Properties

Label 1700.2.g.c.849.6
Level $1700$
Weight $2$
Character 1700.849
Analytic conductor $13.575$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1700,2,Mod(849,1700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1700, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1700.849"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1700 = 2^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1700.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.5745683436\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.37161216.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 15x^{4} + 51x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 340)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 849.6
Root \(-2.27307i\) of defining polynomial
Character \(\chi\) \(=\) 1700.849
Dual form 1700.2.g.c.849.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.27307 q^{3} -1.27307 q^{7} +7.71301 q^{9} +5.43993i q^{11} +0.166860i q^{13} +(3.43993 + 2.27307i) q^{17} +2.54615 q^{19} -4.16686 q^{21} -3.27307 q^{23} +15.4260 q^{27} -6.54615i q^{29} +5.98608i q^{31} +17.8053i q^{33} -4.00000 q^{37} +0.546146i q^{39} -8.54615i q^{41} -2.71301i q^{43} +10.7130i q^{47} -5.37929 q^{49} +(11.2592 + 7.43993i) q^{51} -12.8799i q^{53} +8.33372 q^{57} +6.21243 q^{59} +7.42601i q^{61} -9.81922 q^{63} -6.37929i q^{67} -10.7130 q^{69} +2.89379i q^{71} +12.5461 q^{73} -6.92543i q^{77} +3.77365i q^{79} +27.3514 q^{81} -13.5929i q^{83} -21.4260i q^{87} +5.83314 q^{89} -0.212425i q^{91} +19.5929i q^{93} -1.45385 q^{97} +41.9582i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{3} + 8 q^{7} + 14 q^{9} + 4 q^{17} - 16 q^{19} - 24 q^{21} - 4 q^{23} + 28 q^{27} - 24 q^{37} - 2 q^{49} + 4 q^{51} + 48 q^{57} + 8 q^{59} - 12 q^{63} - 32 q^{69} + 44 q^{73} + 38 q^{81} + 36 q^{89}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1700\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(851\) \(1601\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.27307 1.88971 0.944855 0.327490i \(-0.106203\pi\)
0.944855 + 0.327490i \(0.106203\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.27307 −0.481176 −0.240588 0.970627i \(-0.577340\pi\)
−0.240588 + 0.970627i \(0.577340\pi\)
\(8\) 0 0
\(9\) 7.71301 2.57100
\(10\) 0 0
\(11\) 5.43993i 1.64020i 0.572219 + 0.820101i \(0.306083\pi\)
−0.572219 + 0.820101i \(0.693917\pi\)
\(12\) 0 0
\(13\) 0.166860i 0.0462787i 0.999732 + 0.0231394i \(0.00736614\pi\)
−0.999732 + 0.0231394i \(0.992634\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.43993 + 2.27307i 0.834306 + 0.551301i
\(18\) 0 0
\(19\) 2.54615 0.584126 0.292063 0.956399i \(-0.405658\pi\)
0.292063 + 0.956399i \(0.405658\pi\)
\(20\) 0 0
\(21\) −4.16686 −0.909283
\(22\) 0 0
\(23\) −3.27307 −0.682483 −0.341241 0.939976i \(-0.610847\pi\)
−0.341241 + 0.939976i \(0.610847\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 15.4260 2.96874
\(28\) 0 0
\(29\) 6.54615i 1.21559i −0.794094 0.607794i \(-0.792054\pi\)
0.794094 0.607794i \(-0.207946\pi\)
\(30\) 0 0
\(31\) 5.98608i 1.07513i 0.843222 + 0.537566i \(0.180656\pi\)
−0.843222 + 0.537566i \(0.819344\pi\)
\(32\) 0 0
\(33\) 17.8053i 3.09950i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) 0.546146i 0.0874533i
\(40\) 0 0
\(41\) 8.54615i 1.33468i −0.744752 0.667342i \(-0.767432\pi\)
0.744752 0.667342i \(-0.232568\pi\)
\(42\) 0 0
\(43\) 2.71301i 0.413730i −0.978370 0.206865i \(-0.933674\pi\)
0.978370 0.206865i \(-0.0663260\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.7130i 1.56265i 0.624123 + 0.781326i \(0.285456\pi\)
−0.624123 + 0.781326i \(0.714544\pi\)
\(48\) 0 0
\(49\) −5.37929 −0.768469
\(50\) 0 0
\(51\) 11.2592 + 7.43993i 1.57660 + 1.04180i
\(52\) 0 0
\(53\) 12.8799i 1.76919i −0.466364 0.884593i \(-0.654436\pi\)
0.466364 0.884593i \(-0.345564\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 8.33372 1.10383
\(58\) 0 0
\(59\) 6.21243 0.808789 0.404394 0.914585i \(-0.367482\pi\)
0.404394 + 0.914585i \(0.367482\pi\)
\(60\) 0 0
\(61\) 7.42601i 0.950803i 0.879769 + 0.475402i \(0.157697\pi\)
−0.879769 + 0.475402i \(0.842303\pi\)
\(62\) 0 0
\(63\) −9.81922 −1.23711
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.37929i 0.779354i −0.920952 0.389677i \(-0.872587\pi\)
0.920952 0.389677i \(-0.127413\pi\)
\(68\) 0 0
\(69\) −10.7130 −1.28969
\(70\) 0 0
\(71\) 2.89379i 0.343429i 0.985147 + 0.171715i \(0.0549307\pi\)
−0.985147 + 0.171715i \(0.945069\pi\)
\(72\) 0 0
\(73\) 12.5461 1.46842 0.734208 0.678925i \(-0.237554\pi\)
0.734208 + 0.678925i \(0.237554\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.92543i 0.789226i
\(78\) 0 0
\(79\) 3.77365i 0.424569i 0.977208 + 0.212285i \(0.0680904\pi\)
−0.977208 + 0.212285i \(0.931910\pi\)
\(80\) 0 0
\(81\) 27.3514 3.03905
\(82\) 0 0
\(83\) 13.5929i 1.49201i −0.665939 0.746006i \(-0.731969\pi\)
0.665939 0.746006i \(-0.268031\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 21.4260i 2.29711i
\(88\) 0 0
\(89\) 5.83314 0.618312 0.309156 0.951011i \(-0.399954\pi\)
0.309156 + 0.951011i \(0.399954\pi\)
\(90\) 0 0
\(91\) 0.212425i 0.0222682i
\(92\) 0 0
\(93\) 19.5929i 2.03169i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.45385 −0.147617 −0.0738083 0.997272i \(-0.523515\pi\)
−0.0738083 + 0.997272i \(0.523515\pi\)
\(98\) 0 0
\(99\) 41.9582i 4.21696i
\(100\) 0 0
\(101\) 11.5929 1.15353 0.576767 0.816909i \(-0.304314\pi\)
0.576767 + 0.816909i \(0.304314\pi\)
\(102\) 0 0
\(103\) 8.92543i 0.879449i −0.898133 0.439724i \(-0.855076\pi\)
0.898133 0.439724i \(-0.144924\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.84706 −0.178562 −0.0892811 0.996006i \(-0.528457\pi\)
−0.0892811 + 0.996006i \(0.528457\pi\)
\(108\) 0 0
\(109\) 10.0000i 0.957826i 0.877862 + 0.478913i \(0.158969\pi\)
−0.877862 + 0.478913i \(0.841031\pi\)
\(110\) 0 0
\(111\) −13.0923 −1.24267
\(112\) 0 0
\(113\) −17.9722 −1.69068 −0.845339 0.534230i \(-0.820602\pi\)
−0.845339 + 0.534230i \(0.820602\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.28699i 0.118983i
\(118\) 0 0
\(119\) −4.37929 2.89379i −0.401448 0.265273i
\(120\) 0 0
\(121\) −18.5929 −1.69026
\(122\) 0 0
\(123\) 27.9722i 2.52216i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 11.8053i 1.04755i −0.851856 0.523775i \(-0.824523\pi\)
0.851856 0.523775i \(-0.175477\pi\)
\(128\) 0 0
\(129\) 8.87987i 0.781829i
\(130\) 0 0
\(131\) 4.56007i 0.398415i −0.979957 0.199207i \(-0.936163\pi\)
0.979957 0.199207i \(-0.0638368\pi\)
\(132\) 0 0
\(133\) −3.24143 −0.281068
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.16686i 0.697742i −0.937171 0.348871i \(-0.886565\pi\)
0.937171 0.348871i \(-0.113435\pi\)
\(138\) 0 0
\(139\) 8.31980i 0.705676i 0.935684 + 0.352838i \(0.114783\pi\)
−0.935684 + 0.352838i \(0.885217\pi\)
\(140\) 0 0
\(141\) 35.0644i 2.95296i
\(142\) 0 0
\(143\) −0.907709 −0.0759064
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −17.6068 −1.45218
\(148\) 0 0
\(149\) −21.9722 −1.80003 −0.900015 0.435860i \(-0.856444\pi\)
−0.900015 + 0.435860i \(0.856444\pi\)
\(150\) 0 0
\(151\) −10.8799 −0.885391 −0.442695 0.896672i \(-0.645978\pi\)
−0.442695 + 0.896672i \(0.645978\pi\)
\(152\) 0 0
\(153\) 26.5322 + 17.5322i 2.14500 + 1.41740i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 13.9722i 1.11510i −0.830144 0.557550i \(-0.811742\pi\)
0.830144 0.557550i \(-0.188258\pi\)
\(158\) 0 0
\(159\) 42.1567i 3.34325i
\(160\) 0 0
\(161\) 4.16686 0.328395
\(162\) 0 0
\(163\) −8.93935 −0.700184 −0.350092 0.936715i \(-0.613850\pi\)
−0.350092 + 0.936715i \(0.613850\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.39321 0.185192 0.0925959 0.995704i \(-0.470484\pi\)
0.0925959 + 0.995704i \(0.470484\pi\)
\(168\) 0 0
\(169\) 12.9722 0.997858
\(170\) 0 0
\(171\) 19.6384 1.50179
\(172\) 0 0
\(173\) −1.42601 −0.108418 −0.0542088 0.998530i \(-0.517264\pi\)
−0.0542088 + 0.998530i \(0.517264\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 20.3337 1.52838
\(178\) 0 0
\(179\) −13.0923 −0.978564 −0.489282 0.872126i \(-0.662741\pi\)
−0.489282 + 0.872126i \(0.662741\pi\)
\(180\) 0 0
\(181\) 19.9722i 1.48452i −0.670113 0.742259i \(-0.733754\pi\)
0.670113 0.742259i \(-0.266246\pi\)
\(182\) 0 0
\(183\) 24.3059i 1.79674i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −12.3654 + 18.7130i −0.904245 + 1.36843i
\(188\) 0 0
\(189\) −19.6384 −1.42849
\(190\) 0 0
\(191\) −20.3059 −1.46928 −0.734641 0.678456i \(-0.762649\pi\)
−0.734641 + 0.678456i \(0.762649\pi\)
\(192\) 0 0
\(193\) −12.2124 −0.879070 −0.439535 0.898226i \(-0.644857\pi\)
−0.439535 + 0.898226i \(0.644857\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 13.3186i 0.944133i −0.881563 0.472067i \(-0.843508\pi\)
0.881563 0.472067i \(-0.156492\pi\)
\(200\) 0 0
\(201\) 20.8799i 1.47275i
\(202\) 0 0
\(203\) 8.33372i 0.584913i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −25.2452 −1.75466
\(208\) 0 0
\(209\) 13.8509i 0.958084i
\(210\) 0 0
\(211\) 20.8659i 1.43647i 0.695800 + 0.718235i \(0.255050\pi\)
−0.695800 + 0.718235i \(0.744950\pi\)
\(212\) 0 0
\(213\) 9.47158i 0.648982i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 7.62071i 0.517328i
\(218\) 0 0
\(219\) 41.0644 2.77488
\(220\) 0 0
\(221\) −0.379285 + 0.573988i −0.0255135 + 0.0386106i
\(222\) 0 0
\(223\) 13.2592i 0.887898i −0.896052 0.443949i \(-0.853577\pi\)
0.896052 0.443949i \(-0.146423\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.27307 0.615475 0.307738 0.951471i \(-0.400428\pi\)
0.307738 + 0.951471i \(0.400428\pi\)
\(228\) 0 0
\(229\) 14.1669 0.936172 0.468086 0.883683i \(-0.344944\pi\)
0.468086 + 0.883683i \(0.344944\pi\)
\(230\) 0 0
\(231\) 22.6674i 1.49141i
\(232\) 0 0
\(233\) −29.0644 −1.90408 −0.952038 0.305981i \(-0.901016\pi\)
−0.952038 + 0.305981i \(0.901016\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 12.3514i 0.802312i
\(238\) 0 0
\(239\) 5.42601 0.350980 0.175490 0.984481i \(-0.443849\pi\)
0.175490 + 0.984481i \(0.443849\pi\)
\(240\) 0 0
\(241\) 20.2124i 1.30200i 0.759079 + 0.650998i \(0.225650\pi\)
−0.759079 + 0.650998i \(0.774350\pi\)
\(242\) 0 0
\(243\) 43.2452 2.77418
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.424850i 0.0270326i
\(248\) 0 0
\(249\) 44.4905i 2.81947i
\(250\) 0 0
\(251\) −19.3047 −1.21850 −0.609251 0.792977i \(-0.708530\pi\)
−0.609251 + 0.792977i \(0.708530\pi\)
\(252\) 0 0
\(253\) 17.8053i 1.11941i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.59287i 0.0993606i 0.998765 + 0.0496803i \(0.0158202\pi\)
−0.998765 + 0.0496803i \(0.984180\pi\)
\(258\) 0 0
\(259\) 5.09229 0.316420
\(260\) 0 0
\(261\) 50.4905i 3.12528i
\(262\) 0 0
\(263\) 2.37929i 0.146713i 0.997306 + 0.0733565i \(0.0233711\pi\)
−0.997306 + 0.0733565i \(0.976629\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 19.0923 1.16843
\(268\) 0 0
\(269\) 18.4249i 1.12338i 0.827347 + 0.561691i \(0.189849\pi\)
−0.827347 + 0.561691i \(0.810151\pi\)
\(270\) 0 0
\(271\) 25.0923 1.52425 0.762124 0.647431i \(-0.224157\pi\)
0.762124 + 0.647431i \(0.224157\pi\)
\(272\) 0 0
\(273\) 0.695283i 0.0420805i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 12.1846 0.732101 0.366050 0.930595i \(-0.380710\pi\)
0.366050 + 0.930595i \(0.380710\pi\)
\(278\) 0 0
\(279\) 46.1707i 2.76417i
\(280\) 0 0
\(281\) 4.21243 0.251292 0.125646 0.992075i \(-0.459900\pi\)
0.125646 + 0.992075i \(0.459900\pi\)
\(282\) 0 0
\(283\) 16.4867 0.980030 0.490015 0.871714i \(-0.336991\pi\)
0.490015 + 0.871714i \(0.336991\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.8799i 0.642218i
\(288\) 0 0
\(289\) 6.66628 + 15.6384i 0.392134 + 0.919908i
\(290\) 0 0
\(291\) −4.75857 −0.278952
\(292\) 0 0
\(293\) 4.57399i 0.267215i 0.991034 + 0.133608i \(0.0426562\pi\)
−0.991034 + 0.133608i \(0.957344\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 83.9165i 4.86933i
\(298\) 0 0
\(299\) 0.546146i 0.0315844i
\(300\) 0 0
\(301\) 3.45385i 0.199077i
\(302\) 0 0
\(303\) 37.9443 2.17984
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 15.0189i 0.857173i 0.903501 + 0.428586i \(0.140988\pi\)
−0.903501 + 0.428586i \(0.859012\pi\)
\(308\) 0 0
\(309\) 29.2136i 1.66190i
\(310\) 0 0
\(311\) 6.22635i 0.353064i 0.984295 + 0.176532i \(0.0564879\pi\)
−0.984295 + 0.176532i \(0.943512\pi\)
\(312\) 0 0
\(313\) 4.54615 0.256963 0.128482 0.991712i \(-0.458990\pi\)
0.128482 + 0.991712i \(0.458990\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.4260 −0.641749 −0.320874 0.947122i \(-0.603977\pi\)
−0.320874 + 0.947122i \(0.603977\pi\)
\(318\) 0 0
\(319\) 35.6106 1.99381
\(320\) 0 0
\(321\) −6.04557 −0.337431
\(322\) 0 0
\(323\) 8.75857 + 5.78757i 0.487340 + 0.322029i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 32.7307i 1.81001i
\(328\) 0 0
\(329\) 13.6384i 0.751911i
\(330\) 0 0
\(331\) 3.63844 0.199987 0.0999933 0.994988i \(-0.468118\pi\)
0.0999933 + 0.994988i \(0.468118\pi\)
\(332\) 0 0
\(333\) −30.8520 −1.69068
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −7.97216 −0.434271 −0.217136 0.976141i \(-0.569671\pi\)
−0.217136 + 0.976141i \(0.569671\pi\)
\(338\) 0 0
\(339\) −58.8242 −3.19489
\(340\) 0 0
\(341\) −32.5639 −1.76343
\(342\) 0 0
\(343\) 15.7597 0.850946
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −0.152939 −0.00821020 −0.00410510 0.999992i \(-0.501307\pi\)
−0.00410510 + 0.999992i \(0.501307\pi\)
\(348\) 0 0
\(349\) 4.21243 0.225486 0.112743 0.993624i \(-0.464036\pi\)
0.112743 + 0.993624i \(0.464036\pi\)
\(350\) 0 0
\(351\) 2.57399i 0.137389i
\(352\) 0 0
\(353\) 6.66744i 0.354872i −0.984132 0.177436i \(-0.943220\pi\)
0.984132 0.177436i \(-0.0567803\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −14.3337 9.47158i −0.758621 0.501289i
\(358\) 0 0
\(359\) 2.51830 0.132911 0.0664555 0.997789i \(-0.478831\pi\)
0.0664555 + 0.997789i \(0.478831\pi\)
\(360\) 0 0
\(361\) −12.5171 −0.658797
\(362\) 0 0
\(363\) −60.8558 −3.19410
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 19.1518 0.999715 0.499857 0.866108i \(-0.333386\pi\)
0.499857 + 0.866108i \(0.333386\pi\)
\(368\) 0 0
\(369\) 65.9165i 3.43147i
\(370\) 0 0
\(371\) 16.3970i 0.851290i
\(372\) 0 0
\(373\) 24.9254i 1.29059i −0.763934 0.645295i \(-0.776734\pi\)
0.763934 0.645295i \(-0.223266\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.09229 0.0562559
\(378\) 0 0
\(379\) 7.41209i 0.380734i 0.981713 + 0.190367i \(0.0609677\pi\)
−0.981713 + 0.190367i \(0.939032\pi\)
\(380\) 0 0
\(381\) 38.6396i 1.97957i
\(382\) 0 0
\(383\) 30.0177i 1.53383i −0.641746 0.766917i \(-0.721790\pi\)
0.641746 0.766917i \(-0.278210\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 20.9254i 1.06370i
\(388\) 0 0
\(389\) −24.6573 −1.25018 −0.625088 0.780554i \(-0.714937\pi\)
−0.625088 + 0.780554i \(0.714937\pi\)
\(390\) 0 0
\(391\) −11.2592 7.43993i −0.569400 0.376254i
\(392\) 0 0
\(393\) 14.9254i 0.752888i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −16.8520 −0.845779 −0.422889 0.906181i \(-0.638984\pi\)
−0.422889 + 0.906181i \(0.638984\pi\)
\(398\) 0 0
\(399\) −10.6094 −0.531136
\(400\) 0 0
\(401\) 22.5183i 1.12451i −0.826964 0.562255i \(-0.809934\pi\)
0.826964 0.562255i \(-0.190066\pi\)
\(402\) 0 0
\(403\) −0.998839 −0.0497557
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 21.7597i 1.07859i
\(408\) 0 0
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) 0 0
\(411\) 26.7307i 1.31853i
\(412\) 0 0
\(413\) −7.90887 −0.389170
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 27.2313i 1.33352i
\(418\) 0 0
\(419\) 35.4399i 1.73135i −0.500603 0.865677i \(-0.666888\pi\)
0.500603 0.865677i \(-0.333112\pi\)
\(420\) 0 0
\(421\) −27.2313 −1.32717 −0.663586 0.748100i \(-0.730966\pi\)
−0.663586 + 0.748100i \(0.730966\pi\)
\(422\) 0 0
\(423\) 82.6295i 4.01758i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 9.45385i 0.457504i
\(428\) 0 0
\(429\) −2.97100 −0.143441
\(430\) 0 0
\(431\) 8.56007i 0.412324i 0.978518 + 0.206162i \(0.0660974\pi\)
−0.978518 + 0.206162i \(0.933903\pi\)
\(432\) 0 0
\(433\) 6.68516i 0.321268i −0.987014 0.160634i \(-0.948646\pi\)
0.987014 0.160634i \(-0.0513540\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8.33372 −0.398656
\(438\) 0 0
\(439\) 35.2908i 1.68434i 0.539214 + 0.842169i \(0.318721\pi\)
−0.539214 + 0.842169i \(0.681279\pi\)
\(440\) 0 0
\(441\) −41.4905 −1.97574
\(442\) 0 0
\(443\) 27.7775i 1.31975i 0.751377 + 0.659873i \(0.229390\pi\)
−0.751377 + 0.659873i \(0.770610\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −71.9165 −3.40153
\(448\) 0 0
\(449\) 6.30588i 0.297593i −0.988868 0.148796i \(-0.952460\pi\)
0.988868 0.148796i \(-0.0475399\pi\)
\(450\) 0 0
\(451\) 46.4905 2.18915
\(452\) 0 0
\(453\) −35.6106 −1.67313
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 15.1657i 0.709421i 0.934976 + 0.354711i \(0.115421\pi\)
−0.934976 + 0.354711i \(0.884579\pi\)
\(458\) 0 0
\(459\) 53.0644 + 35.0644i 2.47684 + 1.63667i
\(460\) 0 0
\(461\) 29.3047 1.36486 0.682428 0.730952i \(-0.260924\pi\)
0.682428 + 0.730952i \(0.260924\pi\)
\(462\) 0 0
\(463\) 17.2592i 0.802101i 0.916056 + 0.401050i \(0.131355\pi\)
−0.916056 + 0.401050i \(0.868645\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 16.8065i 0.777710i −0.921299 0.388855i \(-0.872871\pi\)
0.921299 0.388855i \(-0.127129\pi\)
\(468\) 0 0
\(469\) 8.12130i 0.375007i
\(470\) 0 0
\(471\) 45.7319i 2.10721i
\(472\) 0 0
\(473\) 14.7586 0.678600
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 99.3425i 4.54858i
\(478\) 0 0
\(479\) 12.5044i 0.571340i −0.958328 0.285670i \(-0.907784\pi\)
0.958328 0.285670i \(-0.0922161\pi\)
\(480\) 0 0
\(481\) 0.667441i 0.0304327i
\(482\) 0 0
\(483\) 13.6384 0.620570
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 24.4867 1.10960 0.554798 0.831985i \(-0.312795\pi\)
0.554798 + 0.831985i \(0.312795\pi\)
\(488\) 0 0
\(489\) −29.2592 −1.32314
\(490\) 0 0
\(491\) −14.0935 −0.636029 −0.318014 0.948086i \(-0.603016\pi\)
−0.318014 + 0.948086i \(0.603016\pi\)
\(492\) 0 0
\(493\) 14.8799 22.5183i 0.670155 1.01417i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.68400i 0.165250i
\(498\) 0 0
\(499\) 5.89495i 0.263894i 0.991257 + 0.131947i \(0.0421229\pi\)
−0.991257 + 0.131947i \(0.957877\pi\)
\(500\) 0 0
\(501\) 7.83314 0.349959
\(502\) 0 0
\(503\) 15.0328 0.670280 0.335140 0.942168i \(-0.391216\pi\)
0.335140 + 0.942168i \(0.391216\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 42.4588 1.88566
\(508\) 0 0
\(509\) −14.4249 −0.639370 −0.319685 0.947524i \(-0.603577\pi\)
−0.319685 + 0.947524i \(0.603577\pi\)
\(510\) 0 0
\(511\) −15.9722 −0.706567
\(512\) 0 0
\(513\) 39.2769 1.73412
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −58.2780 −2.56307
\(518\) 0 0
\(519\) −4.66744 −0.204878
\(520\) 0 0
\(521\) 9.42601i 0.412961i 0.978451 + 0.206481i \(0.0662010\pi\)
−0.978451 + 0.206481i \(0.933799\pi\)
\(522\) 0 0
\(523\) 19.7142i 0.862040i −0.902342 0.431020i \(-0.858154\pi\)
0.902342 0.431020i \(-0.141846\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −13.6068 + 20.5917i −0.592721 + 0.896989i
\(528\) 0 0
\(529\) −12.2870 −0.534217
\(530\) 0 0
\(531\) 47.9165 2.07940
\(532\) 0 0
\(533\) 1.42601 0.0617674
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −42.8520 −1.84920
\(538\) 0 0
\(539\) 29.2630i 1.26044i
\(540\) 0 0
\(541\) 15.2136i 0.654083i 0.945010 + 0.327042i \(0.106052\pi\)
−0.945010 + 0.327042i \(0.893948\pi\)
\(542\) 0 0
\(543\) 65.3703i 2.80531i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 27.5790 1.17919 0.589595 0.807699i \(-0.299287\pi\)
0.589595 + 0.807699i \(0.299287\pi\)
\(548\) 0 0
\(549\) 57.2769i 2.44452i
\(550\) 0 0
\(551\) 16.6674i 0.710057i
\(552\) 0 0
\(553\) 4.80414i 0.204293i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 36.1112i 1.53008i −0.643983 0.765040i \(-0.722719\pi\)
0.643983 0.765040i \(-0.277281\pi\)
\(558\) 0 0
\(559\) 0.452693 0.0191469
\(560\) 0 0
\(561\) −40.4727 + 61.2490i −1.70876 + 2.58594i
\(562\) 0 0
\(563\) 24.1112i 1.01616i 0.861308 + 0.508082i \(0.169645\pi\)
−0.861308 + 0.508082i \(0.830355\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −34.8204 −1.46232
\(568\) 0 0
\(569\) 23.7597 0.996060 0.498030 0.867160i \(-0.334057\pi\)
0.498030 + 0.867160i \(0.334057\pi\)
\(570\) 0 0
\(571\) 30.2920i 1.26768i 0.773465 + 0.633839i \(0.218522\pi\)
−0.773465 + 0.633839i \(0.781478\pi\)
\(572\) 0 0
\(573\) −66.4626 −2.77652
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 10.6852i 0.444829i 0.974952 + 0.222415i \(0.0713939\pi\)
−0.974952 + 0.222415i \(0.928606\pi\)
\(578\) 0 0
\(579\) −39.9722 −1.66119
\(580\) 0 0
\(581\) 17.3047i 0.717921i
\(582\) 0 0
\(583\) 70.0656 2.90182
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.64856i 0.0680432i 0.999421 + 0.0340216i \(0.0108315\pi\)
−0.999421 + 0.0340216i \(0.989168\pi\)
\(588\) 0 0
\(589\) 15.2414i 0.628012i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.21359i 0.0498360i 0.999689 + 0.0249180i \(0.00793247\pi\)
−0.999689 + 0.0249180i \(0.992068\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 43.5929i 1.78414i
\(598\) 0 0
\(599\) 8.36156 0.341644 0.170822 0.985302i \(-0.445358\pi\)
0.170822 + 0.985302i \(0.445358\pi\)
\(600\) 0 0
\(601\) 7.06445i 0.288165i 0.989566 + 0.144082i \(0.0460231\pi\)
−0.989566 + 0.144082i \(0.953977\pi\)
\(602\) 0 0
\(603\) 49.2035i 2.00372i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −22.9115 −0.929950 −0.464975 0.885324i \(-0.653937\pi\)
−0.464975 + 0.885324i \(0.653937\pi\)
\(608\) 0 0
\(609\) 27.2769i 1.10531i
\(610\) 0 0
\(611\) −1.78757 −0.0723175
\(612\) 0 0
\(613\) 0.573988i 0.0231832i 0.999933 + 0.0115916i \(0.00368980\pi\)
−0.999933 + 0.0115916i \(0.996310\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −11.7319 −0.472308 −0.236154 0.971716i \(-0.575887\pi\)
−0.236154 + 0.971716i \(0.575887\pi\)
\(618\) 0 0
\(619\) 2.50438i 0.100660i 0.998733 + 0.0503298i \(0.0160272\pi\)
−0.998733 + 0.0503298i \(0.983973\pi\)
\(620\) 0 0
\(621\) −50.4905 −2.02611
\(622\) 0 0
\(623\) −7.42601 −0.297517
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 45.3349i 1.81050i
\(628\) 0 0
\(629\) −13.7597 9.09229i −0.548636 0.362533i
\(630\) 0 0
\(631\) 38.0656 1.51537 0.757684 0.652622i \(-0.226331\pi\)
0.757684 + 0.652622i \(0.226331\pi\)
\(632\) 0 0
\(633\) 68.2958i 2.71451i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.897589i 0.0355638i
\(638\) 0 0
\(639\) 22.3198i 0.882958i
\(640\) 0 0
\(641\) 18.7307i 0.739819i −0.929068 0.369910i \(-0.879389\pi\)
0.929068 0.369910i \(-0.120611\pi\)
\(642\) 0 0
\(643\) −8.72693 −0.344156 −0.172078 0.985083i \(-0.555048\pi\)
−0.172078 + 0.985083i \(0.555048\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14.6573i 0.576239i 0.957594 + 0.288119i \(0.0930300\pi\)
−0.957594 + 0.288119i \(0.906970\pi\)
\(648\) 0 0
\(649\) 33.7952i 1.32658i
\(650\) 0 0
\(651\) 24.9432i 0.977599i
\(652\) 0 0
\(653\) 17.4260 0.681933 0.340966 0.940076i \(-0.389246\pi\)
0.340966 + 0.940076i \(0.389246\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 96.7685 3.77530
\(658\) 0 0
\(659\) 39.8532 1.55246 0.776230 0.630450i \(-0.217130\pi\)
0.776230 + 0.630450i \(0.217130\pi\)
\(660\) 0 0
\(661\) 40.8242 1.58788 0.793938 0.607998i \(-0.208027\pi\)
0.793938 + 0.607998i \(0.208027\pi\)
\(662\) 0 0
\(663\) −1.24143 + 1.87870i −0.0482131 + 0.0729628i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 21.4260i 0.829618i
\(668\) 0 0
\(669\) 43.3982i 1.67787i
\(670\) 0 0
\(671\) −40.3970 −1.55951
\(672\) 0 0
\(673\) −25.5473 −0.984776 −0.492388 0.870376i \(-0.663876\pi\)
−0.492388 + 0.870376i \(0.663876\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.33488 0.128170 0.0640850 0.997944i \(-0.479587\pi\)
0.0640850 + 0.997944i \(0.479587\pi\)
\(678\) 0 0
\(679\) 1.85086 0.0710296
\(680\) 0 0
\(681\) 30.3514 1.16307
\(682\) 0 0
\(683\) −46.0973 −1.76386 −0.881931 0.471378i \(-0.843757\pi\)
−0.881931 + 0.471378i \(0.843757\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 46.3692 1.76909
\(688\) 0 0
\(689\) 2.14914 0.0818756
\(690\) 0 0
\(691\) 18.9849i 0.722220i −0.932523 0.361110i \(-0.882398\pi\)
0.932523 0.361110i \(-0.117602\pi\)
\(692\) 0 0
\(693\) 53.4159i 2.02910i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 19.4260 29.3982i 0.735813 1.11354i
\(698\) 0 0
\(699\) −95.1301 −3.59815
\(700\) 0 0
\(701\) 42.8976 1.62022 0.810110 0.586278i \(-0.199407\pi\)
0.810110 + 0.586278i \(0.199407\pi\)
\(702\) 0 0
\(703\) −10.1846 −0.384119
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −14.7586 −0.555053
\(708\) 0 0
\(709\) 25.5450i 0.959362i −0.877443 0.479681i \(-0.840752\pi\)
0.877443 0.479681i \(-0.159248\pi\)
\(710\) 0 0
\(711\) 29.1062i 1.09157i
\(712\) 0 0
\(713\) 19.5929i 0.733759i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 17.7597 0.663249
\(718\) 0 0
\(719\) 5.10621i 0.190430i 0.995457 + 0.0952148i \(0.0303538\pi\)
−0.995457 + 0.0952148i \(0.969646\pi\)
\(720\) 0 0
\(721\) 11.3627i 0.423170i
\(722\) 0 0
\(723\) 66.1567i 2.46040i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 23.3526i 0.866100i 0.901370 + 0.433050i \(0.142563\pi\)
−0.901370 + 0.433050i \(0.857437\pi\)
\(728\) 0 0
\(729\) 59.4905 2.20335
\(730\) 0 0
\(731\) 6.16686 9.33256i 0.228090 0.345177i
\(732\) 0 0
\(733\) 35.3703i 1.30643i 0.757171 + 0.653216i \(0.226581\pi\)
−0.757171 + 0.653216i \(0.773419\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 34.7029 1.27830
\(738\) 0 0
\(739\) 22.3036 0.820450 0.410225 0.911984i \(-0.365450\pi\)
0.410225 + 0.911984i \(0.365450\pi\)
\(740\) 0 0
\(741\) 1.39057i 0.0510837i
\(742\) 0 0
\(743\) −10.9394 −0.401326 −0.200663 0.979660i \(-0.564310\pi\)
−0.200663 + 0.979660i \(0.564310\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 104.842i 3.83596i
\(748\) 0 0
\(749\) 2.35144 0.0859199
\(750\) 0 0
\(751\) 14.9216i 0.544498i −0.962227 0.272249i \(-0.912233\pi\)
0.962227 0.272249i \(-0.0877674\pi\)
\(752\) 0 0
\(753\) −63.1857 −2.30262
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 22.2603i 0.809065i 0.914524 + 0.404532i \(0.132566\pi\)
−0.914524 + 0.404532i \(0.867434\pi\)
\(758\) 0 0
\(759\) 58.2780i 2.11536i
\(760\) 0 0
\(761\) −19.5929 −0.710241 −0.355121 0.934821i \(-0.615560\pi\)
−0.355121 + 0.934821i \(0.615560\pi\)
\(762\) 0 0
\(763\) 12.7307i 0.460883i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.03661i 0.0374297i
\(768\) 0 0
\(769\) 37.1100 1.33822 0.669111 0.743163i \(-0.266675\pi\)
0.669111 + 0.743163i \(0.266675\pi\)
\(770\) 0 0
\(771\) 5.21359i 0.187763i
\(772\) 0 0
\(773\) 38.7763i 1.39469i 0.716737 + 0.697343i \(0.245635\pi\)
−0.716737 + 0.697343i \(0.754365\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 16.6674 0.597941
\(778\) 0 0
\(779\) 21.7597i 0.779623i
\(780\) 0 0
\(781\) −15.7420 −0.563293
\(782\) 0 0
\(783\) 100.981i 3.60876i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 10.6080 0.378133 0.189066 0.981964i \(-0.439454\pi\)
0.189066 + 0.981964i \(0.439454\pi\)
\(788\) 0 0
\(789\) 7.78757i 0.277245i
\(790\) 0 0
\(791\) 22.8799 0.813514
\(792\) 0 0
\(793\) −1.23911 −0.0440019
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9.66628i 0.342397i 0.985237 + 0.171199i \(0.0547640\pi\)
−0.985237 + 0.171199i \(0.945236\pi\)
\(798\) 0 0
\(799\) −24.3514 + 36.8520i −0.861492 + 1.30373i
\(800\) 0 0
\(801\) 44.9910 1.58968
\(802\) 0 0
\(803\) 68.2502i 2.40850i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 60.3059i 2.12287i
\(808\) 0 0
\(809\) 42.5183i 1.49486i −0.664338 0.747432i \(-0.731287\pi\)
0.664338 0.747432i \(-0.268713\pi\)
\(810\) 0 0
\(811\) 6.65120i 0.233555i −0.993158 0.116778i \(-0.962744\pi\)
0.993158 0.116778i \(-0.0372565\pi\)
\(812\) 0 0
\(813\) 82.1289 2.88039
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 6.90771i 0.241670i
\(818\) 0 0
\(819\) 1.63844i 0.0572516i
\(820\) 0 0
\(821\) 44.7963i 1.56340i 0.623653 + 0.781702i \(0.285648\pi\)
−0.623653 + 0.781702i \(0.714352\pi\)
\(822\) 0 0
\(823\) −9.36653 −0.326497 −0.163248 0.986585i \(-0.552197\pi\)
−0.163248 + 0.986585i \(0.552197\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −44.7902 −1.55751 −0.778754 0.627329i \(-0.784148\pi\)
−0.778754 + 0.627329i \(0.784148\pi\)
\(828\) 0 0
\(829\) −36.8520 −1.27992 −0.639962 0.768407i \(-0.721050\pi\)
−0.639962 + 0.768407i \(0.721050\pi\)
\(830\) 0 0
\(831\) 39.8810 1.38346
\(832\) 0 0
\(833\) −18.5044 12.2275i −0.641139 0.423658i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 92.3413i 3.19178i
\(838\) 0 0
\(839\) 11.6245i 0.401323i 0.979661 + 0.200661i \(0.0643091\pi\)
−0.979661 + 0.200661i \(0.935691\pi\)
\(840\) 0 0
\(841\) −13.8520 −0.477656
\(842\) 0 0
\(843\) 13.7876 0.474869
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 23.6701 0.813314
\(848\) 0 0
\(849\) 53.9620 1.85197
\(850\) 0 0
\(851\) 13.0923 0.448798
\(852\) 0 0
\(853\) 49.2792 1.68729 0.843644 0.536903i \(-0.180406\pi\)
0.843644 + 0.536903i \(0.180406\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 23.6408 0.807553 0.403776 0.914858i \(-0.367697\pi\)
0.403776 + 0.914858i \(0.367697\pi\)
\(858\) 0 0
\(859\) 14.0935 0.480862 0.240431 0.970666i \(-0.422711\pi\)
0.240431 + 0.970666i \(0.422711\pi\)
\(860\) 0 0
\(861\) 35.6106i 1.21361i
\(862\) 0 0
\(863\) 4.28583i 0.145891i −0.997336 0.0729457i \(-0.976760\pi\)
0.997336 0.0729457i \(-0.0232400\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 21.8192 + 51.1857i 0.741020 + 1.73836i
\(868\) 0 0
\(869\) −20.5284 −0.696379
\(870\) 0 0
\(871\) 1.06445 0.0360675
\(872\) 0 0
\(873\) −11.2136 −0.379522
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −7.85086 −0.265105 −0.132552 0.991176i \(-0.542317\pi\)
−0.132552 + 0.991176i \(0.542317\pi\)
\(878\) 0 0
\(879\) 14.9710i 0.504959i
\(880\) 0 0
\(881\) 5.30472i 0.178720i −0.995999 0.0893602i \(-0.971518\pi\)
0.995999 0.0893602i \(-0.0284822\pi\)
\(882\) 0 0
\(883\) 3.74201i 0.125929i −0.998016 0.0629643i \(-0.979945\pi\)
0.998016 0.0629643i \(-0.0200554\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.75477 0.159650 0.0798248 0.996809i \(-0.474564\pi\)
0.0798248 + 0.996809i \(0.474564\pi\)
\(888\) 0 0
\(889\) 15.0290i 0.504057i
\(890\) 0 0
\(891\) 148.790i 4.98465i
\(892\) 0 0
\(893\) 27.2769i 0.912786i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.78757i 0.0596854i
\(898\) 0 0
\(899\) 39.1857 1.30692
\(900\) 0 0
\(901\) 29.2769 44.3059i 0.975354 1.47604i
\(902\) 0 0
\(903\) 11.3047i 0.376197i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 34.9771 1.16140 0.580698 0.814119i \(-0.302780\pi\)
0.580698 + 0.814119i \(0.302780\pi\)
\(908\) 0 0
\(909\) 89.4159 2.96574
\(910\) 0 0
\(911\) 20.2920i 0.672303i −0.941808 0.336151i \(-0.890875\pi\)
0.941808 0.336151i \(-0.109125\pi\)
\(912\) 0 0
\(913\) 73.9443 2.44720
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.80530i 0.191708i
\(918\) 0 0
\(919\) 26.8242 0.884848 0.442424 0.896806i \(-0.354119\pi\)
0.442424 + 0.896806i \(0.354119\pi\)
\(920\) 0 0
\(921\) 49.1579i 1.61981i
\(922\) 0 0
\(923\) −0.482858 −0.0158935
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 68.8419i 2.26106i
\(928\) 0 0
\(929\) 0.546146i 0.0179185i −0.999960 0.00895923i \(-0.997148\pi\)
0.999960 0.00895923i \(-0.00285185\pi\)
\(930\) 0 0
\(931\) −13.6964 −0.448883
\(932\) 0 0
\(933\) 20.3793i 0.667188i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 22.7864i 0.744400i −0.928153 0.372200i \(-0.878604\pi\)
0.928153 0.372200i \(-0.121396\pi\)
\(938\) 0 0
\(939\) 14.8799 0.485586
\(940\) 0 0
\(941\) 8.69528i 0.283458i −0.989905 0.141729i \(-0.954734\pi\)
0.989905 0.141729i \(-0.0452662\pi\)
\(942\) 0 0
\(943\) 27.9722i 0.910899i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 55.3665 1.79917 0.899585 0.436745i \(-0.143869\pi\)
0.899585 + 0.436745i \(0.143869\pi\)
\(948\) 0 0
\(949\) 2.09345i 0.0679564i
\(950\) 0 0
\(951\) −37.3982 −1.21272
\(952\) 0 0
\(953\) 50.4426i 1.63400i −0.576641 0.816998i \(-0.695637\pi\)
0.576641 0.816998i \(-0.304363\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 116.556 3.76772
\(958\) 0 0
\(959\) 10.3970i 0.335737i
\(960\) 0 0
\(961\) −4.83314 −0.155908
\(962\) 0 0
\(963\) −14.2464 −0.459084
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 51.1379i 1.64448i 0.569139 + 0.822241i \(0.307277\pi\)
−0.569139 + 0.822241i \(0.692723\pi\)
\(968\) 0 0
\(969\) 28.6674 + 18.9432i 0.920931 + 0.608542i
\(970\) 0 0
\(971\) −36.1869 −1.16129 −0.580647 0.814156i \(-0.697200\pi\)
−0.580647 + 0.814156i \(0.697200\pi\)
\(972\) 0 0
\(973\) 10.5917i 0.339555i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 25.5828i 0.818465i −0.912430 0.409232i \(-0.865797\pi\)
0.912430 0.409232i \(-0.134203\pi\)
\(978\) 0 0
\(979\) 31.7319i 1.01416i
\(980\) 0 0
\(981\) 77.1301i 2.46257i
\(982\) 0 0
\(983\) 18.7548 0.598184 0.299092 0.954224i \(-0.403316\pi\)
0.299092 + 0.954224i \(0.403316\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 44.6396i 1.42089i
\(988\) 0 0
\(989\) 8.87987i 0.282363i
\(990\) 0 0
\(991\) 20.7168i 0.658091i −0.944314 0.329046i \(-0.893273\pi\)
0.944314 0.329046i \(-0.106727\pi\)
\(992\) 0 0
\(993\) 11.9089 0.377917
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −20.9455 −0.663350 −0.331675 0.943394i \(-0.607614\pi\)
−0.331675 + 0.943394i \(0.607614\pi\)
\(998\) 0 0
\(999\) −61.7040 −1.95223
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1700.2.g.c.849.6 6
5.2 odd 4 1700.2.c.b.101.1 6
5.3 odd 4 340.2.c.a.101.6 yes 6
5.4 even 2 1700.2.g.b.849.2 6
15.8 even 4 3060.2.e.j.1801.6 6
17.16 even 2 1700.2.g.b.849.1 6
20.3 even 4 1360.2.c.e.1121.1 6
85.13 odd 4 5780.2.a.i.1.1 3
85.33 odd 4 340.2.c.a.101.1 6
85.38 odd 4 5780.2.a.k.1.3 3
85.67 odd 4 1700.2.c.b.101.6 6
85.84 even 2 inner 1700.2.g.c.849.5 6
255.203 even 4 3060.2.e.j.1801.1 6
340.203 even 4 1360.2.c.e.1121.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
340.2.c.a.101.1 6 85.33 odd 4
340.2.c.a.101.6 yes 6 5.3 odd 4
1360.2.c.e.1121.1 6 20.3 even 4
1360.2.c.e.1121.6 6 340.203 even 4
1700.2.c.b.101.1 6 5.2 odd 4
1700.2.c.b.101.6 6 85.67 odd 4
1700.2.g.b.849.1 6 17.16 even 2
1700.2.g.b.849.2 6 5.4 even 2
1700.2.g.c.849.5 6 85.84 even 2 inner
1700.2.g.c.849.6 6 1.1 even 1 trivial
3060.2.e.j.1801.1 6 255.203 even 4
3060.2.e.j.1801.6 6 15.8 even 4
5780.2.a.i.1.1 3 85.13 odd 4
5780.2.a.k.1.3 3 85.38 odd 4