Properties

Label 3060.2.e.j.1801.6
Level $3060$
Weight $2$
Character 3060.1801
Analytic conductor $24.434$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(1801,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.1801"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.37161216.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 15x^{4} + 51x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 340)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1801.6
Root \(2.27307i\) of defining polynomial
Character \(\chi\) \(=\) 3060.1801
Dual form 3060.2.e.j.1801.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{5} +1.27307i q^{7} -5.43993i q^{11} -0.166860 q^{13} +(-2.27307 + 3.43993i) q^{17} -2.54615 q^{19} +3.27307i q^{23} -1.00000 q^{25} -6.54615i q^{29} +5.98608i q^{31} -1.27307 q^{35} +4.00000i q^{37} +8.54615i q^{41} +2.71301 q^{43} -10.7130 q^{47} +5.37929 q^{49} -12.8799 q^{53} +5.43993 q^{55} +6.21243 q^{59} +7.42601i q^{61} -0.166860i q^{65} -6.37929 q^{67} -2.89379i q^{71} +12.5461i q^{73} +6.92543 q^{77} -3.77365i q^{79} -13.5929 q^{83} +(-3.43993 - 2.27307i) q^{85} +5.83314 q^{89} -0.212425i q^{91} -2.54615i q^{95} +1.45385i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{17} + 16 q^{19} - 6 q^{25} + 8 q^{35} - 16 q^{43} - 32 q^{47} + 2 q^{49} - 44 q^{53} + 16 q^{55} + 8 q^{59} - 8 q^{67} - 20 q^{77} - 16 q^{83} - 4 q^{85} + 36 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.27307i 0.481176i 0.970627 + 0.240588i \(0.0773403\pi\)
−0.970627 + 0.240588i \(0.922660\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.43993i 1.64020i −0.572219 0.820101i \(-0.693917\pi\)
0.572219 0.820101i \(-0.306083\pi\)
\(12\) 0 0
\(13\) −0.166860 −0.0462787 −0.0231394 0.999732i \(-0.507366\pi\)
−0.0231394 + 0.999732i \(0.507366\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.27307 + 3.43993i −0.551301 + 0.834306i
\(18\) 0 0
\(19\) −2.54615 −0.584126 −0.292063 0.956399i \(-0.594342\pi\)
−0.292063 + 0.956399i \(0.594342\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.27307i 0.682483i 0.939976 + 0.341241i \(0.110847\pi\)
−0.939976 + 0.341241i \(0.889153\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.54615i 1.21559i −0.794094 0.607794i \(-0.792054\pi\)
0.794094 0.607794i \(-0.207946\pi\)
\(30\) 0 0
\(31\) 5.98608i 1.07513i 0.843222 + 0.537566i \(0.180656\pi\)
−0.843222 + 0.537566i \(0.819344\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.27307 −0.215189
\(36\) 0 0
\(37\) 4.00000i 0.657596i 0.944400 + 0.328798i \(0.106644\pi\)
−0.944400 + 0.328798i \(0.893356\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.54615i 1.33468i 0.744752 + 0.667342i \(0.232568\pi\)
−0.744752 + 0.667342i \(0.767432\pi\)
\(42\) 0 0
\(43\) 2.71301 0.413730 0.206865 0.978370i \(-0.433674\pi\)
0.206865 + 0.978370i \(0.433674\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.7130 −1.56265 −0.781326 0.624123i \(-0.785456\pi\)
−0.781326 + 0.624123i \(0.785456\pi\)
\(48\) 0 0
\(49\) 5.37929 0.768469
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −12.8799 −1.76919 −0.884593 0.466364i \(-0.845564\pi\)
−0.884593 + 0.466364i \(0.845564\pi\)
\(54\) 0 0
\(55\) 5.43993 0.733520
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.21243 0.808789 0.404394 0.914585i \(-0.367482\pi\)
0.404394 + 0.914585i \(0.367482\pi\)
\(60\) 0 0
\(61\) 7.42601i 0.950803i 0.879769 + 0.475402i \(0.157697\pi\)
−0.879769 + 0.475402i \(0.842303\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.166860i 0.0206965i
\(66\) 0 0
\(67\) −6.37929 −0.779354 −0.389677 0.920952i \(-0.627413\pi\)
−0.389677 + 0.920952i \(0.627413\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.89379i 0.343429i −0.985147 0.171715i \(-0.945069\pi\)
0.985147 0.171715i \(-0.0549307\pi\)
\(72\) 0 0
\(73\) 12.5461i 1.46842i 0.678925 + 0.734208i \(0.262446\pi\)
−0.678925 + 0.734208i \(0.737554\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.92543 0.789226
\(78\) 0 0
\(79\) 3.77365i 0.424569i −0.977208 0.212285i \(-0.931910\pi\)
0.977208 0.212285i \(-0.0680904\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −13.5929 −1.49201 −0.746006 0.665939i \(-0.768031\pi\)
−0.746006 + 0.665939i \(0.768031\pi\)
\(84\) 0 0
\(85\) −3.43993 2.27307i −0.373113 0.246549i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.83314 0.618312 0.309156 0.951011i \(-0.399954\pi\)
0.309156 + 0.951011i \(0.399954\pi\)
\(90\) 0 0
\(91\) 0.212425i 0.0222682i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.54615i 0.261229i
\(96\) 0 0
\(97\) 1.45385i 0.147617i 0.997272 + 0.0738083i \(0.0235153\pi\)
−0.997272 + 0.0738083i \(0.976485\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −11.5929 −1.15353 −0.576767 0.816909i \(-0.695686\pi\)
−0.576767 + 0.816909i \(0.695686\pi\)
\(102\) 0 0
\(103\) 8.92543 0.879449 0.439724 0.898133i \(-0.355076\pi\)
0.439724 + 0.898133i \(0.355076\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.84706i 0.178562i −0.996006 0.0892811i \(-0.971543\pi\)
0.996006 0.0892811i \(-0.0284569\pi\)
\(108\) 0 0
\(109\) 10.0000i 0.957826i −0.877862 0.478913i \(-0.841031\pi\)
0.877862 0.478913i \(-0.158969\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 17.9722i 1.69068i 0.534230 + 0.845339i \(0.320602\pi\)
−0.534230 + 0.845339i \(0.679398\pi\)
\(114\) 0 0
\(115\) −3.27307 −0.305216
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.37929 2.89379i −0.401448 0.265273i
\(120\) 0 0
\(121\) −18.5929 −1.69026
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −11.8053 −1.04755 −0.523775 0.851856i \(-0.675477\pi\)
−0.523775 + 0.851856i \(0.675477\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.56007i 0.398415i 0.979957 + 0.199207i \(0.0638368\pi\)
−0.979957 + 0.199207i \(0.936163\pi\)
\(132\) 0 0
\(133\) 3.24143i 0.281068i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.16686 0.697742 0.348871 0.937171i \(-0.386565\pi\)
0.348871 + 0.937171i \(0.386565\pi\)
\(138\) 0 0
\(139\) 8.31980i 0.705676i −0.935684 0.352838i \(-0.885217\pi\)
0.935684 0.352838i \(-0.114783\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.907709i 0.0759064i
\(144\) 0 0
\(145\) 6.54615 0.543628
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −21.9722 −1.80003 −0.900015 0.435860i \(-0.856444\pi\)
−0.900015 + 0.435860i \(0.856444\pi\)
\(150\) 0 0
\(151\) −10.8799 −0.885391 −0.442695 0.896672i \(-0.645978\pi\)
−0.442695 + 0.896672i \(0.645978\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −5.98608 −0.480813
\(156\) 0 0
\(157\) −13.9722 −1.11510 −0.557550 0.830144i \(-0.688258\pi\)
−0.557550 + 0.830144i \(0.688258\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.16686 −0.328395
\(162\) 0 0
\(163\) 8.93935i 0.700184i −0.936715 0.350092i \(-0.886150\pi\)
0.936715 0.350092i \(-0.113850\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.39321i 0.185192i 0.995704 + 0.0925959i \(0.0295165\pi\)
−0.995704 + 0.0925959i \(0.970484\pi\)
\(168\) 0 0
\(169\) −12.9722 −0.997858
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.42601i 0.108418i 0.998530 + 0.0542088i \(0.0172637\pi\)
−0.998530 + 0.0542088i \(0.982736\pi\)
\(174\) 0 0
\(175\) 1.27307i 0.0962353i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −13.0923 −0.978564 −0.489282 0.872126i \(-0.662741\pi\)
−0.489282 + 0.872126i \(0.662741\pi\)
\(180\) 0 0
\(181\) 19.9722i 1.48452i −0.670113 0.742259i \(-0.733754\pi\)
0.670113 0.742259i \(-0.266246\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) 18.7130 + 12.3654i 1.36843 + 0.904245i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 20.3059 1.46928 0.734641 0.678456i \(-0.237351\pi\)
0.734641 + 0.678456i \(0.237351\pi\)
\(192\) 0 0
\(193\) 12.2124i 0.879070i −0.898226 0.439535i \(-0.855143\pi\)
0.898226 0.439535i \(-0.144857\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 13.3186i 0.944133i 0.881563 + 0.472067i \(0.156492\pi\)
−0.881563 + 0.472067i \(0.843508\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.33372 0.584913
\(204\) 0 0
\(205\) −8.54615 −0.596889
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 13.8509i 0.958084i
\(210\) 0 0
\(211\) 20.8659i 1.43647i 0.695800 + 0.718235i \(0.255050\pi\)
−0.695800 + 0.718235i \(0.744950\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.71301i 0.185025i
\(216\) 0 0
\(217\) −7.62071 −0.517328
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.379285 0.573988i 0.0255135 0.0386106i
\(222\) 0 0
\(223\) 13.2592 0.887898 0.443949 0.896052i \(-0.353577\pi\)
0.443949 + 0.896052i \(0.353577\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.27307i 0.615475i 0.951471 + 0.307738i \(0.0995719\pi\)
−0.951471 + 0.307738i \(0.900428\pi\)
\(228\) 0 0
\(229\) −14.1669 −0.936172 −0.468086 0.883683i \(-0.655056\pi\)
−0.468086 + 0.883683i \(0.655056\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 29.0644i 1.90408i 0.305981 + 0.952038i \(0.401016\pi\)
−0.305981 + 0.952038i \(0.598984\pi\)
\(234\) 0 0
\(235\) 10.7130i 0.698839i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.42601 0.350980 0.175490 0.984481i \(-0.443849\pi\)
0.175490 + 0.984481i \(0.443849\pi\)
\(240\) 0 0
\(241\) 20.2124i 1.30200i 0.759079 + 0.650998i \(0.225650\pi\)
−0.759079 + 0.650998i \(0.774350\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 5.37929i 0.343670i
\(246\) 0 0
\(247\) 0.424850 0.0270326
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.3047 1.21850 0.609251 0.792977i \(-0.291470\pi\)
0.609251 + 0.792977i \(0.291470\pi\)
\(252\) 0 0
\(253\) 17.8053 1.11941
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.59287 −0.0993606 −0.0496803 0.998765i \(-0.515820\pi\)
−0.0496803 + 0.998765i \(0.515820\pi\)
\(258\) 0 0
\(259\) −5.09229 −0.316420
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.37929 0.146713 0.0733565 0.997306i \(-0.476629\pi\)
0.0733565 + 0.997306i \(0.476629\pi\)
\(264\) 0 0
\(265\) 12.8799i 0.791204i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.4249i 1.12338i 0.827347 + 0.561691i \(0.189849\pi\)
−0.827347 + 0.561691i \(0.810151\pi\)
\(270\) 0 0
\(271\) 25.0923 1.52425 0.762124 0.647431i \(-0.224157\pi\)
0.762124 + 0.647431i \(0.224157\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.43993i 0.328040i
\(276\) 0 0
\(277\) 12.1846i 0.732101i −0.930595 0.366050i \(-0.880710\pi\)
0.930595 0.366050i \(-0.119290\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.21243 −0.251292 −0.125646 0.992075i \(-0.540100\pi\)
−0.125646 + 0.992075i \(0.540100\pi\)
\(282\) 0 0
\(283\) 16.4867i 0.980030i 0.871714 + 0.490015i \(0.163009\pi\)
−0.871714 + 0.490015i \(0.836991\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10.8799 −0.642218
\(288\) 0 0
\(289\) −6.66628 15.6384i −0.392134 0.919908i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.57399 0.267215 0.133608 0.991034i \(-0.457344\pi\)
0.133608 + 0.991034i \(0.457344\pi\)
\(294\) 0 0
\(295\) 6.21243i 0.361701i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.546146i 0.0315844i
\(300\) 0 0
\(301\) 3.45385i 0.199077i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7.42601 −0.425212
\(306\) 0 0
\(307\) 15.0189 0.857173 0.428586 0.903501i \(-0.359012\pi\)
0.428586 + 0.903501i \(0.359012\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.22635i 0.353064i −0.984295 0.176532i \(-0.943512\pi\)
0.984295 0.176532i \(-0.0564879\pi\)
\(312\) 0 0
\(313\) 4.54615i 0.256963i 0.991712 + 0.128482i \(0.0410103\pi\)
−0.991712 + 0.128482i \(0.958990\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.4260i 0.641749i −0.947122 0.320874i \(-0.896023\pi\)
0.947122 0.320874i \(-0.103977\pi\)
\(318\) 0 0
\(319\) −35.6106 −1.99381
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.78757 8.75857i 0.322029 0.487340i
\(324\) 0 0
\(325\) 0.166860 0.00925574
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 13.6384i 0.751911i
\(330\) 0 0
\(331\) 3.63844 0.199987 0.0999933 0.994988i \(-0.468118\pi\)
0.0999933 + 0.994988i \(0.468118\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.37929i 0.348538i
\(336\) 0 0
\(337\) 7.97216i 0.434271i 0.976141 + 0.217136i \(0.0696714\pi\)
−0.976141 + 0.217136i \(0.930329\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 32.5639 1.76343
\(342\) 0 0
\(343\) 15.7597i 0.850946i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.152939i 0.00821020i −0.999992 0.00410510i \(-0.998693\pi\)
0.999992 0.00410510i \(-0.00130670\pi\)
\(348\) 0 0
\(349\) −4.21243 −0.225486 −0.112743 0.993624i \(-0.535964\pi\)
−0.112743 + 0.993624i \(0.535964\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.66744 −0.354872 −0.177436 0.984132i \(-0.556780\pi\)
−0.177436 + 0.984132i \(0.556780\pi\)
\(354\) 0 0
\(355\) 2.89379 0.153586
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.51830 0.132911 0.0664555 0.997789i \(-0.478831\pi\)
0.0664555 + 0.997789i \(0.478831\pi\)
\(360\) 0 0
\(361\) −12.5171 −0.658797
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −12.5461 −0.656695
\(366\) 0 0
\(367\) 19.1518i 0.999715i −0.866108 0.499857i \(-0.833386\pi\)
0.866108 0.499857i \(-0.166614\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 16.3970i 0.851290i
\(372\) 0 0
\(373\) 24.9254 1.29059 0.645295 0.763934i \(-0.276734\pi\)
0.645295 + 0.763934i \(0.276734\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.09229i 0.0562559i
\(378\) 0 0
\(379\) 7.41209i 0.380734i −0.981713 0.190367i \(-0.939032\pi\)
0.981713 0.190367i \(-0.0609677\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −30.0177 −1.53383 −0.766917 0.641746i \(-0.778210\pi\)
−0.766917 + 0.641746i \(0.778210\pi\)
\(384\) 0 0
\(385\) 6.92543i 0.352953i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −24.6573 −1.25018 −0.625088 0.780554i \(-0.714937\pi\)
−0.625088 + 0.780554i \(0.714937\pi\)
\(390\) 0 0
\(391\) −11.2592 7.43993i −0.569400 0.376254i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.77365 0.189873
\(396\) 0 0
\(397\) 16.8520i 0.845779i 0.906181 + 0.422889i \(0.138984\pi\)
−0.906181 + 0.422889i \(0.861016\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 22.5183i 1.12451i 0.826964 + 0.562255i \(0.190066\pi\)
−0.826964 + 0.562255i \(0.809934\pi\)
\(402\) 0 0
\(403\) 0.998839i 0.0497557i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 21.7597 1.07859
\(408\) 0 0
\(409\) 14.0000 0.692255 0.346128 0.938187i \(-0.387496\pi\)
0.346128 + 0.938187i \(0.387496\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.90887i 0.389170i
\(414\) 0 0
\(415\) 13.5929i 0.667248i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 35.4399i 1.73135i −0.500603 0.865677i \(-0.666888\pi\)
0.500603 0.865677i \(-0.333112\pi\)
\(420\) 0 0
\(421\) −27.2313 −1.32717 −0.663586 0.748100i \(-0.730966\pi\)
−0.663586 + 0.748100i \(0.730966\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.27307 3.43993i 0.110260 0.166861i
\(426\) 0 0
\(427\) −9.45385 −0.457504
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.56007i 0.412324i −0.978518 0.206162i \(-0.933903\pi\)
0.978518 0.206162i \(-0.0660974\pi\)
\(432\) 0 0
\(433\) 6.68516 0.321268 0.160634 0.987014i \(-0.448646\pi\)
0.160634 + 0.987014i \(0.448646\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.33372i 0.398656i
\(438\) 0 0
\(439\) 35.2908i 1.68434i −0.539214 0.842169i \(-0.681279\pi\)
0.539214 0.842169i \(-0.318721\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 27.7775 1.31975 0.659873 0.751377i \(-0.270610\pi\)
0.659873 + 0.751377i \(0.270610\pi\)
\(444\) 0 0
\(445\) 5.83314i 0.276517i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.30588i 0.297593i −0.988868 0.148796i \(-0.952460\pi\)
0.988868 0.148796i \(-0.0475399\pi\)
\(450\) 0 0
\(451\) 46.4905 2.18915
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.212425 0.00995865
\(456\) 0 0
\(457\) 15.1657 0.709421 0.354711 0.934976i \(-0.384579\pi\)
0.354711 + 0.934976i \(0.384579\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −29.3047 −1.36486 −0.682428 0.730952i \(-0.739076\pi\)
−0.682428 + 0.730952i \(0.739076\pi\)
\(462\) 0 0
\(463\) −17.2592 −0.802101 −0.401050 0.916056i \(-0.631355\pi\)
−0.401050 + 0.916056i \(0.631355\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 16.8065 0.777710 0.388855 0.921299i \(-0.372871\pi\)
0.388855 + 0.921299i \(0.372871\pi\)
\(468\) 0 0
\(469\) 8.12130i 0.375007i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 14.7586i 0.678600i
\(474\) 0 0
\(475\) 2.54615 0.116825
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.5044i 0.571340i −0.958328 0.285670i \(-0.907784\pi\)
0.958328 0.285670i \(-0.0922161\pi\)
\(480\) 0 0
\(481\) 0.667441i 0.0304327i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.45385 −0.0660161
\(486\) 0 0
\(487\) 24.4867i 1.10960i −0.831985 0.554798i \(-0.812795\pi\)
0.831985 0.554798i \(-0.187205\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 14.0935 0.636029 0.318014 0.948086i \(-0.396984\pi\)
0.318014 + 0.948086i \(0.396984\pi\)
\(492\) 0 0
\(493\) 22.5183 + 14.8799i 1.01417 + 0.670155i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.68400 0.165250
\(498\) 0 0
\(499\) 5.89495i 0.263894i −0.991257 0.131947i \(-0.957877\pi\)
0.991257 0.131947i \(-0.0421229\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.0328i 0.670280i −0.942168 0.335140i \(-0.891216\pi\)
0.942168 0.335140i \(-0.108784\pi\)
\(504\) 0 0
\(505\) 11.5929i 0.515876i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −14.4249 −0.639370 −0.319685 0.947524i \(-0.603577\pi\)
−0.319685 + 0.947524i \(0.603577\pi\)
\(510\) 0 0
\(511\) −15.9722 −0.706567
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8.92543i 0.393301i
\(516\) 0 0
\(517\) 58.2780i 2.56307i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9.42601i 0.412961i −0.978451 0.206481i \(-0.933799\pi\)
0.978451 0.206481i \(-0.0662010\pi\)
\(522\) 0 0
\(523\) 19.7142 0.862040 0.431020 0.902342i \(-0.358154\pi\)
0.431020 + 0.902342i \(0.358154\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −20.5917 13.6068i −0.896989 0.592721i
\(528\) 0 0
\(529\) 12.2870 0.534217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.42601i 0.0617674i
\(534\) 0 0
\(535\) 1.84706 0.0798554
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 29.2630i 1.26044i
\(540\) 0 0
\(541\) 15.2136i 0.654083i 0.945010 + 0.327042i \(0.106052\pi\)
−0.945010 + 0.327042i \(0.893948\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10.0000 0.428353
\(546\) 0 0
\(547\) 27.5790i 1.17919i −0.807699 0.589595i \(-0.799287\pi\)
0.807699 0.589595i \(-0.200713\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 16.6674i 0.710057i
\(552\) 0 0
\(553\) 4.80414 0.204293
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 36.1112 1.53008 0.765040 0.643983i \(-0.222719\pi\)
0.765040 + 0.643983i \(0.222719\pi\)
\(558\) 0 0
\(559\) −0.452693 −0.0191469
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.1112 1.01616 0.508082 0.861308i \(-0.330355\pi\)
0.508082 + 0.861308i \(0.330355\pi\)
\(564\) 0 0
\(565\) −17.9722 −0.756094
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 23.7597 0.996060 0.498030 0.867160i \(-0.334057\pi\)
0.498030 + 0.867160i \(0.334057\pi\)
\(570\) 0 0
\(571\) 30.2920i 1.26768i 0.773465 + 0.633839i \(0.218522\pi\)
−0.773465 + 0.633839i \(0.781478\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.27307i 0.136497i
\(576\) 0 0
\(577\) 10.6852 0.444829 0.222415 0.974952i \(-0.428606\pi\)
0.222415 + 0.974952i \(0.428606\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 17.3047i 0.717921i
\(582\) 0 0
\(583\) 70.0656i 2.90182i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.64856 −0.0680432 −0.0340216 0.999421i \(-0.510832\pi\)
−0.0340216 + 0.999421i \(0.510832\pi\)
\(588\) 0 0
\(589\) 15.2414i 0.628012i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.21359 0.0498360 0.0249180 0.999689i \(-0.492068\pi\)
0.0249180 + 0.999689i \(0.492068\pi\)
\(594\) 0 0
\(595\) 2.89379 4.37929i 0.118634 0.179533i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8.36156 0.341644 0.170822 0.985302i \(-0.445358\pi\)
0.170822 + 0.985302i \(0.445358\pi\)
\(600\) 0 0
\(601\) 7.06445i 0.288165i 0.989566 + 0.144082i \(0.0460231\pi\)
−0.989566 + 0.144082i \(0.953977\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 18.5929i 0.755908i
\(606\) 0 0
\(607\) 22.9115i 0.929950i 0.885324 + 0.464975i \(0.153937\pi\)
−0.885324 + 0.464975i \(0.846063\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.78757 0.0723175
\(612\) 0 0
\(613\) −0.573988 −0.0231832 −0.0115916 0.999933i \(-0.503690\pi\)
−0.0115916 + 0.999933i \(0.503690\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11.7319i 0.472308i −0.971716 0.236154i \(-0.924113\pi\)
0.971716 0.236154i \(-0.0758870\pi\)
\(618\) 0 0
\(619\) 2.50438i 0.100660i −0.998733 0.0503298i \(-0.983973\pi\)
0.998733 0.0503298i \(-0.0160272\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7.42601i 0.297517i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −13.7597 9.09229i −0.548636 0.362533i
\(630\) 0 0
\(631\) 38.0656 1.51537 0.757684 0.652622i \(-0.226331\pi\)
0.757684 + 0.652622i \(0.226331\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 11.8053i 0.468479i
\(636\) 0 0
\(637\) −0.897589 −0.0355638
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 18.7307i 0.739819i 0.929068 + 0.369910i \(0.120611\pi\)
−0.929068 + 0.369910i \(0.879389\pi\)
\(642\) 0 0
\(643\) 8.72693i 0.344156i −0.985083 0.172078i \(-0.944952\pi\)
0.985083 0.172078i \(-0.0550482\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −14.6573 −0.576239 −0.288119 0.957594i \(-0.593030\pi\)
−0.288119 + 0.957594i \(0.593030\pi\)
\(648\) 0 0
\(649\) 33.7952i 1.32658i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 17.4260i 0.681933i −0.940076 0.340966i \(-0.889246\pi\)
0.940076 0.340966i \(-0.110754\pi\)
\(654\) 0 0
\(655\) −4.56007 −0.178177
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 39.8532 1.55246 0.776230 0.630450i \(-0.217130\pi\)
0.776230 + 0.630450i \(0.217130\pi\)
\(660\) 0 0
\(661\) 40.8242 1.58788 0.793938 0.607998i \(-0.208027\pi\)
0.793938 + 0.607998i \(0.208027\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.24143 0.125697
\(666\) 0 0
\(667\) 21.4260 0.829618
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 40.3970 1.55951
\(672\) 0 0
\(673\) 25.5473i 0.984776i −0.870376 0.492388i \(-0.836124\pi\)
0.870376 0.492388i \(-0.163876\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.33488i 0.128170i 0.997944 + 0.0640850i \(0.0204129\pi\)
−0.997944 + 0.0640850i \(0.979587\pi\)
\(678\) 0 0
\(679\) −1.85086 −0.0710296
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 46.0973i 1.76386i 0.471378 + 0.881931i \(0.343757\pi\)
−0.471378 + 0.881931i \(0.656243\pi\)
\(684\) 0 0
\(685\) 8.16686i 0.312040i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.14914 0.0818756
\(690\) 0 0
\(691\) 18.9849i 0.722220i −0.932523 0.361110i \(-0.882398\pi\)
0.932523 0.361110i \(-0.117602\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.31980 0.315588
\(696\) 0 0
\(697\) −29.3982 19.4260i −1.11354 0.735813i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −42.8976 −1.62022 −0.810110 0.586278i \(-0.800593\pi\)
−0.810110 + 0.586278i \(0.800593\pi\)
\(702\) 0 0
\(703\) 10.1846i 0.384119i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 14.7586i 0.555053i
\(708\) 0 0
\(709\) 25.5450i 0.959362i 0.877443 + 0.479681i \(0.159248\pi\)
−0.877443 + 0.479681i \(0.840752\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −19.5929 −0.733759
\(714\) 0 0
\(715\) −0.907709 −0.0339464
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 5.10621i 0.190430i 0.995457 + 0.0952148i \(0.0303538\pi\)
−0.995457 + 0.0952148i \(0.969646\pi\)
\(720\) 0 0
\(721\) 11.3627i 0.423170i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.54615i 0.243118i
\(726\) 0 0
\(727\) 23.3526 0.866100 0.433050 0.901370i \(-0.357437\pi\)
0.433050 + 0.901370i \(0.357437\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6.16686 + 9.33256i −0.228090 + 0.345177i
\(732\) 0 0
\(733\) −35.3703 −1.30643 −0.653216 0.757171i \(-0.726581\pi\)
−0.653216 + 0.757171i \(0.726581\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 34.7029i 1.27830i
\(738\) 0 0
\(739\) −22.3036 −0.820450 −0.410225 0.911984i \(-0.634550\pi\)
−0.410225 + 0.911984i \(0.634550\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10.9394i 0.401326i 0.979660 + 0.200663i \(0.0643096\pi\)
−0.979660 + 0.200663i \(0.935690\pi\)
\(744\) 0 0
\(745\) 21.9722i 0.804998i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.35144 0.0859199
\(750\) 0 0
\(751\) 14.9216i 0.544498i −0.962227 0.272249i \(-0.912233\pi\)
0.962227 0.272249i \(-0.0877674\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 10.8799i 0.395959i
\(756\) 0 0
\(757\) 22.2603 0.809065 0.404532 0.914524i \(-0.367434\pi\)
0.404532 + 0.914524i \(0.367434\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 19.5929 0.710241 0.355121 0.934821i \(-0.384440\pi\)
0.355121 + 0.934821i \(0.384440\pi\)
\(762\) 0 0
\(763\) 12.7307 0.460883
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.03661 −0.0374297
\(768\) 0 0
\(769\) −37.1100 −1.33822 −0.669111 0.743163i \(-0.733325\pi\)
−0.669111 + 0.743163i \(0.733325\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 38.7763 1.39469 0.697343 0.716737i \(-0.254365\pi\)
0.697343 + 0.716737i \(0.254365\pi\)
\(774\) 0 0
\(775\) 5.98608i 0.215026i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 21.7597i 0.779623i
\(780\) 0 0
\(781\) −15.7420 −0.563293
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 13.9722i 0.498688i
\(786\) 0 0
\(787\) 10.6080i 0.378133i −0.981964 0.189066i \(-0.939454\pi\)
0.981964 0.189066i \(-0.0605461\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −22.8799 −0.813514
\(792\) 0 0
\(793\) 1.23911i 0.0440019i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −9.66628 −0.342397 −0.171199 0.985237i \(-0.554764\pi\)
−0.171199 + 0.985237i \(0.554764\pi\)
\(798\) 0 0
\(799\) 24.3514 36.8520i 0.861492 1.30373i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 68.2502 2.40850
\(804\) 0 0
\(805\) 4.16686i 0.146863i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 42.5183i 1.49486i −0.664338 0.747432i \(-0.731287\pi\)
0.664338 0.747432i \(-0.268713\pi\)
\(810\) 0 0
\(811\) 6.65120i 0.233555i −0.993158 0.116778i \(-0.962744\pi\)
0.993158 0.116778i \(-0.0372565\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8.93935 0.313132
\(816\) 0 0
\(817\) −6.90771 −0.241670
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 44.7963i 1.56340i −0.623653 0.781702i \(-0.714352\pi\)
0.623653 0.781702i \(-0.285648\pi\)
\(822\) 0 0
\(823\) 9.36653i 0.326497i −0.986585 0.163248i \(-0.947803\pi\)
0.986585 0.163248i \(-0.0521972\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 44.7902i 1.55751i −0.627329 0.778754i \(-0.715852\pi\)
0.627329 0.778754i \(-0.284148\pi\)
\(828\) 0 0
\(829\) 36.8520 1.27992 0.639962 0.768407i \(-0.278950\pi\)
0.639962 + 0.768407i \(0.278950\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −12.2275 + 18.5044i −0.423658 + 0.641139i
\(834\) 0 0
\(835\) −2.39321 −0.0828203
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 11.6245i 0.401323i 0.979661 + 0.200661i \(0.0643091\pi\)
−0.979661 + 0.200661i \(0.935691\pi\)
\(840\) 0 0
\(841\) −13.8520 −0.477656
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.9722i 0.446256i
\(846\) 0 0
\(847\) 23.6701i 0.813314i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −13.0923 −0.448798
\(852\) 0 0
\(853\) 49.2792i 1.68729i 0.536903 + 0.843644i \(0.319594\pi\)
−0.536903 + 0.843644i \(0.680406\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 23.6408i 0.807553i 0.914858 + 0.403776i \(0.132303\pi\)
−0.914858 + 0.403776i \(0.867697\pi\)
\(858\) 0 0
\(859\) −14.0935 −0.480862 −0.240431 0.970666i \(-0.577289\pi\)
−0.240431 + 0.970666i \(0.577289\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4.28583 −0.145891 −0.0729457 0.997336i \(-0.523240\pi\)
−0.0729457 + 0.997336i \(0.523240\pi\)
\(864\) 0 0
\(865\) −1.42601 −0.0484859
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −20.5284 −0.696379
\(870\) 0 0
\(871\) 1.06445 0.0360675
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.27307 0.0430377
\(876\) 0 0
\(877\) 7.85086i 0.265105i 0.991176 + 0.132552i \(0.0423173\pi\)
−0.991176 + 0.132552i \(0.957683\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 5.30472i 0.178720i 0.995999 + 0.0893602i \(0.0284822\pi\)
−0.995999 + 0.0893602i \(0.971518\pi\)
\(882\) 0 0
\(883\) 3.74201 0.125929 0.0629643 0.998016i \(-0.479945\pi\)
0.0629643 + 0.998016i \(0.479945\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.75477i 0.159650i 0.996809 + 0.0798248i \(0.0254361\pi\)
−0.996809 + 0.0798248i \(0.974564\pi\)
\(888\) 0 0
\(889\) 15.0290i 0.504057i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 27.2769 0.912786
\(894\) 0 0
\(895\) 13.0923i 0.437627i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 39.1857 1.30692
\(900\) 0 0
\(901\) 29.2769 44.3059i 0.975354 1.47604i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 19.9722 0.663897
\(906\) 0 0
\(907\) 34.9771i 1.16140i −0.814119 0.580698i \(-0.802780\pi\)
0.814119 0.580698i \(-0.197220\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 20.2920i 0.672303i 0.941808 + 0.336151i \(0.109125\pi\)
−0.941808 + 0.336151i \(0.890875\pi\)
\(912\) 0 0
\(913\) 73.9443i 2.44720i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −5.80530 −0.191708
\(918\) 0 0
\(919\) −26.8242 −0.884848 −0.442424 0.896806i \(-0.645881\pi\)
−0.442424 + 0.896806i \(0.645881\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0.482858i 0.0158935i
\(924\) 0 0
\(925\) 4.00000i 0.131519i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.546146i 0.0179185i −0.999960 0.00895923i \(-0.997148\pi\)
0.999960 0.00895923i \(-0.00285185\pi\)
\(930\) 0 0
\(931\) −13.6964 −0.448883
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −12.3654 + 18.7130i −0.404391 + 0.611981i
\(936\) 0 0
\(937\) −22.7864 −0.744400 −0.372200 0.928153i \(-0.621396\pi\)
−0.372200 + 0.928153i \(0.621396\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 8.69528i 0.283458i 0.989905 + 0.141729i \(0.0452662\pi\)
−0.989905 + 0.141729i \(0.954734\pi\)
\(942\) 0 0
\(943\) −27.9722 −0.910899
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 55.3665i 1.79917i 0.436745 + 0.899585i \(0.356131\pi\)
−0.436745 + 0.899585i \(0.643869\pi\)
\(948\) 0 0
\(949\) 2.09345i 0.0679564i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −50.4426 −1.63400 −0.816998 0.576641i \(-0.804363\pi\)
−0.816998 + 0.576641i \(0.804363\pi\)
\(954\) 0 0
\(955\) 20.3059i 0.657083i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 10.3970i 0.335737i
\(960\) 0 0
\(961\) −4.83314 −0.155908
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 12.2124 0.393132
\(966\) 0 0
\(967\) 51.1379 1.64448 0.822241 0.569139i \(-0.192723\pi\)
0.822241 + 0.569139i \(0.192723\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 36.1869 1.16129 0.580647 0.814156i \(-0.302800\pi\)
0.580647 + 0.814156i \(0.302800\pi\)
\(972\) 0 0
\(973\) 10.5917 0.339555
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 25.5828 0.818465 0.409232 0.912430i \(-0.365797\pi\)
0.409232 + 0.912430i \(0.365797\pi\)
\(978\) 0 0
\(979\) 31.7319i 1.01416i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 18.7548i 0.598184i −0.954224 0.299092i \(-0.903316\pi\)
0.954224 0.299092i \(-0.0966838\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.87987i 0.282363i
\(990\) 0 0
\(991\) 20.7168i 0.658091i −0.944314 0.329046i \(-0.893273\pi\)
0.944314 0.329046i \(-0.106727\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −13.3186 −0.422229
\(996\) 0 0
\(997\) 20.9455i 0.663350i 0.943394 + 0.331675i \(0.107614\pi\)
−0.943394 + 0.331675i \(0.892386\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.e.j.1801.6 6
3.2 odd 2 340.2.c.a.101.6 yes 6
12.11 even 2 1360.2.c.e.1121.1 6
15.2 even 4 1700.2.g.c.849.6 6
15.8 even 4 1700.2.g.b.849.2 6
15.14 odd 2 1700.2.c.b.101.1 6
17.16 even 2 inner 3060.2.e.j.1801.1 6
51.38 odd 4 5780.2.a.k.1.3 3
51.47 odd 4 5780.2.a.i.1.1 3
51.50 odd 2 340.2.c.a.101.1 6
204.203 even 2 1360.2.c.e.1121.6 6
255.152 even 4 1700.2.g.b.849.1 6
255.203 even 4 1700.2.g.c.849.5 6
255.254 odd 2 1700.2.c.b.101.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
340.2.c.a.101.1 6 51.50 odd 2
340.2.c.a.101.6 yes 6 3.2 odd 2
1360.2.c.e.1121.1 6 12.11 even 2
1360.2.c.e.1121.6 6 204.203 even 2
1700.2.c.b.101.1 6 15.14 odd 2
1700.2.c.b.101.6 6 255.254 odd 2
1700.2.g.b.849.1 6 255.152 even 4
1700.2.g.b.849.2 6 15.8 even 4
1700.2.g.c.849.5 6 255.203 even 4
1700.2.g.c.849.6 6 15.2 even 4
3060.2.e.j.1801.1 6 17.16 even 2 inner
3060.2.e.j.1801.6 6 1.1 even 1 trivial
5780.2.a.i.1.1 3 51.47 odd 4
5780.2.a.k.1.3 3 51.38 odd 4