L(s) = 1 | − i·5-s − 3.82i·7-s − 5.82i·11-s + 4.82·13-s + (−3 − 2.82i)17-s + 3·19-s + 8.48i·23-s − 25-s − 4.17i·29-s − 6.82i·31-s − 3.82·35-s − 9.48i·37-s + 5.82i·41-s + 8·43-s + 8.65·47-s + ⋯ |
L(s) = 1 | − 0.447i·5-s − 1.44i·7-s − 1.75i·11-s + 1.33·13-s + (−0.727 − 0.685i)17-s + 0.688·19-s + 1.76i·23-s − 0.200·25-s − 0.774i·29-s − 1.22i·31-s − 0.647·35-s − 1.55i·37-s + 0.910i·41-s + 1.21·43-s + 1.26·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.685 + 0.727i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.685 + 0.727i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.727173977\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.727173977\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 17 | \( 1 + (3 + 2.82i)T \) |
good | 7 | \( 1 + 3.82iT - 7T^{2} \) |
| 11 | \( 1 + 5.82iT - 11T^{2} \) |
| 13 | \( 1 - 4.82T + 13T^{2} \) |
| 19 | \( 1 - 3T + 19T^{2} \) |
| 23 | \( 1 - 8.48iT - 23T^{2} \) |
| 29 | \( 1 + 4.17iT - 29T^{2} \) |
| 31 | \( 1 + 6.82iT - 31T^{2} \) |
| 37 | \( 1 + 9.48iT - 37T^{2} \) |
| 41 | \( 1 - 5.82iT - 41T^{2} \) |
| 43 | \( 1 - 8T + 43T^{2} \) |
| 47 | \( 1 - 8.65T + 47T^{2} \) |
| 53 | \( 1 + 8.31T + 53T^{2} \) |
| 59 | \( 1 + 5.17T + 59T^{2} \) |
| 61 | \( 1 - 8.48iT - 61T^{2} \) |
| 67 | \( 1 + 2.48T + 67T^{2} \) |
| 71 | \( 1 - 9.65iT - 71T^{2} \) |
| 73 | \( 1 - 15.8iT - 73T^{2} \) |
| 79 | \( 1 - 2iT - 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + 14.1T + 89T^{2} \) |
| 97 | \( 1 + 14iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.396746772966987140865837311421, −7.68448136287558187134530352603, −7.08228931168322321943550436702, −5.89838778382846321458175610686, −5.66575243670484770676074175496, −4.22133671786689407912540976606, −3.85306673844821763004654845030, −2.90115356044360749449942373833, −1.27939232948021619726252348062, −0.58819544708828148594318039761,
1.59741315811936641264373071003, 2.39637780606809569600615847040, 3.29753916105970420178875216626, 4.43187130570860738349396921904, 5.09296862074861023685278723820, 6.16670320250255873035098356007, 6.54966847258376441831059510465, 7.45889993787581502664720149714, 8.424276377410773078953906973490, 8.914116323207520047396647470538