Properties

Label 3060.2.e.g.1801.1
Level $3060$
Weight $2$
Character 3060.1801
Analytic conductor $24.434$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(1801,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.1801"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,-12,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1020)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1801.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 3060.1801
Dual form 3060.2.e.g.1801.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{5} -3.82843i q^{7} -5.82843i q^{11} +4.82843 q^{13} +(-3.00000 - 2.82843i) q^{17} +3.00000 q^{19} +8.48528i q^{23} -1.00000 q^{25} -4.17157i q^{29} -6.82843i q^{31} -3.82843 q^{35} -9.48528i q^{37} +5.82843i q^{41} +8.00000 q^{43} +8.65685 q^{47} -7.65685 q^{49} -8.31371 q^{53} -5.82843 q^{55} -5.17157 q^{59} +8.48528i q^{61} -4.82843i q^{65} -2.48528 q^{67} +9.65685i q^{71} +15.8284i q^{73} -22.3137 q^{77} +2.00000i q^{79} +(-2.82843 + 3.00000i) q^{85} -14.1421 q^{89} -18.4853i q^{91} -3.00000i q^{95} -14.0000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{13} - 12 q^{17} + 12 q^{19} - 4 q^{25} - 4 q^{35} + 32 q^{43} + 12 q^{47} - 8 q^{49} + 12 q^{53} - 12 q^{55} - 32 q^{59} + 24 q^{67} - 44 q^{77}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 3.82843i 1.44701i −0.690319 0.723505i \(-0.742530\pi\)
0.690319 0.723505i \(-0.257470\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.82843i 1.75734i −0.477432 0.878668i \(-0.658432\pi\)
0.477432 0.878668i \(-0.341568\pi\)
\(12\) 0 0
\(13\) 4.82843 1.33916 0.669582 0.742738i \(-0.266473\pi\)
0.669582 + 0.742738i \(0.266473\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.00000 2.82843i −0.727607 0.685994i
\(18\) 0 0
\(19\) 3.00000 0.688247 0.344124 0.938924i \(-0.388176\pi\)
0.344124 + 0.938924i \(0.388176\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.48528i 1.76930i 0.466252 + 0.884652i \(0.345604\pi\)
−0.466252 + 0.884652i \(0.654396\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.17157i 0.774642i −0.921945 0.387321i \(-0.873401\pi\)
0.921945 0.387321i \(-0.126599\pi\)
\(30\) 0 0
\(31\) 6.82843i 1.22642i −0.789919 0.613211i \(-0.789878\pi\)
0.789919 0.613211i \(-0.210122\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.82843 −0.647122
\(36\) 0 0
\(37\) 9.48528i 1.55937i −0.626172 0.779685i \(-0.715379\pi\)
0.626172 0.779685i \(-0.284621\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.82843i 0.910247i 0.890428 + 0.455124i \(0.150405\pi\)
−0.890428 + 0.455124i \(0.849595\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.65685 1.26273 0.631366 0.775485i \(-0.282495\pi\)
0.631366 + 0.775485i \(0.282495\pi\)
\(48\) 0 0
\(49\) −7.65685 −1.09384
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.31371 −1.14198 −0.570988 0.820959i \(-0.693440\pi\)
−0.570988 + 0.820959i \(0.693440\pi\)
\(54\) 0 0
\(55\) −5.82843 −0.785905
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.17157 −0.673281 −0.336641 0.941633i \(-0.609291\pi\)
−0.336641 + 0.941633i \(0.609291\pi\)
\(60\) 0 0
\(61\) 8.48528i 1.08643i 0.839594 + 0.543214i \(0.182793\pi\)
−0.839594 + 0.543214i \(0.817207\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.82843i 0.598893i
\(66\) 0 0
\(67\) −2.48528 −0.303625 −0.151813 0.988409i \(-0.548511\pi\)
−0.151813 + 0.988409i \(0.548511\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.65685i 1.14606i 0.819535 + 0.573029i \(0.194232\pi\)
−0.819535 + 0.573029i \(0.805768\pi\)
\(72\) 0 0
\(73\) 15.8284i 1.85258i 0.376815 + 0.926289i \(0.377019\pi\)
−0.376815 + 0.926289i \(0.622981\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −22.3137 −2.54288
\(78\) 0 0
\(79\) 2.00000i 0.225018i 0.993651 + 0.112509i \(0.0358886\pi\)
−0.993651 + 0.112509i \(0.964111\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) −2.82843 + 3.00000i −0.306786 + 0.325396i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.1421 −1.49906 −0.749532 0.661968i \(-0.769721\pi\)
−0.749532 + 0.661968i \(0.769721\pi\)
\(90\) 0 0
\(91\) 18.4853i 1.93778i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.00000i 0.307794i
\(96\) 0 0
\(97\) 14.0000i 1.42148i −0.703452 0.710742i \(-0.748359\pi\)
0.703452 0.710742i \(-0.251641\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.65685 0.562878 0.281439 0.959579i \(-0.409188\pi\)
0.281439 + 0.959579i \(0.409188\pi\)
\(102\) 0 0
\(103\) −6.00000 −0.591198 −0.295599 0.955312i \(-0.595519\pi\)
−0.295599 + 0.955312i \(0.595519\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.34315i 0.419868i −0.977716 0.209934i \(-0.932675\pi\)
0.977716 0.209934i \(-0.0673249\pi\)
\(108\) 0 0
\(109\) 3.31371i 0.317396i 0.987327 + 0.158698i \(0.0507296\pi\)
−0.987327 + 0.158698i \(0.949270\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.8284i 1.01865i −0.860573 0.509326i \(-0.829895\pi\)
0.860573 0.509326i \(-0.170105\pi\)
\(114\) 0 0
\(115\) 8.48528 0.791257
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −10.8284 + 11.4853i −0.992640 + 1.05285i
\(120\) 0 0
\(121\) −22.9706 −2.08823
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 10.1421 0.899969 0.449985 0.893036i \(-0.351430\pi\)
0.449985 + 0.893036i \(0.351430\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.31371i 0.639002i −0.947586 0.319501i \(-0.896485\pi\)
0.947586 0.319501i \(-0.103515\pi\)
\(132\) 0 0
\(133\) 11.4853i 0.995900i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.34315 0.114753 0.0573763 0.998353i \(-0.481727\pi\)
0.0573763 + 0.998353i \(0.481727\pi\)
\(138\) 0 0
\(139\) 6.00000i 0.508913i −0.967084 0.254457i \(-0.918103\pi\)
0.967084 0.254457i \(-0.0818966\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 28.1421i 2.35336i
\(144\) 0 0
\(145\) −4.17157 −0.346430
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 13.1716 1.07906 0.539529 0.841967i \(-0.318602\pi\)
0.539529 + 0.841967i \(0.318602\pi\)
\(150\) 0 0
\(151\) 15.0000 1.22068 0.610341 0.792139i \(-0.291032\pi\)
0.610341 + 0.792139i \(0.291032\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.82843 −0.548472
\(156\) 0 0
\(157\) −22.9706 −1.83325 −0.916625 0.399748i \(-0.869098\pi\)
−0.916625 + 0.399748i \(0.869098\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 32.4853 2.56020
\(162\) 0 0
\(163\) 3.48528i 0.272988i −0.990641 0.136494i \(-0.956417\pi\)
0.990641 0.136494i \(-0.0435835\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.65685i 0.747270i 0.927576 + 0.373635i \(0.121889\pi\)
−0.927576 + 0.373635i \(0.878111\pi\)
\(168\) 0 0
\(169\) 10.3137 0.793362
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 20.8284i 1.58356i −0.610809 0.791778i \(-0.709156\pi\)
0.610809 0.791778i \(-0.290844\pi\)
\(174\) 0 0
\(175\) 3.82843i 0.289402i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.65685 0.123839 0.0619196 0.998081i \(-0.480278\pi\)
0.0619196 + 0.998081i \(0.480278\pi\)
\(180\) 0 0
\(181\) 4.82843i 0.358894i −0.983768 0.179447i \(-0.942569\pi\)
0.983768 0.179447i \(-0.0574309\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −9.48528 −0.697372
\(186\) 0 0
\(187\) −16.4853 + 17.4853i −1.20552 + 1.27865i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −18.1421 −1.31272 −0.656359 0.754448i \(-0.727904\pi\)
−0.656359 + 0.754448i \(0.727904\pi\)
\(192\) 0 0
\(193\) 13.3137i 0.958342i 0.877722 + 0.479171i \(0.159063\pi\)
−0.877722 + 0.479171i \(0.840937\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.65685i 0.260540i −0.991479 0.130270i \(-0.958416\pi\)
0.991479 0.130270i \(-0.0415844\pi\)
\(198\) 0 0
\(199\) 20.9706i 1.48656i 0.668978 + 0.743282i \(0.266732\pi\)
−0.668978 + 0.743282i \(0.733268\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −15.9706 −1.12091
\(204\) 0 0
\(205\) 5.82843 0.407075
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 17.4853i 1.20948i
\(210\) 0 0
\(211\) 13.3137i 0.916553i 0.888810 + 0.458277i \(0.151533\pi\)
−0.888810 + 0.458277i \(0.848467\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.00000i 0.545595i
\(216\) 0 0
\(217\) −26.1421 −1.77464
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −14.4853 13.6569i −0.974385 0.918659i
\(222\) 0 0
\(223\) 13.3137 0.891552 0.445776 0.895145i \(-0.352928\pi\)
0.445776 + 0.895145i \(0.352928\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.82843i 0.320474i −0.987079 0.160237i \(-0.948774\pi\)
0.987079 0.160237i \(-0.0512258\pi\)
\(228\) 0 0
\(229\) −11.0000 −0.726900 −0.363450 0.931614i \(-0.618401\pi\)
−0.363450 + 0.931614i \(0.618401\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.4853i 0.948962i −0.880266 0.474481i \(-0.842636\pi\)
0.880266 0.474481i \(-0.157364\pi\)
\(234\) 0 0
\(235\) 8.65685i 0.564711i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 14.4853 0.936975 0.468487 0.883470i \(-0.344799\pi\)
0.468487 + 0.883470i \(0.344799\pi\)
\(240\) 0 0
\(241\) 1.51472i 0.0975716i −0.998809 0.0487858i \(-0.984465\pi\)
0.998809 0.0487858i \(-0.0155352\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 7.65685i 0.489178i
\(246\) 0 0
\(247\) 14.4853 0.921676
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 21.7990 1.37594 0.687970 0.725739i \(-0.258502\pi\)
0.687970 + 0.725739i \(0.258502\pi\)
\(252\) 0 0
\(253\) 49.4558 3.10926
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 22.9706 1.43286 0.716432 0.697657i \(-0.245774\pi\)
0.716432 + 0.697657i \(0.245774\pi\)
\(258\) 0 0
\(259\) −36.3137 −2.25642
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −0.313708 −0.0193441 −0.00967205 0.999953i \(-0.503079\pi\)
−0.00967205 + 0.999953i \(0.503079\pi\)
\(264\) 0 0
\(265\) 8.31371i 0.510707i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 9.82843i 0.599250i 0.954057 + 0.299625i \(0.0968615\pi\)
−0.954057 + 0.299625i \(0.903138\pi\)
\(270\) 0 0
\(271\) −24.9706 −1.51685 −0.758427 0.651758i \(-0.774032\pi\)
−0.758427 + 0.651758i \(0.774032\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.82843i 0.351467i
\(276\) 0 0
\(277\) 27.6569i 1.66174i −0.556467 0.830870i \(-0.687843\pi\)
0.556467 0.830870i \(-0.312157\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.31371 0.555609 0.277805 0.960638i \(-0.410393\pi\)
0.277805 + 0.960638i \(0.410393\pi\)
\(282\) 0 0
\(283\) 2.51472i 0.149485i 0.997203 + 0.0747423i \(0.0238134\pi\)
−0.997203 + 0.0747423i \(0.976187\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 22.3137 1.31714
\(288\) 0 0
\(289\) 1.00000 + 16.9706i 0.0588235 + 0.998268i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 11.3431 0.662674 0.331337 0.943513i \(-0.392500\pi\)
0.331337 + 0.943513i \(0.392500\pi\)
\(294\) 0 0
\(295\) 5.17157i 0.301101i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 40.9706i 2.36939i
\(300\) 0 0
\(301\) 30.6274i 1.76533i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.48528 0.485866
\(306\) 0 0
\(307\) 19.3137 1.10229 0.551146 0.834409i \(-0.314191\pi\)
0.551146 + 0.834409i \(0.314191\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7.82843i 0.443909i −0.975057 0.221955i \(-0.928756\pi\)
0.975057 0.221955i \(-0.0712437\pi\)
\(312\) 0 0
\(313\) 32.7990i 1.85391i −0.375174 0.926954i \(-0.622417\pi\)
0.375174 0.926954i \(-0.377583\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.14214i 0.457308i −0.973508 0.228654i \(-0.926568\pi\)
0.973508 0.228654i \(-0.0734324\pi\)
\(318\) 0 0
\(319\) −24.3137 −1.36131
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −9.00000 8.48528i −0.500773 0.472134i
\(324\) 0 0
\(325\) −4.82843 −0.267833
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 33.1421i 1.82719i
\(330\) 0 0
\(331\) −27.6274 −1.51854 −0.759270 0.650776i \(-0.774444\pi\)
−0.759270 + 0.650776i \(0.774444\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.48528i 0.135785i
\(336\) 0 0
\(337\) 20.7990i 1.13299i 0.824064 + 0.566497i \(0.191702\pi\)
−0.824064 + 0.566497i \(0.808298\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −39.7990 −2.15524
\(342\) 0 0
\(343\) 2.51472i 0.135782i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.1716i 0.814453i 0.913327 + 0.407226i \(0.133504\pi\)
−0.913327 + 0.407226i \(0.866496\pi\)
\(348\) 0 0
\(349\) 9.00000 0.481759 0.240879 0.970555i \(-0.422564\pi\)
0.240879 + 0.970555i \(0.422564\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.6274 −0.831763 −0.415882 0.909419i \(-0.636527\pi\)
−0.415882 + 0.909419i \(0.636527\pi\)
\(354\) 0 0
\(355\) 9.65685 0.512533
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.17157 −0.167389 −0.0836946 0.996491i \(-0.526672\pi\)
−0.0836946 + 0.996491i \(0.526672\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.8284 0.828498
\(366\) 0 0
\(367\) 8.00000i 0.417597i −0.977959 0.208798i \(-0.933045\pi\)
0.977959 0.208798i \(-0.0669552\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 31.8284i 1.65245i
\(372\) 0 0
\(373\) 2.68629 0.139091 0.0695455 0.997579i \(-0.477845\pi\)
0.0695455 + 0.997579i \(0.477845\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.1421i 1.03737i
\(378\) 0 0
\(379\) 10.0000i 0.513665i 0.966456 + 0.256833i \(0.0826790\pi\)
−0.966456 + 0.256833i \(0.917321\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −7.34315 −0.375217 −0.187609 0.982244i \(-0.560074\pi\)
−0.187609 + 0.982244i \(0.560074\pi\)
\(384\) 0 0
\(385\) 22.3137i 1.13721i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.02944 −0.0521945 −0.0260973 0.999659i \(-0.508308\pi\)
−0.0260973 + 0.999659i \(0.508308\pi\)
\(390\) 0 0
\(391\) 24.0000 25.4558i 1.21373 1.28736i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.00000 0.100631
\(396\) 0 0
\(397\) 37.4853i 1.88133i 0.339333 + 0.940666i \(0.389799\pi\)
−0.339333 + 0.940666i \(0.610201\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.82843i 0.390933i 0.980710 + 0.195466i \(0.0626221\pi\)
−0.980710 + 0.195466i \(0.937378\pi\)
\(402\) 0 0
\(403\) 32.9706i 1.64238i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −55.2843 −2.74034
\(408\) 0 0
\(409\) −17.3431 −0.857563 −0.428782 0.903408i \(-0.641057\pi\)
−0.428782 + 0.903408i \(0.641057\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 19.7990i 0.974245i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 21.1421i 1.03286i 0.856329 + 0.516430i \(0.172740\pi\)
−0.856329 + 0.516430i \(0.827260\pi\)
\(420\) 0 0
\(421\) 6.65685 0.324435 0.162218 0.986755i \(-0.448135\pi\)
0.162218 + 0.986755i \(0.448135\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.00000 + 2.82843i 0.145521 + 0.137199i
\(426\) 0 0
\(427\) 32.4853 1.57207
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16.1716i 0.778957i 0.921036 + 0.389479i \(0.127345\pi\)
−0.921036 + 0.389479i \(0.872655\pi\)
\(432\) 0 0
\(433\) 24.6274 1.18352 0.591759 0.806115i \(-0.298434\pi\)
0.591759 + 0.806115i \(0.298434\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 25.4558i 1.21772i
\(438\) 0 0
\(439\) 8.48528i 0.404980i 0.979284 + 0.202490i \(0.0649034\pi\)
−0.979284 + 0.202490i \(0.935097\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 34.6274 1.64520 0.822599 0.568622i \(-0.192523\pi\)
0.822599 + 0.568622i \(0.192523\pi\)
\(444\) 0 0
\(445\) 14.1421i 0.670402i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.31371i 0.250769i 0.992108 + 0.125385i \(0.0400165\pi\)
−0.992108 + 0.125385i \(0.959983\pi\)
\(450\) 0 0
\(451\) 33.9706 1.59961
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −18.4853 −0.866603
\(456\) 0 0
\(457\) 11.5147 0.538636 0.269318 0.963051i \(-0.413202\pi\)
0.269318 + 0.963051i \(0.413202\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −17.1716 −0.799760 −0.399880 0.916568i \(-0.630948\pi\)
−0.399880 + 0.916568i \(0.630948\pi\)
\(462\) 0 0
\(463\) −20.9706 −0.974585 −0.487292 0.873239i \(-0.662015\pi\)
−0.487292 + 0.873239i \(0.662015\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 27.0000 1.24941 0.624705 0.780860i \(-0.285219\pi\)
0.624705 + 0.780860i \(0.285219\pi\)
\(468\) 0 0
\(469\) 9.51472i 0.439349i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 46.6274i 2.14393i
\(474\) 0 0
\(475\) −3.00000 −0.137649
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 13.6569i 0.623998i −0.950082 0.311999i \(-0.899002\pi\)
0.950082 0.311999i \(-0.100998\pi\)
\(480\) 0 0
\(481\) 45.7990i 2.08825i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14.0000 −0.635707
\(486\) 0 0
\(487\) 10.3431i 0.468693i 0.972153 + 0.234346i \(0.0752950\pi\)
−0.972153 + 0.234346i \(0.924705\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 26.6274 1.20168 0.600839 0.799370i \(-0.294833\pi\)
0.600839 + 0.799370i \(0.294833\pi\)
\(492\) 0 0
\(493\) −11.7990 + 12.5147i −0.531400 + 0.563635i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 36.9706 1.65836
\(498\) 0 0
\(499\) 9.79899i 0.438663i 0.975650 + 0.219332i \(0.0703876\pi\)
−0.975650 + 0.219332i \(0.929612\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.31371i 0.0585754i −0.999571 0.0292877i \(-0.990676\pi\)
0.999571 0.0292877i \(-0.00932389\pi\)
\(504\) 0 0
\(505\) 5.65685i 0.251727i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −32.1421 −1.42468 −0.712338 0.701837i \(-0.752363\pi\)
−0.712338 + 0.701837i \(0.752363\pi\)
\(510\) 0 0
\(511\) 60.5980 2.68070
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.00000i 0.264392i
\(516\) 0 0
\(517\) 50.4558i 2.21905i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 32.7990i 1.43695i 0.695553 + 0.718475i \(0.255159\pi\)
−0.695553 + 0.718475i \(0.744841\pi\)
\(522\) 0 0
\(523\) 16.9706 0.742071 0.371035 0.928619i \(-0.379003\pi\)
0.371035 + 0.928619i \(0.379003\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −19.3137 + 20.4853i −0.841318 + 0.892353i
\(528\) 0 0
\(529\) −49.0000 −2.13043
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 28.1421i 1.21897i
\(534\) 0 0
\(535\) −4.34315 −0.187771
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 44.6274i 1.92224i
\(540\) 0 0
\(541\) 11.5147i 0.495056i 0.968881 + 0.247528i \(0.0796183\pi\)
−0.968881 + 0.247528i \(0.920382\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.31371 0.141944
\(546\) 0 0
\(547\) 10.8579i 0.464249i 0.972686 + 0.232124i \(0.0745676\pi\)
−0.972686 + 0.232124i \(0.925432\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.5147i 0.533145i
\(552\) 0 0
\(553\) 7.65685 0.325603
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.6569 0.493917 0.246958 0.969026i \(-0.420569\pi\)
0.246958 + 0.969026i \(0.420569\pi\)
\(558\) 0 0
\(559\) 38.6274 1.63377
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 21.2843 0.897025 0.448513 0.893777i \(-0.351954\pi\)
0.448513 + 0.893777i \(0.351954\pi\)
\(564\) 0 0
\(565\) −10.8284 −0.455555
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.31371 −0.306607 −0.153303 0.988179i \(-0.548991\pi\)
−0.153303 + 0.988179i \(0.548991\pi\)
\(570\) 0 0
\(571\) 26.4853i 1.10837i 0.832392 + 0.554187i \(0.186971\pi\)
−0.832392 + 0.554187i \(0.813029\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.48528i 0.353861i
\(576\) 0 0
\(577\) 31.6569 1.31789 0.658946 0.752190i \(-0.271003\pi\)
0.658946 + 0.752190i \(0.271003\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 48.4558i 2.00684i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.62742 0.0671707 0.0335853 0.999436i \(-0.489307\pi\)
0.0335853 + 0.999436i \(0.489307\pi\)
\(588\) 0 0
\(589\) 20.4853i 0.844081i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −45.6274 −1.87369 −0.936847 0.349740i \(-0.886270\pi\)
−0.936847 + 0.349740i \(0.886270\pi\)
\(594\) 0 0
\(595\) 11.4853 + 10.8284i 0.470851 + 0.443922i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 39.9411 1.63195 0.815975 0.578087i \(-0.196201\pi\)
0.815975 + 0.578087i \(0.196201\pi\)
\(600\) 0 0
\(601\) 4.48528i 0.182958i 0.995807 + 0.0914792i \(0.0291595\pi\)
−0.995807 + 0.0914792i \(0.970840\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 22.9706i 0.933886i
\(606\) 0 0
\(607\) 20.1127i 0.816349i 0.912904 + 0.408175i \(0.133835\pi\)
−0.912904 + 0.408175i \(0.866165\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 41.7990 1.69101
\(612\) 0 0
\(613\) −18.6274 −0.752354 −0.376177 0.926548i \(-0.622762\pi\)
−0.376177 + 0.926548i \(0.622762\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.17157i 0.208200i 0.994567 + 0.104100i \(0.0331962\pi\)
−0.994567 + 0.104100i \(0.966804\pi\)
\(618\) 0 0
\(619\) 34.0000i 1.36658i −0.730149 0.683288i \(-0.760549\pi\)
0.730149 0.683288i \(-0.239451\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 54.1421i 2.16916i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −26.8284 + 28.4558i −1.06972 + 1.13461i
\(630\) 0 0
\(631\) −1.00000 −0.0398094 −0.0199047 0.999802i \(-0.506336\pi\)
−0.0199047 + 0.999802i \(0.506336\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 10.1421i 0.402478i
\(636\) 0 0
\(637\) −36.9706 −1.46483
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 35.1421i 1.38803i −0.719960 0.694015i \(-0.755840\pi\)
0.719960 0.694015i \(-0.244160\pi\)
\(642\) 0 0
\(643\) 36.4558i 1.43768i −0.695177 0.718839i \(-0.744674\pi\)
0.695177 0.718839i \(-0.255326\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 44.2843 1.74099 0.870497 0.492173i \(-0.163797\pi\)
0.870497 + 0.492173i \(0.163797\pi\)
\(648\) 0 0
\(649\) 30.1421i 1.18318i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 17.6569i 0.690966i 0.938425 + 0.345483i \(0.112285\pi\)
−0.938425 + 0.345483i \(0.887715\pi\)
\(654\) 0 0
\(655\) −7.31371 −0.285770
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −6.68629 −0.260461 −0.130230 0.991484i \(-0.541572\pi\)
−0.130230 + 0.991484i \(0.541572\pi\)
\(660\) 0 0
\(661\) −24.9411 −0.970097 −0.485049 0.874487i \(-0.661198\pi\)
−0.485049 + 0.874487i \(0.661198\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −11.4853 −0.445380
\(666\) 0 0
\(667\) 35.3970 1.37058
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 49.4558 1.90922
\(672\) 0 0
\(673\) 27.9411i 1.07705i −0.842609 0.538526i \(-0.818982\pi\)
0.842609 0.538526i \(-0.181018\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.34315i 0.0900544i −0.998986 0.0450272i \(-0.985663\pi\)
0.998986 0.0450272i \(-0.0143375\pi\)
\(678\) 0 0
\(679\) −53.5980 −2.05690
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.02944i 0.268974i 0.990915 + 0.134487i \(0.0429386\pi\)
−0.990915 + 0.134487i \(0.957061\pi\)
\(684\) 0 0
\(685\) 1.34315i 0.0513190i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −40.1421 −1.52929
\(690\) 0 0
\(691\) 40.3431i 1.53473i 0.641213 + 0.767363i \(0.278431\pi\)
−0.641213 + 0.767363i \(0.721569\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.00000 −0.227593
\(696\) 0 0
\(697\) 16.4853 17.4853i 0.624425 0.662302i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3.51472 0.132749 0.0663745 0.997795i \(-0.478857\pi\)
0.0663745 + 0.997795i \(0.478857\pi\)
\(702\) 0 0
\(703\) 28.4558i 1.07323i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 21.6569i 0.814490i
\(708\) 0 0
\(709\) 34.9706i 1.31335i 0.754175 + 0.656674i \(0.228037\pi\)
−0.754175 + 0.656674i \(0.771963\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 57.9411 2.16991
\(714\) 0 0
\(715\) −28.1421 −1.05246
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 22.1127i 0.824664i −0.911034 0.412332i \(-0.864714\pi\)
0.911034 0.412332i \(-0.135286\pi\)
\(720\) 0 0
\(721\) 22.9706i 0.855468i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.17157i 0.154928i
\(726\) 0 0
\(727\) −38.9706 −1.44534 −0.722669 0.691194i \(-0.757085\pi\)
−0.722669 + 0.691194i \(0.757085\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −24.0000 22.6274i −0.887672 0.836905i
\(732\) 0 0
\(733\) 40.4853 1.49536 0.747679 0.664060i \(-0.231168\pi\)
0.747679 + 0.664060i \(0.231168\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.4853i 0.533572i
\(738\) 0 0
\(739\) 8.28427 0.304742 0.152371 0.988323i \(-0.451309\pi\)
0.152371 + 0.988323i \(0.451309\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 39.9411i 1.46530i −0.680607 0.732649i \(-0.738284\pi\)
0.680607 0.732649i \(-0.261716\pi\)
\(744\) 0 0
\(745\) 13.1716i 0.482569i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −16.6274 −0.607553
\(750\) 0 0
\(751\) 19.8579i 0.724624i −0.932057 0.362312i \(-0.881988\pi\)
0.932057 0.362312i \(-0.118012\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15.0000i 0.545906i
\(756\) 0 0
\(757\) 27.6569 1.00521 0.502603 0.864517i \(-0.332376\pi\)
0.502603 + 0.864517i \(0.332376\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 21.5147 0.779908 0.389954 0.920834i \(-0.372491\pi\)
0.389954 + 0.920834i \(0.372491\pi\)
\(762\) 0 0
\(763\) 12.6863 0.459275
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −24.9706 −0.901635
\(768\) 0 0
\(769\) 24.6569 0.889149 0.444574 0.895742i \(-0.353355\pi\)
0.444574 + 0.895742i \(0.353355\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −19.6863 −0.708067 −0.354033 0.935233i \(-0.615190\pi\)
−0.354033 + 0.935233i \(0.615190\pi\)
\(774\) 0 0
\(775\) 6.82843i 0.245284i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 17.4853i 0.626475i
\(780\) 0 0
\(781\) 56.2843 2.01401
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22.9706i 0.819855i
\(786\) 0 0
\(787\) 5.48528i 0.195529i 0.995210 + 0.0977646i \(0.0311692\pi\)
−0.995210 + 0.0977646i \(0.968831\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −41.4558 −1.47400
\(792\) 0 0
\(793\) 40.9706i 1.45491i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.97056 0.0698009 0.0349005 0.999391i \(-0.488889\pi\)
0.0349005 + 0.999391i \(0.488889\pi\)
\(798\) 0 0
\(799\) −25.9706 24.4853i −0.918772 0.866227i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 92.2548 3.25560
\(804\) 0 0
\(805\) 32.4853i 1.14496i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 46.2843i 1.62727i −0.581377 0.813634i \(-0.697486\pi\)
0.581377 0.813634i \(-0.302514\pi\)
\(810\) 0 0
\(811\) 13.4558i 0.472499i −0.971692 0.236249i \(-0.924082\pi\)
0.971692 0.236249i \(-0.0759182\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.48528 −0.122084
\(816\) 0 0
\(817\) 24.0000 0.839654
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 29.3137i 1.02306i −0.859267 0.511528i \(-0.829080\pi\)
0.859267 0.511528i \(-0.170920\pi\)
\(822\) 0 0
\(823\) 49.8284i 1.73691i −0.495768 0.868455i \(-0.665113\pi\)
0.495768 0.868455i \(-0.334887\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 38.1421i 1.32633i 0.748472 + 0.663166i \(0.230788\pi\)
−0.748472 + 0.663166i \(0.769212\pi\)
\(828\) 0 0
\(829\) −22.0294 −0.765114 −0.382557 0.923932i \(-0.624956\pi\)
−0.382557 + 0.923932i \(0.624956\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 22.9706 + 21.6569i 0.795883 + 0.750366i
\(834\) 0 0
\(835\) 9.65685 0.334189
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.17157i 0.213066i −0.994309 0.106533i \(-0.966025\pi\)
0.994309 0.106533i \(-0.0339750\pi\)
\(840\) 0 0
\(841\) 11.5980 0.399930
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10.3137i 0.354802i
\(846\) 0 0
\(847\) 87.9411i 3.02169i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 80.4853 2.75900
\(852\) 0 0
\(853\) 1.31371i 0.0449805i 0.999747 + 0.0224903i \(0.00715948\pi\)
−0.999747 + 0.0224903i \(0.992841\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 31.3137i 1.06966i 0.844961 + 0.534828i \(0.179624\pi\)
−0.844961 + 0.534828i \(0.820376\pi\)
\(858\) 0 0
\(859\) 41.2843 1.40860 0.704301 0.709902i \(-0.251261\pi\)
0.704301 + 0.709902i \(0.251261\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 27.3431 0.930772 0.465386 0.885108i \(-0.345916\pi\)
0.465386 + 0.885108i \(0.345916\pi\)
\(864\) 0 0
\(865\) −20.8284 −0.708188
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 11.6569 0.395432
\(870\) 0 0
\(871\) −12.0000 −0.406604
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.82843 0.129424
\(876\) 0 0
\(877\) 8.45584i 0.285534i −0.989756 0.142767i \(-0.954400\pi\)
0.989756 0.142767i \(-0.0455999\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 10.1716i 0.342689i 0.985211 + 0.171344i \(0.0548111\pi\)
−0.985211 + 0.171344i \(0.945189\pi\)
\(882\) 0 0
\(883\) 18.4853 0.622079 0.311040 0.950397i \(-0.399323\pi\)
0.311040 + 0.950397i \(0.399323\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 16.3431i 0.548749i −0.961623 0.274375i \(-0.911529\pi\)
0.961623 0.274375i \(-0.0884708\pi\)
\(888\) 0 0
\(889\) 38.8284i 1.30226i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 25.9706 0.869072
\(894\) 0 0
\(895\) 1.65685i 0.0553825i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −28.4853 −0.950037
\(900\) 0 0
\(901\) 24.9411 + 23.5147i 0.830909 + 0.783389i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −4.82843 −0.160502
\(906\) 0 0
\(907\) 2.51472i 0.0834999i 0.999128 + 0.0417499i \(0.0132933\pi\)
−0.999128 + 0.0417499i \(0.986707\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 11.8284i 0.391893i 0.980615 + 0.195947i \(0.0627779\pi\)
−0.980615 + 0.195947i \(0.937222\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −28.0000 −0.924641
\(918\) 0 0
\(919\) −39.0000 −1.28649 −0.643246 0.765660i \(-0.722413\pi\)
−0.643246 + 0.765660i \(0.722413\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 46.6274i 1.53476i
\(924\) 0 0
\(925\) 9.48528i 0.311874i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 39.4264i 1.29354i −0.762686 0.646769i \(-0.776120\pi\)
0.762686 0.646769i \(-0.223880\pi\)
\(930\) 0 0
\(931\) −22.9706 −0.752830
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 17.4853 + 16.4853i 0.571830 + 0.539126i
\(936\) 0 0
\(937\) −15.4558 −0.504920 −0.252460 0.967607i \(-0.581240\pi\)
−0.252460 + 0.967607i \(0.581240\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 30.0000i 0.977972i 0.872292 + 0.488986i \(0.162633\pi\)
−0.872292 + 0.488986i \(0.837367\pi\)
\(942\) 0 0
\(943\) −49.4558 −1.61050
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.6274i 0.410336i −0.978727 0.205168i \(-0.934226\pi\)
0.978727 0.205168i \(-0.0657741\pi\)
\(948\) 0 0
\(949\) 76.4264i 2.48091i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 30.3137 0.981957 0.490979 0.871172i \(-0.336639\pi\)
0.490979 + 0.871172i \(0.336639\pi\)
\(954\) 0 0
\(955\) 18.1421i 0.587066i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5.14214i 0.166048i
\(960\) 0 0
\(961\) −15.6274 −0.504110
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 13.3137 0.428583
\(966\) 0 0
\(967\) −31.1716 −1.00241 −0.501205 0.865329i \(-0.667110\pi\)
−0.501205 + 0.865329i \(0.667110\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −12.1421 −0.389660 −0.194830 0.980837i \(-0.562415\pi\)
−0.194830 + 0.980837i \(0.562415\pi\)
\(972\) 0 0
\(973\) −22.9706 −0.736402
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 18.6863 0.597827 0.298914 0.954280i \(-0.403376\pi\)
0.298914 + 0.954280i \(0.403376\pi\)
\(978\) 0 0
\(979\) 82.4264i 2.63436i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 39.7990i 1.26939i 0.772762 + 0.634695i \(0.218874\pi\)
−0.772762 + 0.634695i \(0.781126\pi\)
\(984\) 0 0
\(985\) −3.65685 −0.116517
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 67.8823i 2.15853i
\(990\) 0 0
\(991\) 52.1421i 1.65635i −0.560470 0.828175i \(-0.689379\pi\)
0.560470 0.828175i \(-0.310621\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 20.9706 0.664812
\(996\) 0 0
\(997\) 27.8284i 0.881335i −0.897670 0.440668i \(-0.854742\pi\)
0.897670 0.440668i \(-0.145258\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.e.g.1801.1 4
3.2 odd 2 1020.2.e.d.781.1 4
12.11 even 2 4080.2.h.n.3841.4 4
15.2 even 4 5100.2.k.h.4249.4 4
15.8 even 4 5100.2.k.i.4249.2 4
15.14 odd 2 5100.2.e.f.1801.4 4
17.16 even 2 inner 3060.2.e.g.1801.4 4
51.50 odd 2 1020.2.e.d.781.4 yes 4
204.203 even 2 4080.2.h.n.3841.1 4
255.152 even 4 5100.2.k.i.4249.1 4
255.203 even 4 5100.2.k.h.4249.3 4
255.254 odd 2 5100.2.e.f.1801.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1020.2.e.d.781.1 4 3.2 odd 2
1020.2.e.d.781.4 yes 4 51.50 odd 2
3060.2.e.g.1801.1 4 1.1 even 1 trivial
3060.2.e.g.1801.4 4 17.16 even 2 inner
4080.2.h.n.3841.1 4 204.203 even 2
4080.2.h.n.3841.4 4 12.11 even 2
5100.2.e.f.1801.1 4 255.254 odd 2
5100.2.e.f.1801.4 4 15.14 odd 2
5100.2.k.h.4249.3 4 255.203 even 4
5100.2.k.h.4249.4 4 15.2 even 4
5100.2.k.i.4249.1 4 255.152 even 4
5100.2.k.i.4249.2 4 15.8 even 4