Properties

Label 3060.2.e
Level $3060$
Weight $2$
Character orbit 3060.e
Rep. character $\chi_{3060}(1801,\cdot)$
Character field $\Q$
Dimension $30$
Newform subspaces $10$
Sturm bound $1296$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(1296\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(7\), \(11\), \(47\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3060, [\chi])\).

Total New Old
Modular forms 672 30 642
Cusp forms 624 30 594
Eisenstein series 48 0 48

Trace form

\( 30 q - 6 q^{17} + 16 q^{19} - 30 q^{25} - 16 q^{47} - 70 q^{49} - 28 q^{53} - 16 q^{55} - 16 q^{59} + 24 q^{67} - 52 q^{77} + 16 q^{83} - 4 q^{85} + 4 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3060, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3060.2.e.a 3060.e 17.b $2$ $24.434$ \(\Q(\sqrt{-1}) \) None 1020.2.e.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{5}+2 i q^{11}-6 q^{13}+(-i+4)q^{17}+\cdots\)
3060.2.e.b 3060.e 17.b $2$ $24.434$ \(\Q(\sqrt{-1}) \) None 3060.2.e.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{5}-2 q^{13}+(i-4)q^{17}-4 i q^{23}+\cdots\)
3060.2.e.c 3060.e 17.b $2$ $24.434$ \(\Q(\sqrt{-1}) \) None 3060.2.e.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{5}+5 i q^{7}+5 i q^{11}-2 q^{13}+\cdots\)
3060.2.e.d 3060.e 17.b $2$ $24.434$ \(\Q(\sqrt{-1}) \) None 1020.2.e.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{5}+3 i q^{7}+3 i q^{11}-2 q^{13}+\cdots\)
3060.2.e.e 3060.e 17.b $2$ $24.434$ \(\Q(\sqrt{-1}) \) None 3060.2.e.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{5}+5 i q^{7}-5 i q^{11}-2 q^{13}+\cdots\)
3060.2.e.f 3060.e 17.b $2$ $24.434$ \(\Q(\sqrt{-1}) \) None 3060.2.e.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{5}-2 q^{13}+(-i+4)q^{17}+4 i q^{23}+\cdots\)
3060.2.e.g 3060.e 17.b $4$ $24.434$ \(\Q(\zeta_{8})\) None 1020.2.e.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_1 q^{5}+(\beta_{2}+\beta_1)q^{7}+(\beta_{2}+3\beta_1)q^{11}+\cdots\)
3060.2.e.h 3060.e 17.b $4$ $24.434$ \(\Q(i, \sqrt{33})\) None 1020.2.e.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{5}+\beta _{1}q^{7}+(-\beta _{1}-2\beta _{2})q^{11}+\cdots\)
3060.2.e.i 3060.e 17.b $4$ $24.434$ \(\Q(i, \sqrt{13})\) None 3060.2.e.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{5}+\beta _{2}q^{7}-\beta _{1}q^{11}+4q^{13}+\cdots\)
3060.2.e.j 3060.e 17.b $6$ $24.434$ 6.0.37161216.1 None 340.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{5}+(\beta _{1}+\beta _{4})q^{7}+(3\beta _{4}-\beta _{5})q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(3060, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3060, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(102, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(204, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(255, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(306, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(510, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(612, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(765, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1020, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1530, [\chi])\)\(^{\oplus 2}\)