L(s) = 1 | − 2-s − 2i·3-s − 4-s + 2i·6-s + 5·7-s + 3·8-s − 9-s + 3i·11-s + 2i·12-s + (−2 − 3i)13-s − 5·14-s − 16-s − 5i·17-s + 18-s − 4i·19-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.15i·3-s − 0.5·4-s + 0.816i·6-s + 1.88·7-s + 1.06·8-s − 0.333·9-s + 0.904i·11-s + 0.577i·12-s + (−0.554 − 0.832i)13-s − 1.33·14-s − 0.250·16-s − 1.21i·17-s + 0.235·18-s − 0.917i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.124 + 0.992i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.124 + 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.716267 - 0.632308i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.716267 - 0.632308i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (2 + 3i)T \) |
good | 2 | \( 1 + T + 2T^{2} \) |
| 3 | \( 1 + 2iT - 3T^{2} \) |
| 7 | \( 1 - 5T + 7T^{2} \) |
| 11 | \( 1 - 3iT - 11T^{2} \) |
| 17 | \( 1 + 5iT - 17T^{2} \) |
| 19 | \( 1 + 4iT - 19T^{2} \) |
| 23 | \( 1 - 4iT - 23T^{2} \) |
| 29 | \( 1 - T + 29T^{2} \) |
| 31 | \( 1 + iT - 31T^{2} \) |
| 37 | \( 1 + 4T + 37T^{2} \) |
| 41 | \( 1 - 8iT - 41T^{2} \) |
| 43 | \( 1 + 4iT - 43T^{2} \) |
| 47 | \( 1 - 7T + 47T^{2} \) |
| 53 | \( 1 + 3iT - 53T^{2} \) |
| 59 | \( 1 - 3iT - 59T^{2} \) |
| 61 | \( 1 - T + 61T^{2} \) |
| 67 | \( 1 + 3T + 67T^{2} \) |
| 71 | \( 1 + 8iT - 71T^{2} \) |
| 73 | \( 1 - 4T + 73T^{2} \) |
| 79 | \( 1 + 10T + 79T^{2} \) |
| 83 | \( 1 + 9T + 83T^{2} \) |
| 89 | \( 1 - 18iT - 89T^{2} \) |
| 97 | \( 1 - 14T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.46734096261164614453853057994, −10.42012512599753505814830928101, −9.391692171468682841177486098011, −8.350847253418280992659148680446, −7.55906263091254102720028666402, −7.20677905564976580363652819523, −5.24727016759936878409990803024, −4.57814842204522320964446182267, −2.20372613703075722135017250404, −1.03497245506912373904505206560,
1.64390557452230311934047307962, 3.98537530070758719262941598905, 4.60124737174930514912143557880, 5.59811001088471801996347295521, 7.44142842120530832435795620294, 8.498160332307600170901938960037, 8.803311490432469805165097172784, 10.09834917257210647979140745822, 10.63364356860836270969075467070, 11.38502158068163916495467263841