Properties

Label 2-3060-17.16-c1-0-26
Degree $2$
Conductor $3060$
Sign $-0.685 + 0.727i$
Analytic cond. $24.4342$
Root an. cond. $4.94309$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·5-s − 3.82i·7-s − 5.82i·11-s + 4.82·13-s + (−3 − 2.82i)17-s + 3·19-s + 8.48i·23-s − 25-s − 4.17i·29-s − 6.82i·31-s − 3.82·35-s − 9.48i·37-s + 5.82i·41-s + 8·43-s + 8.65·47-s + ⋯
L(s)  = 1  − 0.447i·5-s − 1.44i·7-s − 1.75i·11-s + 1.33·13-s + (−0.727 − 0.685i)17-s + 0.688·19-s + 1.76i·23-s − 0.200·25-s − 0.774i·29-s − 1.22i·31-s − 0.647·35-s − 1.55i·37-s + 0.910i·41-s + 1.21·43-s + 1.26·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.685 + 0.727i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.685 + 0.727i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3060\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $-0.685 + 0.727i$
Analytic conductor: \(24.4342\)
Root analytic conductor: \(4.94309\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3060} (1801, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3060,\ (\ :1/2),\ -0.685 + 0.727i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.727173977\)
\(L(\frac12)\) \(\approx\) \(1.727173977\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + iT \)
17 \( 1 + (3 + 2.82i)T \)
good7 \( 1 + 3.82iT - 7T^{2} \)
11 \( 1 + 5.82iT - 11T^{2} \)
13 \( 1 - 4.82T + 13T^{2} \)
19 \( 1 - 3T + 19T^{2} \)
23 \( 1 - 8.48iT - 23T^{2} \)
29 \( 1 + 4.17iT - 29T^{2} \)
31 \( 1 + 6.82iT - 31T^{2} \)
37 \( 1 + 9.48iT - 37T^{2} \)
41 \( 1 - 5.82iT - 41T^{2} \)
43 \( 1 - 8T + 43T^{2} \)
47 \( 1 - 8.65T + 47T^{2} \)
53 \( 1 + 8.31T + 53T^{2} \)
59 \( 1 + 5.17T + 59T^{2} \)
61 \( 1 - 8.48iT - 61T^{2} \)
67 \( 1 + 2.48T + 67T^{2} \)
71 \( 1 - 9.65iT - 71T^{2} \)
73 \( 1 - 15.8iT - 73T^{2} \)
79 \( 1 - 2iT - 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 14.1T + 89T^{2} \)
97 \( 1 + 14iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.396746772966987140865837311421, −7.68448136287558187134530352603, −7.08228931168322321943550436702, −5.89838778382846321458175610686, −5.66575243670484770676074175496, −4.22133671786689407912540976606, −3.85306673844821763004654845030, −2.90115356044360749449942373833, −1.27939232948021619726252348062, −0.58819544708828148594318039761, 1.59741315811936641264373071003, 2.39637780606809569600615847040, 3.29753916105970420178875216626, 4.43187130570860738349396921904, 5.09296862074861023685278723820, 6.16670320250255873035098356007, 6.54966847258376441831059510465, 7.45889993787581502664720149714, 8.424276377410773078953906973490, 8.914116323207520047396647470538

Graph of the $Z$-function along the critical line