Properties

Label 325.2.d
Level $325$
Weight $2$
Character orbit 325.d
Rep. character $\chi_{325}(324,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $6$
Sturm bound $70$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(70\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(325, [\chi])\).

Total New Old
Modular forms 40 24 16
Cusp forms 28 20 8
Eisenstein series 12 4 8

Trace form

\( 20 q + 24 q^{4} - 8 q^{9} - 20 q^{14} + 20 q^{26} - 8 q^{29} - 48 q^{36} - 4 q^{39} + 56 q^{49} - 16 q^{51} - 36 q^{56} + 8 q^{61} - 64 q^{64} + 24 q^{66} + 92 q^{69} - 8 q^{74} - 68 q^{79} + 20 q^{81}+ \cdots - 76 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(325, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
325.2.d.a 325.d 65.d $2$ $2.595$ \(\Q(\sqrt{-1}) \) None 325.2.c.c \(-4\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q-2 q^{2}+i q^{3}+2 q^{4}-2 i q^{6}-2 q^{7}+\cdots\)
325.2.d.b 325.d 65.d $2$ $2.595$ \(\Q(\sqrt{-1}) \) None 325.2.c.a \(-2\) \(0\) \(0\) \(10\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+2 i q^{3}-q^{4}-2 i q^{6}+5 q^{7}+\cdots\)
325.2.d.c 325.d 65.d $2$ $2.595$ \(\Q(\sqrt{-1}) \) None 325.2.c.a \(2\) \(0\) \(0\) \(-10\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+2 i q^{3}-q^{4}+2 i q^{6}-5 q^{7}+\cdots\)
325.2.d.d 325.d 65.d $2$ $2.595$ \(\Q(\sqrt{-1}) \) None 325.2.c.c \(4\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 q^{2}+i q^{3}+2 q^{4}+2 i q^{6}+2 q^{7}+\cdots\)
325.2.d.e 325.d 65.d $6$ $2.595$ 6.0.5089536.1 None 65.2.c.a \(-2\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}-\beta _{5}q^{3}+(2-\beta _{3})q^{4}+(\beta _{2}+\cdots)q^{6}+\cdots\)
325.2.d.f 325.d 65.d $6$ $2.595$ 6.0.5089536.1 None 65.2.c.a \(2\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-\beta _{5}q^{3}+(2-\beta _{3})q^{4}+(-\beta _{2}+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(325, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(325, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)