) 4.00000 0.149801
\(714\) 50.0000 1.87120
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) 10.0000 0.373457
\(718\) 23.0000i 0.858352i
\(719\) −30.0000 −1.11881 −0.559406 0.828894i \(-0.688971\pi\)
−0.559406 + 0.828894i \(0.688971\pi\)
\(720\) 0 0
\(721\) 20.0000i 0.744839i
\(722\) −3.00000 −0.111648
\(723\) 0 0
\(724\) −3.00000 −0.111494
\(725\) 0 0
\(726\) 4.00000i 0.148454i
\(727\) 16.0000i 0.593407i 0.954970 + 0.296704i \(0.0958873\pi\)
−0.954970 + 0.296704i \(0.904113\pi\)
\(728\) −30.0000 45.0000i −1.11187 1.66781i
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) −20.0000 −0.739727
\(732\) 2.00000i 0.0739221i
\(733\) −42.0000 −1.55131 −0.775653 0.631160i \(-0.782579\pi\)
−0.775653 + 0.631160i \(0.782579\pi\)
\(734\) 18.0000i 0.664392i
\(735\) 0 0
\(736\) 20.0000i 0.737210i
\(737\) 9.00000i 0.331519i
\(738\) 8.00000i 0.294484i
\(739\) 9.00000i 0.331070i −0.986204 0.165535i \(-0.947065\pi\)
0.986204 0.165535i \(-0.0529351\pi\)
\(740\) 0 0
\(741\) 16.0000 + 24.0000i 0.587775 + 0.881662i
\(742\) 15.0000i 0.550667i
\(743\) −41.0000 −1.50414 −0.752072 0.659081i \(-0.770945\pi\)
−0.752072 + 0.659081i \(0.770945\pi\)
\(744\) −6.00000 −0.219971
\(745\) 0 0
\(746\) 31.0000i 1.13499i
\(747\) 9.00000 0.329293
\(748\) −15.0000 −0.548454
\(749\) 80.0000i 2.92314i
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) −7.00000 −0.255264
\(753\) 24.0000i 0.874609i
\(754\) 2.00000 + 3.00000i 0.0728357 + 0.109254i
\(755\) 0 0
\(756\) 20.0000i 0.727393i
\(757\) 5.00000i 0.181728i −0.995863 0.0908640i \(-0.971037\pi\)
0.995863 0.0908640i \(-0.0289629\pi\)
\(758\) 27.0000i 0.980684i
\(759\) 24.0000i 0.871145i
\(760\) 0 0
\(761\) 10.0000i 0.362500i −0.983437 0.181250i \(-0.941986\pi\)
0.983437 0.181250i \(-0.0580143\pi\)
\(762\) 36.0000 1.30414
\(763\) 10.0000i 0.362024i
\(764\) −10.0000 −0.361787
\(765\) 0 0
\(766\) 32.0000 1.15621
\(767\) 9.00000 6.00000i 0.324971 0.216647i
\(768\) 34.0000i 1.22687i
\(769\) 40.0000i 1.44244i 0.692708 + 0.721218i \(0.256418\pi\)
−0.692708 + 0.721218i \(0.743582\pi\)
\(770\) 0 0
\(771\) −30.0000 −1.08042
\(772\) −4.00000 −0.143963
\(773\) 18.0000 0.647415 0.323708 0.946157i \(-0.395071\pi\)
0.323708 + 0.946157i \(0.395071\pi\)
\(774\) 4.00000i 0.143777i
\(775\) 0 0
\(776\) 42.0000 1.50771
\(777\) 40.0000i 1.43499i
\(778\) 34.0000 1.21896
\(779\) 32.0000 1.14652
\(780\) 0 0
\(781\) 24.0000 0.858788
\(782\) −20.0000 −0.715199
\(783\) 4.00000i 0.142948i
\(784\) −18.0000 −0.642857
\(785\) 0 0
\(786\) 36.0000i 1.28408i
\(787\) −43.0000 −1.53278 −0.766392 0.642373i \(-0.777950\pi\)
−0.766392 + 0.642373i \(0.777950\pi\)
\(788\) −8.00000 −0.284988
\(789\) −12.0000 −0.427211
\(790\) 0 0
\(791\) 50.0000i 1.77780i
\(792\) 9.00000i 0.319801i
\(793\) −2.00000 3.00000i −0.0710221 0.106533i
\(794\) 8.00000 0.283909
\(795\) 0 0
\(796\) −6.00000 −0.212664
\(797\) 53.0000i 1.87736i 0.344795 + 0.938678i \(0.387949\pi\)
−0.344795 + 0.938678i \(0.612051\pi\)
\(798\) 40.0000 1.41598
\(799\) 35.0000i 1.23821i
\(800\) 0 0
\(801\) 18.0000i 0.635999i
\(802\) 26.0000i 0.918092i
\(803\) 12.0000i 0.423471i
\(804\) 6.00000i 0.211604i
\(805\) 0 0
\(806\) 3.00000 2.00000i 0.105670 0.0704470i
\(807\) 34.0000i 1.19686i
\(808\) 3.00000 0.105540
\(809\) 30.0000 1.05474 0.527372 0.849635i \(-0.323177\pi\)
0.527372 + 0.849635i \(0.323177\pi\)
\(810\) 0 0
\(811\) 25.0000i 0.877869i −0.898519 0.438934i \(-0.855356\pi\)
0.898519 0.438934i \(-0.144644\pi\)
\(812\) −5.00000 −0.175466
\(813\) 58.0000 2.03415
\(814\) 12.0000i 0.420600i
\(815\) 0 0
\(816\) 10.0000 0.350070
\(817\) −16.0000 −0.559769
\(818\) 6.00000i 0.209785i
\(819\) 10.0000 + 15.0000i 0.349428 + 0.524142i
\(820\) 0 0
\(821\) 30.0000i 1.04701i 0.852023 + 0.523504i \(0.175375\pi\)
−0.852023 + 0.523504i \(0.824625\pi\)
\(822\) 36.0000i 1.25564i
\(823\) 12.0000i 0.418294i 0.977884 + 0.209147i \(0.0670687\pi\)
−0.977884 + 0.209147i \(0.932931\pi\)
\(824\) 12.0000i 0.418040i
\(825\) 0 0
\(826\) 15.0000i 0.521917i
\(827\) 19.0000 0.660695 0.330347 0.943859i \(-0.392834\pi\)
0.330347 + 0.943859i \(0.392834\pi\)
\(828\) 4.00000i 0.139010i
\(829\) 11.0000 0.382046 0.191023 0.981586i \(-0.438820\pi\)
0.191023 + 0.981586i \(0.438820\pi\)
\(830\) 0 0
\(831\) 4.00000 0.138758
\(832\) −14.0000 21.0000i −0.485363 0.728044i
\(833\) 90.0000i 3.11832i
\(834\) 8.00000i 0.277017i
\(835\) 0 0
\(836\) −12.0000 −0.415029
\(837\) −4.00000 −0.138260
\(838\) −18.0000 −0.621800
\(839\) 36.0000i 1.24286i −0.783470 0.621429i \(-0.786552\pi\)
0.783470 0.621429i \(-0.213448\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) 4.00000i 0.137849i
\(843\) −36.0000 −1.23991
\(844\) 12.0000 0.413057
\(845\) 0 0
\(846\) 7.00000 0.240665
\(847\) 10.0000 0.343604
\(848\) 3.00000i 0.103020i
\(849\) −56.0000 −1.92192
\(850\) 0 0
\(851\) 16.0000i 0.548473i
\(852\) 16.0000 0.548151
\(853\) 54.0000 1.84892 0.924462 0.381273i \(-0.124514\pi\)
0.924462 + 0.381273i \(0.124514\pi\)
\(854\) −5.00000 −0.171096
\(855\) 0 0
\(856\) 48.0000i 1.64061i
\(857\) 14.0000i 0.478231i −0.970991 0.239115i \(-0.923143\pi\)
0.970991 0.239115i \(-0.0768574\pi\)
\(858\) 12.0000 + 18.0000i 0.409673 + 0.614510i
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 0 0
\(861\) 80.0000 2.72639
\(862\) 0 0
\(863\) −33.0000 −1.12333 −0.561667 0.827364i \(-0.689840\pi\)
−0.561667 + 0.827364i \(0.689840\pi\)
\(864\) 20.0000i 0.680414i
\(865\) 0 0
\(866\) 14.0000i 0.475739i
\(867\) 16.0000i 0.543388i
\(868\) 5.00000i 0.169711i
\(869\) 30.0000i 1.01768i
\(870\) 0 0
\(871\) 6.00000 + 9.00000i 0.203302 + 0.304953i
\(872\) 6.00000i 0.203186i
\(873\) −14.0000 −0.473828
\(874\) −16.0000 −0.541208
\(875\) 0 0
\(876\) 8.00000i 0.270295i
\(877\) −14.0000 −0.472746 −0.236373 0.971662i \(-0.575959\pi\)
−0.236373 + 0.971662i \(0.575959\pi\)
\(878\) 22.0000 0.742464
\(879\) 12.0000i 0.404750i
\(880\) 0 0
\(881\) −33.0000 −1.11180 −0.555899 0.831250i \(-0.687626\pi\)
−0.555899 + 0.831250i \(0.687626\pi\)
\(882\) 18.0000 0.606092
\(883\) 28.0000i 0.942275i 0.882060 + 0.471138i \(0.156156\pi\)
−0.882060 + 0.471138i \(0.843844\pi\)
\(884\) 15.0000 10.0000i 0.504505 0.336336i
\(885\) 0 0
\(886\) 24.0000i 0.806296i
\(887\) 22.0000i 0.738688i 0.929293 + 0.369344i \(0.120418\pi\)
−0.929293 + 0.369344i \(0.879582\pi\)
\(888\) 24.0000i 0.805387i
\(889\) 90.0000i 3.01850i
\(890\) 0 0
\(891\) 33.0000i 1.10554i
\(892\) 16.0000 0.535720
\(893\) 28.0000i 0.936984i
\(894\) −20.0000 −0.668900
\(895\) 0 0
\(896\) 15.0000 0.501115
\(897\) −16.0000 24.0000i −0.534224 0.801337i
\(898\) 6.00000i 0.200223i
\(899\) 1.00000i 0.0333519i
\(900\) 0 0
\(901\) −15.0000 −0.499722
\(902\) 24.0000 0.799113
\(903\) −40.0000 −1.33112
\(904\) 30.0000i 0.997785i
\(905\) 0 0
\(906\) −26.0000 −0.863792
\(907\) 20.0000i 0.664089i 0.943264 + 0.332045i \(0.107738\pi\)
−0.943264 + 0.332045i \(0.892262\pi\)
\(908\) 9.00000 0.298675
\(909\) −1.00000 −0.0331679
\(910\) 0 0
\(911\) 2.00000 0.0662630 0.0331315 0.999451i \(-0.489452\pi\)
0.0331315 + 0.999451i \(0.489452\pi\)
\(912\) 8.00000 0.264906
\(913\) 27.0000i 0.893570i
\(914\) −10.0000 −0.330771
\(915\) 0 0
\(916\) 2.00000i 0.0660819i
\(917\) 90.0000 2.97206
\(918\) 20.0000 0.660098
\(919\) −46.0000 −1.51740 −0.758700 0.651440i \(-0.774165\pi\)
−0.758700 + 0.651440i \(0.774165\pi\)
\(920\) 0 0
\(921\) 16.0000i 0.527218i
\(922\) 26.0000i 0.856264i
\(923\) −24.0000 + 16.0000i −0.789970 + 0.526646i
\(924\) −30.0000 −0.986928
\(925\) 0 0
\(926\) 19.0000 0.624379
\(927\) 4.00000i 0.131377i
\(928\) −5.00000 −0.164133
\(929\) 56.0000i 1.83730i −0.395072 0.918650i \(-0.629280\pi\)
0.395072 0.918650i \(-0.370720\pi\)
\(930\) 0 0
\(931\) 72.0000i 2.35970i
\(932\) 14.0000i 0.458585i
\(933\) 8.00000i 0.261908i
\(934\) 18.0000i 0.588978i
\(935\) 0 0
\(936\) 6.00000 + 9.00000i 0.196116 + 0.294174i
\(937\) 1.00000i 0.0326686i 0.999867 + 0.0163343i \(0.00519960\pi\)
−0.999867 + 0.0163343i \(0.994800\pi\)
\(938\) 15.0000 0.489767
\(939\) 34.0000 1.10955
\(940\) 0 0
\(941\) 8.00000i 0.260793i −0.991462 0.130396i \(-0.958375\pi\)
0.991462 0.130396i \(-0.0416250\pi\)
\(942\) −26.0000 −0.847126
\(943\) −32.0000 −1.04206
\(944\) 3.00000i 0.0976417i
\(945\) 0 0
\(946\) −12.0000 −0.390154
\(947\) 3.00000 0.0974869 0.0487435 0.998811i \(-0.484478\pi\)
0.0487435 + 0.998811i \(0.484478\pi\)
\(948\) 20.0000i 0.649570i
\(949\) −8.00000 12.0000i −0.259691 0.389536i
\(950\) 0 0
\(951\) 44.0000i 1.42680i
\(952\) 75.0000i 2.43076i
\(953\) 9.00000i 0.291539i −0.989319 0.145769i \(-0.953434\pi\)
0.989319 0.145769i \(-0.0465657\pi\)
\(954\) 3.00000i 0.0971286i
\(955\) 0 0
\(956\) 5.00000i 0.161712i
\(957\) 6.00000 0.193952
\(958\) 3.00000i 0.0969256i
\(959\) −90.0000 −2.90625
\(960\) 0 0
\(961\) 30.0000 0.967742
\(962\) −8.00000 12.0000i −0.257930 0.386896i
\(963\) 16.0000i 0.515593i
\(964\) 0 0
\(965\) 0 0
\(966\) −40.0000 −1.28698
\(967\) −37.0000 −1.18984 −0.594920 0.803785i \(-0.702816\pi\)
−0.594920 + 0.803785i \(0.702816\pi\)
\(968\) 6.00000 0.192847
\(969\) 40.0000i 1.28499i
\(970\) 0 0
\(971\) −48.0000 −1.54039 −0.770197 0.637806i \(-0.779842\pi\)
−0.770197 + 0.637806i \(0.779842\pi\)
\(972\) 10.0000i 0.320750i
\(973\) −20.0000 −0.641171
\(974\) −15.0000 −0.480631
\(975\) 0 0
\(976\) −1.00000 −0.0320092
\(977\) −46.0000 −1.47167 −0.735835 0.677161i \(-0.763210\pi\)
−0.735835 + 0.677161i \(0.763210\pi\)
\(978\) 24.0000i 0.767435i
\(979\) −54.0000 −1.72585
\(980\) 0 0
\(981\) 2.00000i 0.0638551i
\(982\) 28.0000 0.893516
\(983\) 11.0000 0.350846 0.175423 0.984493i \(-0.443871\pi\)
0.175423 + 0.984493i \(0.443871\pi\)
\(984\) 48.0000 1.53018
\(985\) 0 0
\(986\) 5.00000i 0.159232i
\(987\) 70.0000i 2.22812i
\(988\) 12.0000 8.00000i 0.381771 0.254514i
\(989\) 16.0000 0.508770
\(990\) 0 0
\(991\) 4.00000 0.127064 0.0635321 0.997980i \(-0.479763\pi\)
0.0635321 + 0.997980i \(0.479763\pi\)
\(992\) 5.00000i 0.158750i
\(993\) 40.0000 1.26936
\(994\) 40.0000i 1.26872i
\(995\) 0 0
\(996\) 18.0000i 0.570352i
\(997\) 45.0000i 1.42516i −0.701589 0.712582i \(-0.747526\pi\)
0.701589 0.712582i \(-0.252474\pi\)
\(998\) 19.0000i 0.601434i
\(999\) 16.0000i 0.506218i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.d.b.324.1 2
5.2 odd 4 325.2.c.a.51.1 2
5.3 odd 4 325.2.c.f.51.2 yes 2
5.4 even 2 325.2.d.c.324.2 2
13.12 even 2 325.2.d.c.324.1 2
65.8 even 4 4225.2.a.f.1.1 1
65.12 odd 4 325.2.c.a.51.2 yes 2
65.18 even 4 4225.2.a.n.1.1 1
65.38 odd 4 325.2.c.f.51.1 yes 2
65.47 even 4 4225.2.a.l.1.1 1
65.57 even 4 4225.2.a.d.1.1 1
65.64 even 2 inner 325.2.d.b.324.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.c.a.51.1 2 5.2 odd 4
325.2.c.a.51.2 yes 2 65.12 odd 4
325.2.c.f.51.1 yes 2 65.38 odd 4
325.2.c.f.51.2 yes 2 5.3 odd 4
325.2.d.b.324.1 2 1.1 even 1 trivial
325.2.d.b.324.2 2 65.64 even 2 inner
325.2.d.c.324.1 2 13.12 even 2
325.2.d.c.324.2 2 5.4 even 2
4225.2.a.d.1.1 1 65.57 even 4
4225.2.a.f.1.1 1 65.8 even 4
4225.2.a.l.1.1 1 65.47 even 4
4225.2.a.n.1.1 1 65.18 even 4