Defining parameters
| Level: | \( N \) | \(=\) | \( 325 = 5^{2} \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 325.d (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 65 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 6 \) | ||
| Sturm bound: | \(70\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(325, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 40 | 24 | 16 |
| Cusp forms | 28 | 20 | 8 |
| Eisenstein series | 12 | 4 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(325, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 325.2.d.a | $2$ | $2.595$ | \(\Q(\sqrt{-1}) \) | None | \(-4\) | \(0\) | \(0\) | \(-4\) | \(q-2 q^{2}+i q^{3}+2 q^{4}-2 i q^{6}-2 q^{7}+\cdots\) |
| 325.2.d.b | $2$ | $2.595$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(0\) | \(0\) | \(10\) | \(q-q^{2}+2 i q^{3}-q^{4}-2 i q^{6}+5 q^{7}+\cdots\) |
| 325.2.d.c | $2$ | $2.595$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(0\) | \(0\) | \(-10\) | \(q+q^{2}+2 i q^{3}-q^{4}+2 i q^{6}-5 q^{7}+\cdots\) |
| 325.2.d.d | $2$ | $2.595$ | \(\Q(\sqrt{-1}) \) | None | \(4\) | \(0\) | \(0\) | \(4\) | \(q+2 q^{2}+i q^{3}+2 q^{4}+2 i q^{6}+2 q^{7}+\cdots\) |
| 325.2.d.e | $6$ | $2.595$ | 6.0.5089536.1 | None | \(-2\) | \(0\) | \(0\) | \(4\) | \(q-\beta _{1}q^{2}-\beta _{5}q^{3}+(2-\beta _{3})q^{4}+(\beta _{2}+\cdots)q^{6}+\cdots\) |
| 325.2.d.f | $6$ | $2.595$ | 6.0.5089536.1 | None | \(2\) | \(0\) | \(0\) | \(-4\) | \(q+\beta _{1}q^{2}-\beta _{5}q^{3}+(2-\beta _{3})q^{4}+(-\beta _{2}+\cdots)q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(325, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(325, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)