Properties

Label 325.2.c.f.51.1
Level $325$
Weight $2$
Character 325.51
Analytic conductor $2.595$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(51,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.51"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,4,2,0,0,0,0,2,0,0,4,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 325.51
Dual form 325.2.c.f.51.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +2.00000 q^{3} +1.00000 q^{4} -2.00000i q^{6} +5.00000i q^{7} -3.00000i q^{8} +1.00000 q^{9} -3.00000i q^{11} +2.00000 q^{12} +(3.00000 + 2.00000i) q^{13} +5.00000 q^{14} -1.00000 q^{16} -5.00000 q^{17} -1.00000i q^{18} -4.00000i q^{19} +10.0000i q^{21} -3.00000 q^{22} -4.00000 q^{23} -6.00000i q^{24} +(2.00000 - 3.00000i) q^{26} -4.00000 q^{27} +5.00000i q^{28} -1.00000 q^{29} +1.00000i q^{31} -5.00000i q^{32} -6.00000i q^{33} +5.00000i q^{34} +1.00000 q^{36} -4.00000i q^{37} -4.00000 q^{38} +(6.00000 + 4.00000i) q^{39} -8.00000i q^{41} +10.0000 q^{42} +4.00000 q^{43} -3.00000i q^{44} +4.00000i q^{46} +7.00000i q^{47} -2.00000 q^{48} -18.0000 q^{49} -10.0000 q^{51} +(3.00000 + 2.00000i) q^{52} +3.00000 q^{53} +4.00000i q^{54} +15.0000 q^{56} -8.00000i q^{57} +1.00000i q^{58} +3.00000i q^{59} +1.00000 q^{61} +1.00000 q^{62} +5.00000i q^{63} -7.00000 q^{64} -6.00000 q^{66} -3.00000i q^{67} -5.00000 q^{68} -8.00000 q^{69} +8.00000i q^{71} -3.00000i q^{72} -4.00000i q^{73} -4.00000 q^{74} -4.00000i q^{76} +15.0000 q^{77} +(4.00000 - 6.00000i) q^{78} +10.0000 q^{79} -11.0000 q^{81} -8.00000 q^{82} +9.00000i q^{83} +10.0000i q^{84} -4.00000i q^{86} -2.00000 q^{87} -9.00000 q^{88} +18.0000i q^{89} +(-10.0000 + 15.0000i) q^{91} -4.00000 q^{92} +2.00000i q^{93} +7.00000 q^{94} -10.0000i q^{96} +14.0000i q^{97} +18.0000i q^{98} -3.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} + 2 q^{4} + 2 q^{9} + 4 q^{12} + 6 q^{13} + 10 q^{14} - 2 q^{16} - 10 q^{17} - 6 q^{22} - 8 q^{23} + 4 q^{26} - 8 q^{27} - 2 q^{29} + 2 q^{36} - 8 q^{38} + 12 q^{39} + 20 q^{42} + 8 q^{43}+ \cdots + 14 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i −0.935414 0.353553i \(-0.884973\pi\)
0.935414 0.353553i \(-0.115027\pi\)
\(3\) 2.00000 1.15470 0.577350 0.816497i \(-0.304087\pi\)
0.577350 + 0.816497i \(0.304087\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 2.00000i 0.816497i
\(7\) 5.00000i 1.88982i 0.327327 + 0.944911i \(0.393852\pi\)
−0.327327 + 0.944911i \(0.606148\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.00000i 0.904534i −0.891883 0.452267i \(-0.850615\pi\)
0.891883 0.452267i \(-0.149385\pi\)
\(12\) 2.00000 0.577350
\(13\) 3.00000 + 2.00000i 0.832050 + 0.554700i
\(14\) 5.00000 1.33631
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −5.00000 −1.21268 −0.606339 0.795206i \(-0.707363\pi\)
−0.606339 + 0.795206i \(0.707363\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 0 0
\(21\) 10.0000i 2.18218i
\(22\) −3.00000 −0.639602
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 6.00000i 1.22474i
\(25\) 0 0
\(26\) 2.00000 3.00000i 0.392232 0.588348i
\(27\) −4.00000 −0.769800
\(28\) 5.00000i 0.944911i
\(29\) −1.00000 −0.185695 −0.0928477 0.995680i \(-0.529597\pi\)
−0.0928477 + 0.995680i \(0.529597\pi\)
\(30\) 0 0
\(31\) 1.00000i 0.179605i 0.995960 + 0.0898027i \(0.0286236\pi\)
−0.995960 + 0.0898027i \(0.971376\pi\)
\(32\) 5.00000i 0.883883i
\(33\) 6.00000i 1.04447i
\(34\) 5.00000i 0.857493i
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 4.00000i 0.657596i −0.944400 0.328798i \(-0.893356\pi\)
0.944400 0.328798i \(-0.106644\pi\)
\(38\) −4.00000 −0.648886
\(39\) 6.00000 + 4.00000i 0.960769 + 0.640513i
\(40\) 0 0
\(41\) 8.00000i 1.24939i −0.780869 0.624695i \(-0.785223\pi\)
0.780869 0.624695i \(-0.214777\pi\)
\(42\) 10.0000 1.54303
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 3.00000i 0.452267i
\(45\) 0 0
\(46\) 4.00000i 0.589768i
\(47\) 7.00000i 1.02105i 0.859861 + 0.510527i \(0.170550\pi\)
−0.859861 + 0.510527i \(0.829450\pi\)
\(48\) −2.00000 −0.288675
\(49\) −18.0000 −2.57143
\(50\) 0 0
\(51\) −10.0000 −1.40028
\(52\) 3.00000 + 2.00000i 0.416025 + 0.277350i
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 4.00000i 0.544331i
\(55\) 0 0
\(56\) 15.0000 2.00446
\(57\) 8.00000i 1.05963i
\(58\) 1.00000i 0.131306i
\(59\) 3.00000i 0.390567i 0.980747 + 0.195283i \(0.0625627\pi\)
−0.980747 + 0.195283i \(0.937437\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 1.00000 0.127000
\(63\) 5.00000i 0.629941i
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) −6.00000 −0.738549
\(67\) 3.00000i 0.366508i −0.983066 0.183254i \(-0.941337\pi\)
0.983066 0.183254i \(-0.0586631\pi\)
\(68\) −5.00000 −0.606339
\(69\) −8.00000 −0.963087
\(70\) 0 0
\(71\) 8.00000i 0.949425i 0.880141 + 0.474713i \(0.157448\pi\)
−0.880141 + 0.474713i \(0.842552\pi\)
\(72\) 3.00000i 0.353553i
\(73\) 4.00000i 0.468165i −0.972217 0.234082i \(-0.924791\pi\)
0.972217 0.234082i \(-0.0752085\pi\)
\(74\) −4.00000 −0.464991
\(75\) 0 0
\(76\) 4.00000i 0.458831i
\(77\) 15.0000 1.70941
\(78\) 4.00000 6.00000i 0.452911 0.679366i
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) −8.00000 −0.883452
\(83\) 9.00000i 0.987878i 0.869496 + 0.493939i \(0.164443\pi\)
−0.869496 + 0.493939i \(0.835557\pi\)
\(84\) 10.0000i 1.09109i
\(85\) 0 0
\(86\) 4.00000i 0.431331i
\(87\) −2.00000 −0.214423
\(88\) −9.00000 −0.959403
\(89\) 18.0000i 1.90800i 0.299813 + 0.953998i \(0.403076\pi\)
−0.299813 + 0.953998i \(0.596924\pi\)
\(90\) 0 0
\(91\) −10.0000 + 15.0000i −1.04828 + 1.57243i
\(92\) −4.00000 −0.417029
\(93\) 2.00000i 0.207390i
\(94\) 7.00000 0.721995
\(95\) 0 0
\(96\) 10.0000i 1.02062i
\(97\) 14.0000i 1.42148i 0.703452 + 0.710742i \(0.251641\pi\)
−0.703452 + 0.710742i \(0.748359\pi\)
\(98\) 18.0000i 1.81827i
\(99\) 3.00000i 0.301511i
\(100\) 0 0
\(101\) 1.00000 0.0995037 0.0497519 0.998762i \(-0.484157\pi\)
0.0497519 + 0.998762i \(0.484157\pi\)
\(102\) 10.0000i 0.990148i
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 6.00000 9.00000i 0.588348 0.882523i
\(105\) 0 0
\(106\) 3.00000i 0.291386i
\(107\) 16.0000 1.54678 0.773389 0.633932i \(-0.218560\pi\)
0.773389 + 0.633932i \(0.218560\pi\)
\(108\) −4.00000 −0.384900
\(109\) 2.00000i 0.191565i −0.995402 0.0957826i \(-0.969465\pi\)
0.995402 0.0957826i \(-0.0305354\pi\)
\(110\) 0 0
\(111\) 8.00000i 0.759326i
\(112\) 5.00000i 0.472456i
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) −8.00000 −0.749269
\(115\) 0 0
\(116\) −1.00000 −0.0928477
\(117\) 3.00000 + 2.00000i 0.277350 + 0.184900i
\(118\) 3.00000 0.276172
\(119\) 25.0000i 2.29175i
\(120\) 0 0
\(121\) 2.00000 0.181818
\(122\) 1.00000i 0.0905357i
\(123\) 16.0000i 1.44267i
\(124\) 1.00000i 0.0898027i
\(125\) 0 0
\(126\) 5.00000 0.445435
\(127\) −18.0000 −1.59724 −0.798621 0.601834i \(-0.794437\pi\)
−0.798621 + 0.601834i \(0.794437\pi\)
\(128\) 3.00000i 0.265165i
\(129\) 8.00000 0.704361
\(130\) 0 0
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 6.00000i 0.522233i
\(133\) 20.0000 1.73422
\(134\) −3.00000 −0.259161
\(135\) 0 0
\(136\) 15.0000i 1.28624i
\(137\) 18.0000i 1.53784i −0.639343 0.768922i \(-0.720793\pi\)
0.639343 0.768922i \(-0.279207\pi\)
\(138\) 8.00000i 0.681005i
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 14.0000i 1.17901i
\(142\) 8.00000 0.671345
\(143\) 6.00000 9.00000i 0.501745 0.752618i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) −4.00000 −0.331042
\(147\) −36.0000 −2.96923
\(148\) 4.00000i 0.328798i
\(149\) 10.0000i 0.819232i 0.912258 + 0.409616i \(0.134337\pi\)
−0.912258 + 0.409616i \(0.865663\pi\)
\(150\) 0 0
\(151\) 13.0000i 1.05792i −0.848645 0.528962i \(-0.822581\pi\)
0.848645 0.528962i \(-0.177419\pi\)
\(152\) −12.0000 −0.973329
\(153\) −5.00000 −0.404226
\(154\) 15.0000i 1.20873i
\(155\) 0 0
\(156\) 6.00000 + 4.00000i 0.480384 + 0.320256i
\(157\) 13.0000 1.03751 0.518756 0.854922i \(-0.326395\pi\)
0.518756 + 0.854922i \(0.326395\pi\)
\(158\) 10.0000i 0.795557i
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 20.0000i 1.57622i
\(162\) 11.0000i 0.864242i
\(163\) 12.0000i 0.939913i −0.882690 0.469956i \(-0.844270\pi\)
0.882690 0.469956i \(-0.155730\pi\)
\(164\) 8.00000i 0.624695i
\(165\) 0 0
\(166\) 9.00000 0.698535
\(167\) 16.0000i 1.23812i −0.785345 0.619059i \(-0.787514\pi\)
0.785345 0.619059i \(-0.212486\pi\)
\(168\) 30.0000 2.31455
\(169\) 5.00000 + 12.0000i 0.384615 + 0.923077i
\(170\) 0 0
\(171\) 4.00000i 0.305888i
\(172\) 4.00000 0.304997
\(173\) −13.0000 −0.988372 −0.494186 0.869356i \(-0.664534\pi\)
−0.494186 + 0.869356i \(0.664534\pi\)
\(174\) 2.00000i 0.151620i
\(175\) 0 0
\(176\) 3.00000i 0.226134i
\(177\) 6.00000i 0.450988i
\(178\) 18.0000 1.34916
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 3.00000 0.222988 0.111494 0.993765i \(-0.464436\pi\)
0.111494 + 0.993765i \(0.464436\pi\)
\(182\) 15.0000 + 10.0000i 1.11187 + 0.741249i
\(183\) 2.00000 0.147844
\(184\) 12.0000i 0.884652i
\(185\) 0 0
\(186\) 2.00000 0.146647
\(187\) 15.0000i 1.09691i
\(188\) 7.00000i 0.510527i
\(189\) 20.0000i 1.45479i
\(190\) 0 0
\(191\) 10.0000 0.723575 0.361787 0.932261i \(-0.382167\pi\)
0.361787 + 0.932261i \(0.382167\pi\)
\(192\) −14.0000 −1.01036
\(193\) 4.00000i 0.287926i −0.989583 0.143963i \(-0.954015\pi\)
0.989583 0.143963i \(-0.0459847\pi\)
\(194\) 14.0000 1.00514
\(195\) 0 0
\(196\) −18.0000 −1.28571
\(197\) 8.00000i 0.569976i 0.958531 + 0.284988i \(0.0919897\pi\)
−0.958531 + 0.284988i \(0.908010\pi\)
\(198\) −3.00000 −0.213201
\(199\) −6.00000 −0.425329 −0.212664 0.977125i \(-0.568214\pi\)
−0.212664 + 0.977125i \(0.568214\pi\)
\(200\) 0 0
\(201\) 6.00000i 0.423207i
\(202\) 1.00000i 0.0703598i
\(203\) 5.00000i 0.350931i
\(204\) −10.0000 −0.700140
\(205\) 0 0
\(206\) 4.00000i 0.278693i
\(207\) −4.00000 −0.278019
\(208\) −3.00000 2.00000i −0.208013 0.138675i
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 3.00000 0.206041
\(213\) 16.0000i 1.09630i
\(214\) 16.0000i 1.09374i
\(215\) 0 0
\(216\) 12.0000i 0.816497i
\(217\) −5.00000 −0.339422
\(218\) −2.00000 −0.135457
\(219\) 8.00000i 0.540590i
\(220\) 0 0
\(221\) −15.0000 10.0000i −1.00901 0.672673i
\(222\) −8.00000 −0.536925
\(223\) 16.0000i 1.07144i 0.844396 + 0.535720i \(0.179960\pi\)
−0.844396 + 0.535720i \(0.820040\pi\)
\(224\) 25.0000 1.67038
\(225\) 0 0
\(226\) 10.0000i 0.665190i
\(227\) 9.00000i 0.597351i −0.954355 0.298675i \(-0.903455\pi\)
0.954355 0.298675i \(-0.0965448\pi\)
\(228\) 8.00000i 0.529813i
\(229\) 2.00000i 0.132164i 0.997814 + 0.0660819i \(0.0210498\pi\)
−0.997814 + 0.0660819i \(0.978950\pi\)
\(230\) 0 0
\(231\) 30.0000 1.97386
\(232\) 3.00000i 0.196960i
\(233\) −14.0000 −0.917170 −0.458585 0.888650i \(-0.651644\pi\)
−0.458585 + 0.888650i \(0.651644\pi\)
\(234\) 2.00000 3.00000i 0.130744 0.196116i
\(235\) 0 0
\(236\) 3.00000i 0.195283i
\(237\) 20.0000 1.29914
\(238\) −25.0000 −1.62051
\(239\) 5.00000i 0.323423i 0.986838 + 0.161712i \(0.0517014\pi\)
−0.986838 + 0.161712i \(0.948299\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 2.00000i 0.128565i
\(243\) −10.0000 −0.641500
\(244\) 1.00000 0.0640184
\(245\) 0 0
\(246\) −16.0000 −1.02012
\(247\) 8.00000 12.0000i 0.509028 0.763542i
\(248\) 3.00000 0.190500
\(249\) 18.0000i 1.14070i
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 5.00000i 0.314970i
\(253\) 12.0000i 0.754434i
\(254\) 18.0000i 1.12942i
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) −15.0000 −0.935674 −0.467837 0.883815i \(-0.654967\pi\)
−0.467837 + 0.883815i \(0.654967\pi\)
\(258\) 8.00000i 0.498058i
\(259\) 20.0000 1.24274
\(260\) 0 0
\(261\) −1.00000 −0.0618984
\(262\) 18.0000i 1.11204i
\(263\) 6.00000 0.369976 0.184988 0.982741i \(-0.440775\pi\)
0.184988 + 0.982741i \(0.440775\pi\)
\(264\) −18.0000 −1.10782
\(265\) 0 0
\(266\) 20.0000i 1.22628i
\(267\) 36.0000i 2.20316i
\(268\) 3.00000i 0.183254i
\(269\) −17.0000 −1.03651 −0.518254 0.855227i \(-0.673418\pi\)
−0.518254 + 0.855227i \(0.673418\pi\)
\(270\) 0 0
\(271\) 29.0000i 1.76162i −0.473466 0.880812i \(-0.656997\pi\)
0.473466 0.880812i \(-0.343003\pi\)
\(272\) 5.00000 0.303170
\(273\) −20.0000 + 30.0000i −1.21046 + 1.81568i
\(274\) −18.0000 −1.08742
\(275\) 0 0
\(276\) −8.00000 −0.481543
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) 4.00000i 0.239904i
\(279\) 1.00000i 0.0598684i
\(280\) 0 0
\(281\) 18.0000i 1.07379i 0.843649 + 0.536895i \(0.180403\pi\)
−0.843649 + 0.536895i \(0.819597\pi\)
\(282\) 14.0000 0.833688
\(283\) 28.0000 1.66443 0.832214 0.554455i \(-0.187073\pi\)
0.832214 + 0.554455i \(0.187073\pi\)
\(284\) 8.00000i 0.474713i
\(285\) 0 0
\(286\) −9.00000 6.00000i −0.532181 0.354787i
\(287\) 40.0000 2.36113
\(288\) 5.00000i 0.294628i
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 28.0000i 1.64139i
\(292\) 4.00000i 0.234082i
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) 36.0000i 2.09956i
\(295\) 0 0
\(296\) −12.0000 −0.697486
\(297\) 12.0000i 0.696311i
\(298\) 10.0000 0.579284
\(299\) −12.0000 8.00000i −0.693978 0.462652i
\(300\) 0 0
\(301\) 20.0000i 1.15278i
\(302\) −13.0000 −0.748066
\(303\) 2.00000 0.114897
\(304\) 4.00000i 0.229416i
\(305\) 0 0
\(306\) 5.00000i 0.285831i
\(307\) 8.00000i 0.456584i −0.973593 0.228292i \(-0.926686\pi\)
0.973593 0.228292i \(-0.0733141\pi\)
\(308\) 15.0000 0.854704
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 4.00000 0.226819 0.113410 0.993548i \(-0.463823\pi\)
0.113410 + 0.993548i \(0.463823\pi\)
\(312\) 12.0000 18.0000i 0.679366 1.01905i
\(313\) −17.0000 −0.960897 −0.480448 0.877023i \(-0.659526\pi\)
−0.480448 + 0.877023i \(0.659526\pi\)
\(314\) 13.0000i 0.733632i
\(315\) 0 0
\(316\) 10.0000 0.562544
\(317\) 22.0000i 1.23564i −0.786318 0.617822i \(-0.788015\pi\)
0.786318 0.617822i \(-0.211985\pi\)
\(318\) 6.00000i 0.336463i
\(319\) 3.00000i 0.167968i
\(320\) 0 0
\(321\) 32.0000 1.78607
\(322\) −20.0000 −1.11456
\(323\) 20.0000i 1.11283i
\(324\) −11.0000 −0.611111
\(325\) 0 0
\(326\) −12.0000 −0.664619
\(327\) 4.00000i 0.221201i
\(328\) −24.0000 −1.32518
\(329\) −35.0000 −1.92961
\(330\) 0 0
\(331\) 20.0000i 1.09930i −0.835395 0.549650i \(-0.814761\pi\)
0.835395 0.549650i \(-0.185239\pi\)
\(332\) 9.00000i 0.493939i
\(333\) 4.00000i 0.219199i
\(334\) −16.0000 −0.875481
\(335\) 0 0
\(336\) 10.0000i 0.545545i
\(337\) 3.00000 0.163420 0.0817102 0.996656i \(-0.473962\pi\)
0.0817102 + 0.996656i \(0.473962\pi\)
\(338\) 12.0000 5.00000i 0.652714 0.271964i
\(339\) −20.0000 −1.08625
\(340\) 0 0
\(341\) 3.00000 0.162459
\(342\) −4.00000 −0.216295
\(343\) 55.0000i 2.96972i
\(344\) 12.0000i 0.646997i
\(345\) 0 0
\(346\) 13.0000i 0.698884i
\(347\) −4.00000 −0.214731 −0.107366 0.994220i \(-0.534242\pi\)
−0.107366 + 0.994220i \(0.534242\pi\)
\(348\) −2.00000 −0.107211
\(349\) 2.00000i 0.107058i −0.998566 0.0535288i \(-0.982953\pi\)
0.998566 0.0535288i \(-0.0170469\pi\)
\(350\) 0 0
\(351\) −12.0000 8.00000i −0.640513 0.427008i
\(352\) −15.0000 −0.799503
\(353\) 6.00000i 0.319348i −0.987170 0.159674i \(-0.948956\pi\)
0.987170 0.159674i \(-0.0510443\pi\)
\(354\) 6.00000 0.318896
\(355\) 0 0
\(356\) 18.0000i 0.953998i
\(357\) 50.0000i 2.64628i
\(358\) 12.0000i 0.634220i
\(359\) 23.0000i 1.21389i −0.794742 0.606947i \(-0.792394\pi\)
0.794742 0.606947i \(-0.207606\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 3.00000i 0.157676i
\(363\) 4.00000 0.209946
\(364\) −10.0000 + 15.0000i −0.524142 + 0.786214i
\(365\) 0 0
\(366\) 2.00000i 0.104542i
\(367\) 18.0000 0.939592 0.469796 0.882775i \(-0.344327\pi\)
0.469796 + 0.882775i \(0.344327\pi\)
\(368\) 4.00000 0.208514
\(369\) 8.00000i 0.416463i
\(370\) 0 0
\(371\) 15.0000i 0.778761i
\(372\) 2.00000i 0.103695i
\(373\) −31.0000 −1.60512 −0.802560 0.596572i \(-0.796529\pi\)
−0.802560 + 0.596572i \(0.796529\pi\)
\(374\) 15.0000 0.775632
\(375\) 0 0
\(376\) 21.0000 1.08299
\(377\) −3.00000 2.00000i −0.154508 0.103005i
\(378\) −20.0000 −1.02869
\(379\) 27.0000i 1.38690i 0.720506 + 0.693448i \(0.243909\pi\)
−0.720506 + 0.693448i \(0.756091\pi\)
\(380\) 0 0
\(381\) −36.0000 −1.84434
\(382\) 10.0000i 0.511645i
\(383\) 32.0000i 1.63512i 0.575841 + 0.817562i \(0.304675\pi\)
−0.575841 + 0.817562i \(0.695325\pi\)
\(384\) 6.00000i 0.306186i
\(385\) 0 0
\(386\) −4.00000 −0.203595
\(387\) 4.00000 0.203331
\(388\) 14.0000i 0.710742i
\(389\) 34.0000 1.72387 0.861934 0.507020i \(-0.169253\pi\)
0.861934 + 0.507020i \(0.169253\pi\)
\(390\) 0 0
\(391\) 20.0000 1.01144
\(392\) 54.0000i 2.72741i
\(393\) 36.0000 1.81596
\(394\) 8.00000 0.403034
\(395\) 0 0
\(396\) 3.00000i 0.150756i
\(397\) 8.00000i 0.401508i −0.979642 0.200754i \(-0.935661\pi\)
0.979642 0.200754i \(-0.0643393\pi\)
\(398\) 6.00000i 0.300753i
\(399\) 40.0000 2.00250
\(400\) 0 0
\(401\) 26.0000i 1.29838i 0.760627 + 0.649189i \(0.224892\pi\)
−0.760627 + 0.649189i \(0.775108\pi\)
\(402\) −6.00000 −0.299253
\(403\) −2.00000 + 3.00000i −0.0996271 + 0.149441i
\(404\) 1.00000 0.0497519
\(405\) 0 0
\(406\) −5.00000 −0.248146
\(407\) −12.0000 −0.594818
\(408\) 30.0000i 1.48522i
\(409\) 6.00000i 0.296681i −0.988936 0.148340i \(-0.952607\pi\)
0.988936 0.148340i \(-0.0473931\pi\)
\(410\) 0 0
\(411\) 36.0000i 1.77575i
\(412\) −4.00000 −0.197066
\(413\) −15.0000 −0.738102
\(414\) 4.00000i 0.196589i
\(415\) 0 0
\(416\) 10.0000 15.0000i 0.490290 0.735436i
\(417\) 8.00000 0.391762
\(418\) 12.0000i 0.586939i
\(419\) −18.0000 −0.879358 −0.439679 0.898155i \(-0.644908\pi\)
−0.439679 + 0.898155i \(0.644908\pi\)
\(420\) 0 0
\(421\) 4.00000i 0.194948i −0.995238 0.0974740i \(-0.968924\pi\)
0.995238 0.0974740i \(-0.0310763\pi\)
\(422\) 12.0000i 0.584151i
\(423\) 7.00000i 0.340352i
\(424\) 9.00000i 0.437079i
\(425\) 0 0
\(426\) 16.0000 0.775203
\(427\) 5.00000i 0.241967i
\(428\) 16.0000 0.773389
\(429\) 12.0000 18.0000i 0.579365 0.869048i
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 4.00000 0.192450
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 5.00000i 0.240008i
\(435\) 0 0
\(436\) 2.00000i 0.0957826i
\(437\) 16.0000i 0.765384i
\(438\) −8.00000 −0.382255
\(439\) 22.0000 1.05000 0.525001 0.851101i \(-0.324065\pi\)
0.525001 + 0.851101i \(0.324065\pi\)
\(440\) 0 0
\(441\) −18.0000 −0.857143
\(442\) −10.0000 + 15.0000i −0.475651 + 0.713477i
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) 8.00000i 0.379663i
\(445\) 0 0
\(446\) 16.0000 0.757622
\(447\) 20.0000i 0.945968i
\(448\) 35.0000i 1.65359i
\(449\) 6.00000i 0.283158i 0.989927 + 0.141579i \(0.0452178\pi\)
−0.989927 + 0.141579i \(0.954782\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) −10.0000 −0.470360
\(453\) 26.0000i 1.22159i
\(454\) −9.00000 −0.422391
\(455\) 0 0
\(456\) −24.0000 −1.12390
\(457\) 10.0000i 0.467780i 0.972263 + 0.233890i \(0.0751456\pi\)
−0.972263 + 0.233890i \(0.924854\pi\)
\(458\) 2.00000 0.0934539
\(459\) 20.0000 0.933520
\(460\) 0 0
\(461\) 26.0000i 1.21094i 0.795868 + 0.605470i \(0.207015\pi\)
−0.795868 + 0.605470i \(0.792985\pi\)
\(462\) 30.0000i 1.39573i
\(463\) 19.0000i 0.883005i 0.897260 + 0.441502i \(0.145554\pi\)
−0.897260 + 0.441502i \(0.854446\pi\)
\(464\) 1.00000 0.0464238
\(465\) 0 0
\(466\) 14.0000i 0.648537i
\(467\) −18.0000 −0.832941 −0.416470 0.909149i \(-0.636733\pi\)
−0.416470 + 0.909149i \(0.636733\pi\)
\(468\) 3.00000 + 2.00000i 0.138675 + 0.0924500i
\(469\) 15.0000 0.692636
\(470\) 0 0
\(471\) 26.0000 1.19802
\(472\) 9.00000 0.414259
\(473\) 12.0000i 0.551761i
\(474\) 20.0000i 0.918630i
\(475\) 0 0
\(476\) 25.0000i 1.14587i
\(477\) 3.00000 0.137361
\(478\) 5.00000 0.228695
\(479\) 3.00000i 0.137073i 0.997649 + 0.0685367i \(0.0218330\pi\)
−0.997649 + 0.0685367i \(0.978167\pi\)
\(480\) 0 0
\(481\) 8.00000 12.0000i 0.364769 0.547153i
\(482\) 0 0
\(483\) 40.0000i 1.82006i
\(484\) 2.00000 0.0909091
\(485\) 0 0
\(486\) 10.0000i 0.453609i
\(487\) 15.0000i 0.679715i 0.940477 + 0.339857i \(0.110379\pi\)
−0.940477 + 0.339857i \(0.889621\pi\)
\(488\) 3.00000i 0.135804i
\(489\) 24.0000i 1.08532i
\(490\) 0 0
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) 16.0000i 0.721336i
\(493\) 5.00000 0.225189
\(494\) −12.0000 8.00000i −0.539906 0.359937i
\(495\) 0 0
\(496\) 1.00000i 0.0449013i
\(497\) −40.0000 −1.79425
\(498\) 18.0000 0.806599
\(499\) 19.0000i 0.850557i −0.905063 0.425278i \(-0.860176\pi\)
0.905063 0.425278i \(-0.139824\pi\)
\(500\) 0 0
\(501\) 32.0000i 1.42965i
\(502\) 12.0000i 0.535586i
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) 15.0000 0.668153
\(505\) 0 0
\(506\) 12.0000 0.533465
\(507\) 10.0000 + 24.0000i 0.444116 + 1.06588i
\(508\) −18.0000 −0.798621
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 20.0000 0.884748
\(512\) 11.0000i 0.486136i
\(513\) 16.0000i 0.706417i
\(514\) 15.0000i 0.661622i
\(515\) 0 0
\(516\) 8.00000 0.352180
\(517\) 21.0000 0.923579
\(518\) 20.0000i 0.878750i
\(519\) −26.0000 −1.14127
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 1.00000i 0.0437688i
\(523\) 22.0000 0.961993 0.480996 0.876723i \(-0.340275\pi\)
0.480996 + 0.876723i \(0.340275\pi\)
\(524\) 18.0000 0.786334
\(525\) 0 0
\(526\) 6.00000i 0.261612i
\(527\) 5.00000i 0.217803i
\(528\) 6.00000i 0.261116i
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 3.00000i 0.130189i
\(532\) 20.0000 0.867110
\(533\) 16.0000 24.0000i 0.693037 1.03956i
\(534\) 36.0000 1.55787
\(535\) 0 0
\(536\) −9.00000 −0.388741
\(537\) 24.0000 1.03568
\(538\) 17.0000i 0.732922i
\(539\) 54.0000i 2.32594i
\(540\) 0 0
\(541\) 38.0000i 1.63375i −0.576816 0.816874i \(-0.695705\pi\)
0.576816 0.816874i \(-0.304295\pi\)
\(542\) −29.0000 −1.24566
\(543\) 6.00000 0.257485
\(544\) 25.0000i 1.07187i
\(545\) 0 0
\(546\) 30.0000 + 20.0000i 1.28388 + 0.855921i
\(547\) −38.0000 −1.62476 −0.812381 0.583127i \(-0.801829\pi\)
−0.812381 + 0.583127i \(0.801829\pi\)
\(548\) 18.0000i 0.768922i
\(549\) 1.00000 0.0426790
\(550\) 0 0
\(551\) 4.00000i 0.170406i
\(552\) 24.0000i 1.02151i
\(553\) 50.0000i 2.12622i
\(554\) 2.00000i 0.0849719i
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) 24.0000i 1.01691i 0.861088 + 0.508456i \(0.169784\pi\)
−0.861088 + 0.508456i \(0.830216\pi\)
\(558\) 1.00000 0.0423334
\(559\) 12.0000 + 8.00000i 0.507546 + 0.338364i
\(560\) 0 0
\(561\) 30.0000i 1.26660i
\(562\) 18.0000 0.759284
\(563\) 30.0000 1.26435 0.632175 0.774826i \(-0.282163\pi\)
0.632175 + 0.774826i \(0.282163\pi\)
\(564\) 14.0000i 0.589506i
\(565\) 0 0
\(566\) 28.0000i 1.17693i
\(567\) 55.0000i 2.30978i
\(568\) 24.0000 1.00702
\(569\) −33.0000 −1.38343 −0.691716 0.722170i \(-0.743145\pi\)
−0.691716 + 0.722170i \(0.743145\pi\)
\(570\) 0 0
\(571\) 2.00000 0.0836974 0.0418487 0.999124i \(-0.486675\pi\)
0.0418487 + 0.999124i \(0.486675\pi\)
\(572\) 6.00000 9.00000i 0.250873 0.376309i
\(573\) 20.0000 0.835512
\(574\) 40.0000i 1.66957i
\(575\) 0 0
\(576\) −7.00000 −0.291667
\(577\) 38.0000i 1.58196i 0.611842 + 0.790980i \(0.290429\pi\)
−0.611842 + 0.790980i \(0.709571\pi\)
\(578\) 8.00000i 0.332756i
\(579\) 8.00000i 0.332469i
\(580\) 0 0
\(581\) −45.0000 −1.86691
\(582\) 28.0000 1.16064
\(583\) 9.00000i 0.372742i
\(584\) −12.0000 −0.496564
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) 25.0000i 1.03186i −0.856631 0.515930i \(-0.827446\pi\)
0.856631 0.515930i \(-0.172554\pi\)
\(588\) −36.0000 −1.48461
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) 16.0000i 0.658152i
\(592\) 4.00000i 0.164399i
\(593\) 8.00000i 0.328521i −0.986417 0.164260i \(-0.947476\pi\)
0.986417 0.164260i \(-0.0525237\pi\)
\(594\) 12.0000 0.492366
\(595\) 0 0
\(596\) 10.0000i 0.409616i
\(597\) −12.0000 −0.491127
\(598\) −8.00000 + 12.0000i −0.327144 + 0.490716i
\(599\) −14.0000 −0.572024 −0.286012 0.958226i \(-0.592330\pi\)
−0.286012 + 0.958226i \(0.592330\pi\)
\(600\) 0 0
\(601\) 29.0000 1.18293 0.591467 0.806329i \(-0.298549\pi\)
0.591467 + 0.806329i \(0.298549\pi\)
\(602\) 20.0000 0.815139
\(603\) 3.00000i 0.122169i
\(604\) 13.0000i 0.528962i
\(605\) 0 0
\(606\) 2.00000i 0.0812444i
\(607\) 8.00000 0.324710 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(608\) −20.0000 −0.811107
\(609\) 10.0000i 0.405220i
\(610\) 0 0
\(611\) −14.0000 + 21.0000i −0.566379 + 0.849569i
\(612\) −5.00000 −0.202113
\(613\) 10.0000i 0.403896i −0.979396 0.201948i \(-0.935273\pi\)
0.979396 0.201948i \(-0.0647272\pi\)
\(614\) −8.00000 −0.322854
\(615\) 0 0
\(616\) 45.0000i 1.81310i
\(617\) 4.00000i 0.161034i 0.996753 + 0.0805170i \(0.0256571\pi\)
−0.996753 + 0.0805170i \(0.974343\pi\)
\(618\) 8.00000i 0.321807i
\(619\) 28.0000i 1.12542i −0.826656 0.562708i \(-0.809760\pi\)
0.826656 0.562708i \(-0.190240\pi\)
\(620\) 0 0
\(621\) 16.0000 0.642058
\(622\) 4.00000i 0.160385i
\(623\) −90.0000 −3.60577
\(624\) −6.00000 4.00000i −0.240192 0.160128i
\(625\) 0 0
\(626\) 17.0000i 0.679457i
\(627\) −24.0000 −0.958468
\(628\) 13.0000 0.518756
\(629\) 20.0000i 0.797452i
\(630\) 0 0
\(631\) 20.0000i 0.796187i 0.917345 + 0.398094i \(0.130328\pi\)
−0.917345 + 0.398094i \(0.869672\pi\)
\(632\) 30.0000i 1.19334i
\(633\) −24.0000 −0.953914
\(634\) −22.0000 −0.873732
\(635\) 0 0
\(636\) 6.00000 0.237915
\(637\) −54.0000 36.0000i −2.13956 1.42637i
\(638\) 3.00000 0.118771
\(639\) 8.00000i 0.316475i
\(640\) 0 0
\(641\) −15.0000 −0.592464 −0.296232 0.955116i \(-0.595730\pi\)
−0.296232 + 0.955116i \(0.595730\pi\)
\(642\) 32.0000i 1.26294i
\(643\) 4.00000i 0.157745i −0.996885 0.0788723i \(-0.974868\pi\)
0.996885 0.0788723i \(-0.0251319\pi\)
\(644\) 20.0000i 0.788110i
\(645\) 0 0
\(646\) 20.0000 0.786889
\(647\) 14.0000 0.550397 0.275198 0.961387i \(-0.411256\pi\)
0.275198 + 0.961387i \(0.411256\pi\)
\(648\) 33.0000i 1.29636i
\(649\) 9.00000 0.353281
\(650\) 0 0
\(651\) −10.0000 −0.391931
\(652\) 12.0000i 0.469956i
\(653\) −31.0000 −1.21312 −0.606562 0.795036i \(-0.707452\pi\)
−0.606562 + 0.795036i \(0.707452\pi\)
\(654\) −4.00000 −0.156412
\(655\) 0 0
\(656\) 8.00000i 0.312348i
\(657\) 4.00000i 0.156055i
\(658\) 35.0000i 1.36444i
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 0 0
\(661\) 38.0000i 1.47803i 0.673690 + 0.739014i \(0.264708\pi\)
−0.673690 + 0.739014i \(0.735292\pi\)
\(662\) −20.0000 −0.777322
\(663\) −30.0000 20.0000i −1.16510 0.776736i
\(664\) 27.0000 1.04780
\(665\) 0 0
\(666\) −4.00000 −0.154997
\(667\) 4.00000 0.154881
\(668\) 16.0000i 0.619059i
\(669\) 32.0000i 1.23719i
\(670\) 0 0
\(671\) 3.00000i 0.115814i
\(672\) 50.0000 1.92879
\(673\) 23.0000 0.886585 0.443292 0.896377i \(-0.353810\pi\)
0.443292 + 0.896377i \(0.353810\pi\)
\(674\) 3.00000i 0.115556i
\(675\) 0 0
\(676\) 5.00000 + 12.0000i 0.192308 + 0.461538i
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) 20.0000i 0.768095i
\(679\) −70.0000 −2.68635
\(680\) 0 0
\(681\) 18.0000i 0.689761i
\(682\) 3.00000i 0.114876i
\(683\) 41.0000i 1.56882i −0.620242 0.784411i \(-0.712966\pi\)
0.620242 0.784411i \(-0.287034\pi\)
\(684\) 4.00000i 0.152944i
\(685\) 0 0
\(686\) −55.0000 −2.09991
\(687\) 4.00000i 0.152610i
\(688\) −4.00000 −0.152499
\(689\) 9.00000 + 6.00000i 0.342873 + 0.228582i
\(690\) 0 0
\(691\) 17.0000i 0.646710i 0.946278 + 0.323355i \(0.104811\pi\)
−0.946278 + 0.323355i \(0.895189\pi\)
\(692\) −13.0000 −0.494186
\(693\) 15.0000 0.569803
\(694\) 4.00000i 0.151838i
\(695\) 0 0
\(696\) 6.00000i 0.227429i
\(697\) 40.0000i 1.51511i
\(698\) −2.00000 −0.0757011
\(699\) −28.0000 −1.05906
\(700\) 0 0
\(701\) −45.0000 −1.69963 −0.849813 0.527084i \(-0.823285\pi\)
−0.849813 + 0.527084i \(0.823285\pi\)
\(702\) −8.00000 + 12.0000i −0.301941 + 0.452911i
\(703\) −16.0000 −0.603451
\(704\) 21.0000i 0.791467i
\(705\) 0 0
\(706\) −6.00000 −0.225813
\(707\) 5.00000i 0.188044i
\(708\) 6.00000i 0.225494i
\(709\) 8.00000i 0.300446i −0.988652 0.150223i \(-0.952001\pi\)
0.988652 0.150223i \(-0.0479992\pi\)
\(710\) 0 0
\(711\) 10.0000 0.375029
\(712\) 54.0000 2.02374
\(713\) 4.00000i 0.149801i
\(714\) −50.0000 −1.87120
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) 10.0000i 0.373457i
\(718\) −23.0000 −0.858352
\(719\) 30.0000 1.11881 0.559406 0.828894i \(-0.311029\pi\)
0.559406 + 0.828894i \(0.311029\pi\)
\(720\) 0 0
\(721\) 20.0000i 0.744839i
\(722\) 3.00000i 0.111648i
\(723\) 0 0
\(724\) 3.00000 0.111494
\(725\) 0 0
\(726\) 4.00000i 0.148454i
\(727\) 16.0000 0.593407 0.296704 0.954970i \(-0.404113\pi\)
0.296704 + 0.954970i \(0.404113\pi\)
\(728\) 45.0000 + 30.0000i 1.66781 + 1.11187i
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −20.0000 −0.739727
\(732\) 2.00000 0.0739221
\(733\) 42.0000i 1.55131i 0.631160 + 0.775653i \(0.282579\pi\)
−0.631160 + 0.775653i \(0.717421\pi\)
\(734\) 18.0000i 0.664392i
\(735\) 0 0
\(736\) 20.0000i 0.737210i
\(737\) −9.00000 −0.331519
\(738\) −8.00000 −0.294484
\(739\) 9.00000i 0.331070i −0.986204 0.165535i \(-0.947065\pi\)
0.986204 0.165535i \(-0.0529351\pi\)
\(740\) 0 0
\(741\) 16.0000 24.0000i 0.587775 0.881662i
\(742\) 15.0000 0.550667
\(743\) 41.0000i 1.50414i 0.659081 + 0.752072i \(0.270945\pi\)
−0.659081 + 0.752072i \(0.729055\pi\)
\(744\) 6.00000 0.219971
\(745\) 0 0
\(746\) 31.0000i 1.13499i
\(747\) 9.00000i 0.329293i
\(748\) 15.0000i 0.548454i
\(749\) 80.0000i 2.92314i
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 7.00000i 0.255264i
\(753\) 24.0000 0.874609
\(754\) −2.00000 + 3.00000i −0.0728357 + 0.109254i
\(755\) 0 0
\(756\) 20.0000i 0.727393i
\(757\) −5.00000 −0.181728 −0.0908640 0.995863i \(-0.528963\pi\)
−0.0908640 + 0.995863i \(0.528963\pi\)
\(758\) 27.0000 0.980684
\(759\) 24.0000i 0.871145i
\(760\) 0 0
\(761\) 10.0000i 0.362500i 0.983437 + 0.181250i \(0.0580143\pi\)
−0.983437 + 0.181250i \(0.941986\pi\)
\(762\) 36.0000i 1.30414i
\(763\) 10.0000 0.362024
\(764\) 10.0000 0.361787
\(765\) 0 0
\(766\) 32.0000 1.15621
\(767\) −6.00000 + 9.00000i −0.216647 + 0.324971i
\(768\) −34.0000 −1.22687
\(769\) 40.0000i 1.44244i 0.692708 + 0.721218i \(0.256418\pi\)
−0.692708 + 0.721218i \(0.743582\pi\)
\(770\) 0 0
\(771\) −30.0000 −1.08042
\(772\) 4.00000i 0.143963i
\(773\) 18.0000i 0.647415i −0.946157 0.323708i \(-0.895071\pi\)
0.946157 0.323708i \(-0.104929\pi\)
\(774\) 4.00000i 0.143777i
\(775\) 0 0
\(776\) 42.0000 1.50771
\(777\) 40.0000 1.43499
\(778\) 34.0000i 1.21896i
\(779\) −32.0000 −1.14652
\(780\) 0 0
\(781\) 24.0000 0.858788
\(782\) 20.0000i 0.715199i
\(783\) 4.00000 0.142948
\(784\) 18.0000 0.642857
\(785\) 0 0
\(786\) 36.0000i 1.28408i
\(787\) 43.0000i 1.53278i −0.642373 0.766392i \(-0.722050\pi\)
0.642373 0.766392i \(-0.277950\pi\)
\(788\) 8.00000i 0.284988i
\(789\) 12.0000 0.427211
\(790\) 0 0
\(791\) 50.0000i 1.77780i
\(792\) −9.00000 −0.319801
\(793\) 3.00000 + 2.00000i 0.106533 + 0.0710221i
\(794\) −8.00000 −0.283909
\(795\) 0 0
\(796\) −6.00000 −0.212664
\(797\) 53.0000 1.87736 0.938678 0.344795i \(-0.112051\pi\)
0.938678 + 0.344795i \(0.112051\pi\)
\(798\) 40.0000i 1.41598i
\(799\) 35.0000i 1.23821i
\(800\) 0 0
\(801\) 18.0000i 0.635999i
\(802\) 26.0000 0.918092
\(803\) −12.0000 −0.423471
\(804\) 6.00000i 0.211604i
\(805\) 0 0
\(806\) 3.00000 + 2.00000i 0.105670 + 0.0704470i
\(807\) −34.0000 −1.19686
\(808\) 3.00000i 0.105540i
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) 25.0000i 0.877869i 0.898519 + 0.438934i \(0.144644\pi\)
−0.898519 + 0.438934i \(0.855356\pi\)
\(812\) 5.00000i 0.175466i
\(813\) 58.0000i 2.03415i
\(814\) 12.0000i 0.420600i
\(815\) 0 0
\(816\) 10.0000 0.350070
\(817\) 16.0000i 0.559769i
\(818\) −6.00000 −0.209785
\(819\) −10.0000 + 15.0000i −0.349428 + 0.524142i
\(820\) 0 0
\(821\) 30.0000i 1.04701i −0.852023 0.523504i \(-0.824625\pi\)
0.852023 0.523504i \(-0.175375\pi\)
\(822\) −36.0000 −1.25564
\(823\) −12.0000 −0.418294 −0.209147 0.977884i \(-0.567069\pi\)
−0.209147 + 0.977884i \(0.567069\pi\)
\(824\) 12.0000i 0.418040i
\(825\) 0 0
\(826\) 15.0000i 0.521917i
\(827\) 19.0000i 0.660695i 0.943859 + 0.330347i \(0.107166\pi\)
−0.943859 + 0.330347i \(0.892834\pi\)
\(828\) −4.00000 −0.139010
\(829\) −11.0000 −0.382046 −0.191023 0.981586i \(-0.561180\pi\)
−0.191023 + 0.981586i \(0.561180\pi\)
\(830\) 0 0
\(831\) 4.00000 0.138758
\(832\) −21.0000 14.0000i −0.728044 0.485363i
\(833\) 90.0000 3.11832
\(834\) 8.00000i 0.277017i
\(835\) 0 0
\(836\) −12.0000 −0.415029
\(837\) 4.00000i 0.138260i
\(838\) 18.0000i 0.621800i
\(839\) 36.0000i 1.24286i −0.783470 0.621429i \(-0.786552\pi\)
0.783470 0.621429i \(-0.213448\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) −4.00000 −0.137849
\(843\) 36.0000i 1.23991i
\(844\) −12.0000 −0.413057
\(845\) 0 0
\(846\) 7.00000 0.240665
\(847\) 10.0000i 0.343604i
\(848\) −3.00000 −0.103020
\(849\) 56.0000 1.92192
\(850\) 0 0
\(851\) 16.0000i 0.548473i
\(852\) 16.0000i 0.548151i
\(853\) 54.0000i 1.84892i −0.381273 0.924462i \(-0.624514\pi\)
0.381273 0.924462i \(-0.375486\pi\)
\(854\) 5.00000 0.171096
\(855\) 0 0
\(856\) 48.0000i 1.64061i
\(857\) −14.0000 −0.478231 −0.239115 0.970991i \(-0.576857\pi\)
−0.239115 + 0.970991i \(0.576857\pi\)
\(858\) −18.0000 12.0000i −0.614510 0.409673i
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 0 0
\(861\) 80.0000 2.72639
\(862\) 0 0
\(863\) 33.0000i 1.12333i 0.827364 + 0.561667i \(0.189840\pi\)
−0.827364 + 0.561667i \(0.810160\pi\)
\(864\) 20.0000i 0.680414i
\(865\) 0 0
\(866\) 14.0000i 0.475739i
\(867\) 16.0000 0.543388
\(868\) −5.00000 −0.169711
\(869\) 30.0000i 1.01768i
\(870\) 0 0
\(871\) 6.00000 9.00000i 0.203302 0.304953i
\(872\) −6.00000 −0.203186
\(873\) 14.0000i 0.473828i
\(874\) 16.0000 0.541208
\(875\) 0 0
\(876\) 8.00000i 0.270295i
\(877\) 14.0000i 0.472746i −0.971662 0.236373i \(-0.924041\pi\)
0.971662 0.236373i \(-0.0759588\pi\)
\(878\) 22.0000i 0.742464i
\(879\) 12.0000i 0.404750i
\(880\) 0 0
\(881\) −33.0000 −1.11180 −0.555899 0.831250i \(-0.687626\pi\)
−0.555899 + 0.831250i \(0.687626\pi\)
\(882\) 18.0000i 0.606092i
\(883\) −28.0000 −0.942275 −0.471138 0.882060i \(-0.656156\pi\)
−0.471138 + 0.882060i \(0.656156\pi\)
\(884\) −15.0000 10.0000i −0.504505 0.336336i
\(885\) 0 0
\(886\) 24.0000i 0.806296i
\(887\) 22.0000 0.738688 0.369344 0.929293i \(-0.379582\pi\)
0.369344 + 0.929293i \(0.379582\pi\)
\(888\) −24.0000 −0.805387
\(889\) 90.0000i 3.01850i
\(890\) 0 0
\(891\) 33.0000i 1.10554i
\(892\) 16.0000i 0.535720i
\(893\) 28.0000 0.936984
\(894\) 20.0000 0.668900
\(895\) 0 0
\(896\) 15.0000 0.501115
\(897\) −24.0000 16.0000i −0.801337 0.534224i
\(898\) 6.00000 0.200223
\(899\) 1.00000i 0.0333519i
\(900\) 0 0
\(901\) −15.0000 −0.499722
\(902\) 24.0000i 0.799113i
\(903\) 40.0000i 1.33112i
\(904\) 30.0000i 0.997785i
\(905\) 0 0
\(906\) −26.0000 −0.863792
\(907\) 20.0000 0.664089 0.332045 0.943264i \(-0.392262\pi\)
0.332045 + 0.943264i \(0.392262\pi\)
\(908\) 9.00000i 0.298675i
\(909\) 1.00000 0.0331679
\(910\) 0 0
\(911\) 2.00000 0.0662630 0.0331315 0.999451i \(-0.489452\pi\)
0.0331315 + 0.999451i \(0.489452\pi\)
\(912\) 8.00000i 0.264906i
\(913\) 27.0000 0.893570
\(914\) 10.0000 0.330771
\(915\) 0 0
\(916\) 2.00000i 0.0660819i
\(917\) 90.0000i 2.97206i
\(918\) 20.0000i 0.660098i
\(919\) 46.0000 1.51740 0.758700 0.651440i \(-0.225835\pi\)
0.758700 + 0.651440i \(0.225835\pi\)
\(920\) 0 0
\(921\) 16.0000i 0.527218i
\(922\) 26.0000 0.856264
\(923\) −16.0000 + 24.0000i −0.526646 + 0.789970i
\(924\) 30.0000 0.986928
\(925\) 0 0
\(926\) 19.0000 0.624379
\(927\) −4.00000 −0.131377
\(928\) 5.00000i 0.164133i
\(929\) 56.0000i 1.83730i −0.395072 0.918650i \(-0.629280\pi\)
0.395072 0.918650i \(-0.370720\pi\)
\(930\) 0 0
\(931\) 72.0000i 2.35970i
\(932\) −14.0000 −0.458585
\(933\) 8.00000 0.261908
\(934\) 18.0000i 0.588978i
\(935\) 0 0
\(936\) 6.00000 9.00000i 0.196116 0.294174i
\(937\) 1.00000 0.0326686 0.0163343 0.999867i \(-0.494800\pi\)
0.0163343 + 0.999867i \(0.494800\pi\)
\(938\) 15.0000i 0.489767i
\(939\) −34.0000 −1.10955
\(940\) 0 0
\(941\) 8.00000i 0.260793i 0.991462 + 0.130396i \(0.0416250\pi\)
−0.991462 + 0.130396i \(0.958375\pi\)
\(942\) 26.0000i 0.847126i
\(943\) 32.0000i 1.04206i
\(944\) 3.00000i 0.0976417i
\(945\) 0 0
\(946\) −12.0000 −0.390154
\(947\) 3.00000i 0.0974869i 0.998811 + 0.0487435i \(0.0155217\pi\)
−0.998811 + 0.0487435i \(0.984478\pi\)
\(948\) 20.0000 0.649570
\(949\) 8.00000 12.0000i 0.259691 0.389536i
\(950\) 0 0
\(951\) 44.0000i 1.42680i
\(952\) −75.0000 −2.43076
\(953\) 9.00000 0.291539 0.145769 0.989319i \(-0.453434\pi\)
0.145769 + 0.989319i \(0.453434\pi\)
\(954\) 3.00000i 0.0971286i
\(955\) 0 0
\(956\) 5.00000i 0.161712i
\(957\) 6.00000i 0.193952i
\(958\) 3.00000 0.0969256
\(959\) 90.0000 2.90625
\(960\) 0 0
\(961\) 30.0000 0.967742
\(962\) −12.0000 8.00000i −0.386896 0.257930i
\(963\) 16.0000 0.515593
\(964\) 0 0
\(965\) 0 0
\(966\) −40.0000 −1.28698
\(967\) 37.0000i 1.18984i −0.803785 0.594920i \(-0.797184\pi\)
0.803785 0.594920i \(-0.202816\pi\)
\(968\) 6.00000i 0.192847i
\(969\) 40.0000i 1.28499i
\(970\) 0 0
\(971\) −48.0000 −1.54039 −0.770197 0.637806i \(-0.779842\pi\)
−0.770197 + 0.637806i \(0.779842\pi\)
\(972\) −10.0000 −0.320750
\(973\) 20.0000i 0.641171i
\(974\) 15.0000 0.480631
\(975\) 0 0
\(976\) −1.00000 −0.0320092
\(977\) 46.0000i 1.47167i −0.677161 0.735835i \(-0.736790\pi\)
0.677161 0.735835i \(-0.263210\pi\)
\(978\) −24.0000 −0.767435
\(979\) 54.0000 1.72585
\(980\) 0 0
\(981\) 2.00000i 0.0638551i
\(982\) 28.0000i 0.893516i
\(983\) 11.0000i 0.350846i −0.984493 0.175423i \(-0.943871\pi\)
0.984493 0.175423i \(-0.0561292\pi\)
\(984\) −48.0000 −1.53018
\(985\) 0 0
\(986\) 5.00000i 0.159232i
\(987\) −70.0000 −2.22812
\(988\) 8.00000 12.0000i 0.254514 0.381771i
\(989\) −16.0000 −0.508770
\(990\) 0 0
\(991\) 4.00000 0.127064 0.0635321 0.997980i \(-0.479763\pi\)
0.0635321 + 0.997980i \(0.479763\pi\)
\(992\) 5.00000 0.158750
\(993\) 40.0000i 1.26936i
\(994\) 40.0000i 1.26872i
\(995\) 0 0
\(996\) 18.0000i 0.570352i
\(997\) −45.0000 −1.42516 −0.712582 0.701589i \(-0.752474\pi\)
−0.712582 + 0.701589i \(0.752474\pi\)
\(998\) −19.0000 −0.601434
\(999\) 16.0000i 0.506218i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.c.f.51.1 yes 2
5.2 odd 4 325.2.d.c.324.1 2
5.3 odd 4 325.2.d.b.324.2 2
5.4 even 2 325.2.c.a.51.2 yes 2
13.5 odd 4 4225.2.a.f.1.1 1
13.8 odd 4 4225.2.a.n.1.1 1
13.12 even 2 inner 325.2.c.f.51.2 yes 2
65.12 odd 4 325.2.d.b.324.1 2
65.34 odd 4 4225.2.a.d.1.1 1
65.38 odd 4 325.2.d.c.324.2 2
65.44 odd 4 4225.2.a.l.1.1 1
65.64 even 2 325.2.c.a.51.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.c.a.51.1 2 65.64 even 2
325.2.c.a.51.2 yes 2 5.4 even 2
325.2.c.f.51.1 yes 2 1.1 even 1 trivial
325.2.c.f.51.2 yes 2 13.12 even 2 inner
325.2.d.b.324.1 2 65.12 odd 4
325.2.d.b.324.2 2 5.3 odd 4
325.2.d.c.324.1 2 5.2 odd 4
325.2.d.c.324.2 2 65.38 odd 4
4225.2.a.d.1.1 1 65.34 odd 4
4225.2.a.f.1.1 1 13.5 odd 4
4225.2.a.l.1.1 1 65.44 odd 4
4225.2.a.n.1.1 1 13.8 odd 4