Properties

Label 3060.2.e.j
Level $3060$
Weight $2$
Character orbit 3060.e
Analytic conductor $24.434$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(1801,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.1801"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.37161216.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 15x^{4} + 51x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 340)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{5} + (\beta_{4} + \beta_1) q^{7} + ( - \beta_{5} + 3 \beta_{4}) q^{11} + (\beta_{3} - \beta_{2}) q^{13} + (\beta_{5} - \beta_{4} + \beta_{2}) q^{17} + (2 \beta_{2} + 2) q^{19} + ( - \beta_{4} + \beta_1) q^{23}+ \cdots + ( - 6 \beta_{4} - 2 \beta_1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{17} + 16 q^{19} - 6 q^{25} + 8 q^{35} - 16 q^{43} - 32 q^{47} + 2 q^{49} - 44 q^{53} + 16 q^{55} + 8 q^{59} - 8 q^{67} - 20 q^{77} - 16 q^{83} - 4 q^{85} + 36 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 15x^{4} + 51x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} + 8\nu^{2} + 1 ) / 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} + 14\nu^{2} + 31 ) / 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} + 14\nu^{3} + 43\nu ) / 6 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 2\nu^{5} + 31\nu^{3} + 110\nu ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - \beta_{2} - 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} - 4\beta_{4} - 8\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -8\beta_{3} + 14\beta_{2} + 39 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -14\beta_{5} + 62\beta_{4} + 69\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1801.1
2.27307i
0.140435i
3.13264i
3.13264i
0.140435i
2.27307i
0 0 0 1.00000i 0 1.27307i 0 0 0
1801.2 0 0 0 1.00000i 0 1.14044i 0 0 0
1801.3 0 0 0 1.00000i 0 4.13264i 0 0 0
1801.4 0 0 0 1.00000i 0 4.13264i 0 0 0
1801.5 0 0 0 1.00000i 0 1.14044i 0 0 0
1801.6 0 0 0 1.00000i 0 1.27307i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1801.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3060.2.e.j 6
3.b odd 2 1 340.2.c.a 6
12.b even 2 1 1360.2.c.e 6
15.d odd 2 1 1700.2.c.b 6
15.e even 4 1 1700.2.g.b 6
15.e even 4 1 1700.2.g.c 6
17.b even 2 1 inner 3060.2.e.j 6
51.c odd 2 1 340.2.c.a 6
51.f odd 4 1 5780.2.a.i 3
51.f odd 4 1 5780.2.a.k 3
204.h even 2 1 1360.2.c.e 6
255.h odd 2 1 1700.2.c.b 6
255.o even 4 1 1700.2.g.b 6
255.o even 4 1 1700.2.g.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
340.2.c.a 6 3.b odd 2 1
340.2.c.a 6 51.c odd 2 1
1360.2.c.e 6 12.b even 2 1
1360.2.c.e 6 204.h even 2 1
1700.2.c.b 6 15.d odd 2 1
1700.2.c.b 6 255.h odd 2 1
1700.2.g.b 6 15.e even 4 1
1700.2.g.b 6 255.o even 4 1
1700.2.g.c 6 15.e even 4 1
1700.2.g.c 6 255.o even 4 1
3060.2.e.j 6 1.a even 1 1 trivial
3060.2.e.j 6 17.b even 2 1 inner
5780.2.a.i 3 51.f odd 4 1
5780.2.a.k 3 51.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3060, [\chi])\):

\( T_{7}^{6} + 20T_{7}^{4} + 52T_{7}^{2} + 36 \) Copy content Toggle raw display
\( T_{11}^{6} + 56T_{11}^{4} + 880T_{11}^{2} + 2916 \) Copy content Toggle raw display
\( T_{47}^{3} + 16T_{47}^{2} + 60T_{47} + 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{6} + 20 T^{4} + \cdots + 36 \) Copy content Toggle raw display
$11$ \( T^{6} + 56 T^{4} + \cdots + 2916 \) Copy content Toggle raw display
$13$ \( (T^{3} - 24 T - 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} - 2 T^{5} + \cdots + 4913 \) Copy content Toggle raw display
$19$ \( (T^{3} - 8 T^{2} - 8 T + 48)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 16 T^{4} + \cdots + 36 \) Copy content Toggle raw display
$29$ \( T^{6} + 64 T^{4} + \cdots + 2304 \) Copy content Toggle raw display
$31$ \( T^{6} + 108 T^{4} + \cdots + 45796 \) Copy content Toggle raw display
$37$ \( (T^{2} + 16)^{3} \) Copy content Toggle raw display
$41$ \( T^{6} + 92 T^{4} + \cdots + 5184 \) Copy content Toggle raw display
$43$ \( (T^{3} + 8 T^{2} - 4 T - 68)^{2} \) Copy content Toggle raw display
$47$ \( (T^{3} + 16 T^{2} + \cdots + 36)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} + 22 T^{2} + \cdots - 328)^{2} \) Copy content Toggle raw display
$59$ \( (T^{3} - 4 T^{2} + \cdots + 1008)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} + 236 T^{4} + \cdots + 207936 \) Copy content Toggle raw display
$67$ \( (T^{3} + 4 T^{2} + \cdots - 388)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} + 176 T^{4} + \cdots + 36 \) Copy content Toggle raw display
$73$ \( T^{6} + 220 T^{4} + \cdots + 28224 \) Copy content Toggle raw display
$79$ \( T^{6} + 364 T^{4} + \cdots + 427716 \) Copy content Toggle raw display
$83$ \( (T^{3} + 8 T^{2} + \cdots - 924)^{2} \) Copy content Toggle raw display
$89$ \( (T^{3} - 18 T^{2} + \cdots - 76)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 192 T^{4} + \cdots + 12544 \) Copy content Toggle raw display
show more
show less