Properties

Label 325.2.c
Level $325$
Weight $2$
Character orbit 325.c
Rep. character $\chi_{325}(51,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $7$
Sturm bound $70$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(70\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(2\), \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(325, [\chi])\).

Total New Old
Modular forms 42 24 18
Cusp forms 30 18 12
Eisenstein series 12 6 6

Trace form

\( 18 q + 4 q^{3} - 10 q^{4} + 6 q^{9} + 8 q^{13} + 12 q^{14} - 14 q^{16} - 8 q^{17} + 24 q^{22} - 16 q^{23} - 6 q^{26} + 28 q^{27} - 12 q^{29} - 10 q^{36} + 20 q^{38} + 4 q^{39} - 44 q^{42} - 24 q^{43} - 36 q^{48}+ \cdots + 52 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(325, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
325.2.c.a 325.c 13.b $2$ $2.595$ \(\Q(\sqrt{-1}) \) None 325.2.c.a \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-2 q^{3}+q^{4}-2 i q^{6}-5 i q^{7}+\cdots\)
325.2.c.b 325.c 13.b $2$ $2.595$ \(\Q(\sqrt{-1}) \) None 65.2.d.a \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-2 q^{3}+q^{4}-2 i q^{6}+3 i q^{8}+\cdots\)
325.2.c.c 325.c 13.b $2$ $2.595$ \(\Q(\sqrt{-1}) \) None 325.2.c.c \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}-q^{3}-2 q^{4}-\beta q^{6}+\beta q^{7}+\cdots\)
325.2.c.d 325.c 13.b $2$ $2.595$ \(\Q(\sqrt{-1}) \) None 325.2.c.c \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}+q^{3}-2 q^{4}+\beta q^{6}+\beta q^{7}+\cdots\)
325.2.c.e 325.c 13.b $2$ $2.595$ \(\Q(\sqrt{-1}) \) None 65.2.d.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+2 q^{3}+q^{4}+2 i q^{6}+3 i q^{8}+\cdots\)
325.2.c.f 325.c 13.b $2$ $2.595$ \(\Q(\sqrt{-1}) \) None 325.2.c.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+2 q^{3}+q^{4}+2 i q^{6}-5 i q^{7}+\cdots\)
325.2.c.g 325.c 13.b $6$ $2.595$ 6.0.5089536.1 None 65.2.c.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{2}+(1+\beta _{1})q^{3}+(-2+\beta _{3})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(325, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(325, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)