Properties

Label 5100.2.k.h.4249.4
Level $5100$
Weight $2$
Character 5100.4249
Analytic conductor $40.724$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5100,2,Mod(4249,5100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5100.4249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5100.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.7237050309\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1020)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4249.4
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 5100.4249
Dual form 5100.2.k.h.4249.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +3.82843 q^{7} +1.00000 q^{9} +5.82843i q^{11} -4.82843i q^{13} +(-2.82843 + 3.00000i) q^{17} -3.00000 q^{19} -3.82843 q^{21} -8.48528 q^{23} -1.00000 q^{27} -4.17157i q^{29} -6.82843i q^{31} -5.82843i q^{33} +9.48528 q^{37} +4.82843i q^{39} -5.82843i q^{41} -8.00000i q^{43} -8.65685i q^{47} +7.65685 q^{49} +(2.82843 - 3.00000i) q^{51} -8.31371i q^{53} +3.00000 q^{57} -5.17157 q^{59} +8.48528i q^{61} +3.82843 q^{63} -2.48528i q^{67} +8.48528 q^{69} -9.65685i q^{71} +15.8284 q^{73} +22.3137i q^{77} -2.00000i q^{79} +1.00000 q^{81} +4.17157i q^{87} -14.1421 q^{89} -18.4853i q^{91} +6.82843i q^{93} +14.0000 q^{97} +5.82843i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{7} + 4 q^{9} - 12 q^{19} - 4 q^{21} - 4 q^{27} + 4 q^{37} + 8 q^{49} + 12 q^{57} - 32 q^{59} + 4 q^{63} + 52 q^{73} + 4 q^{81} + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5100\mathbb{Z}\right)^\times\).

\(n\) \(2551\) \(3301\) \(3401\) \(3877\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.82843 1.44701 0.723505 0.690319i \(-0.242530\pi\)
0.723505 + 0.690319i \(0.242530\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 5.82843i 1.75734i 0.477432 + 0.878668i \(0.341568\pi\)
−0.477432 + 0.878668i \(0.658432\pi\)
\(12\) 0 0
\(13\) 4.82843i 1.33916i −0.742738 0.669582i \(-0.766473\pi\)
0.742738 0.669582i \(-0.233527\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.82843 + 3.00000i −0.685994 + 0.727607i
\(18\) 0 0
\(19\) −3.00000 −0.688247 −0.344124 0.938924i \(-0.611824\pi\)
−0.344124 + 0.938924i \(0.611824\pi\)
\(20\) 0 0
\(21\) −3.82843 −0.835431
\(22\) 0 0
\(23\) −8.48528 −1.76930 −0.884652 0.466252i \(-0.845604\pi\)
−0.884652 + 0.466252i \(0.845604\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 4.17157i 0.774642i −0.921945 0.387321i \(-0.873401\pi\)
0.921945 0.387321i \(-0.126599\pi\)
\(30\) 0 0
\(31\) 6.82843i 1.22642i −0.789919 0.613211i \(-0.789878\pi\)
0.789919 0.613211i \(-0.210122\pi\)
\(32\) 0 0
\(33\) 5.82843i 1.01460i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.48528 1.55937 0.779685 0.626172i \(-0.215379\pi\)
0.779685 + 0.626172i \(0.215379\pi\)
\(38\) 0 0
\(39\) 4.82843i 0.773167i
\(40\) 0 0
\(41\) 5.82843i 0.910247i −0.890428 0.455124i \(-0.849595\pi\)
0.890428 0.455124i \(-0.150405\pi\)
\(42\) 0 0
\(43\) 8.00000i 1.21999i −0.792406 0.609994i \(-0.791172\pi\)
0.792406 0.609994i \(-0.208828\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.65685i 1.26273i −0.775485 0.631366i \(-0.782495\pi\)
0.775485 0.631366i \(-0.217505\pi\)
\(48\) 0 0
\(49\) 7.65685 1.09384
\(50\) 0 0
\(51\) 2.82843 3.00000i 0.396059 0.420084i
\(52\) 0 0
\(53\) 8.31371i 1.14198i −0.820959 0.570988i \(-0.806560\pi\)
0.820959 0.570988i \(-0.193440\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) −5.17157 −0.673281 −0.336641 0.941633i \(-0.609291\pi\)
−0.336641 + 0.941633i \(0.609291\pi\)
\(60\) 0 0
\(61\) 8.48528i 1.08643i 0.839594 + 0.543214i \(0.182793\pi\)
−0.839594 + 0.543214i \(0.817207\pi\)
\(62\) 0 0
\(63\) 3.82843 0.482336
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.48528i 0.303625i −0.988409 0.151813i \(-0.951489\pi\)
0.988409 0.151813i \(-0.0485111\pi\)
\(68\) 0 0
\(69\) 8.48528 1.02151
\(70\) 0 0
\(71\) 9.65685i 1.14606i −0.819535 0.573029i \(-0.805768\pi\)
0.819535 0.573029i \(-0.194232\pi\)
\(72\) 0 0
\(73\) 15.8284 1.85258 0.926289 0.376815i \(-0.122981\pi\)
0.926289 + 0.376815i \(0.122981\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 22.3137i 2.54288i
\(78\) 0 0
\(79\) 2.00000i 0.225018i −0.993651 0.112509i \(-0.964111\pi\)
0.993651 0.112509i \(-0.0358886\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 4.17157i 0.447240i
\(88\) 0 0
\(89\) −14.1421 −1.49906 −0.749532 0.661968i \(-0.769721\pi\)
−0.749532 + 0.661968i \(0.769721\pi\)
\(90\) 0 0
\(91\) 18.4853i 1.93778i
\(92\) 0 0
\(93\) 6.82843i 0.708075i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) 5.82843i 0.585779i
\(100\) 0 0
\(101\) −5.65685 −0.562878 −0.281439 0.959579i \(-0.590812\pi\)
−0.281439 + 0.959579i \(0.590812\pi\)
\(102\) 0 0
\(103\) 6.00000i 0.591198i 0.955312 + 0.295599i \(0.0955191\pi\)
−0.955312 + 0.295599i \(0.904481\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.34315 −0.419868 −0.209934 0.977716i \(-0.567325\pi\)
−0.209934 + 0.977716i \(0.567325\pi\)
\(108\) 0 0
\(109\) 3.31371i 0.317396i −0.987327 0.158698i \(-0.949270\pi\)
0.987327 0.158698i \(-0.0507296\pi\)
\(110\) 0 0
\(111\) −9.48528 −0.900303
\(112\) 0 0
\(113\) 10.8284 1.01865 0.509326 0.860573i \(-0.329895\pi\)
0.509326 + 0.860573i \(0.329895\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.82843i 0.446388i
\(118\) 0 0
\(119\) −10.8284 + 11.4853i −0.992640 + 1.05285i
\(120\) 0 0
\(121\) −22.9706 −2.08823
\(122\) 0 0
\(123\) 5.82843i 0.525532i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 10.1421i 0.899969i 0.893036 + 0.449985i \(0.148570\pi\)
−0.893036 + 0.449985i \(0.851430\pi\)
\(128\) 0 0
\(129\) 8.00000i 0.704361i
\(130\) 0 0
\(131\) 7.31371i 0.639002i 0.947586 + 0.319501i \(0.103515\pi\)
−0.947586 + 0.319501i \(0.896485\pi\)
\(132\) 0 0
\(133\) −11.4853 −0.995900
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.34315i 0.114753i −0.998353 0.0573763i \(-0.981727\pi\)
0.998353 0.0573763i \(-0.0182735\pi\)
\(138\) 0 0
\(139\) 6.00000i 0.508913i 0.967084 + 0.254457i \(0.0818966\pi\)
−0.967084 + 0.254457i \(0.918103\pi\)
\(140\) 0 0
\(141\) 8.65685i 0.729039i
\(142\) 0 0
\(143\) 28.1421 2.35336
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −7.65685 −0.631527
\(148\) 0 0
\(149\) 13.1716 1.07906 0.539529 0.841967i \(-0.318602\pi\)
0.539529 + 0.841967i \(0.318602\pi\)
\(150\) 0 0
\(151\) 15.0000 1.22068 0.610341 0.792139i \(-0.291032\pi\)
0.610341 + 0.792139i \(0.291032\pi\)
\(152\) 0 0
\(153\) −2.82843 + 3.00000i −0.228665 + 0.242536i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 22.9706i 1.83325i −0.399748 0.916625i \(-0.630902\pi\)
0.399748 0.916625i \(-0.369098\pi\)
\(158\) 0 0
\(159\) 8.31371i 0.659320i
\(160\) 0 0
\(161\) −32.4853 −2.56020
\(162\) 0 0
\(163\) −3.48528 −0.272988 −0.136494 0.990641i \(-0.543583\pi\)
−0.136494 + 0.990641i \(0.543583\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.65685 0.747270 0.373635 0.927576i \(-0.378111\pi\)
0.373635 + 0.927576i \(0.378111\pi\)
\(168\) 0 0
\(169\) −10.3137 −0.793362
\(170\) 0 0
\(171\) −3.00000 −0.229416
\(172\) 0 0
\(173\) 20.8284 1.58356 0.791778 0.610809i \(-0.209156\pi\)
0.791778 + 0.610809i \(0.209156\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5.17157 0.388719
\(178\) 0 0
\(179\) 1.65685 0.123839 0.0619196 0.998081i \(-0.480278\pi\)
0.0619196 + 0.998081i \(0.480278\pi\)
\(180\) 0 0
\(181\) 4.82843i 0.358894i −0.983768 0.179447i \(-0.942569\pi\)
0.983768 0.179447i \(-0.0574309\pi\)
\(182\) 0 0
\(183\) 8.48528i 0.627250i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −17.4853 16.4853i −1.27865 1.20552i
\(188\) 0 0
\(189\) −3.82843 −0.278477
\(190\) 0 0
\(191\) 18.1421 1.31272 0.656359 0.754448i \(-0.272096\pi\)
0.656359 + 0.754448i \(0.272096\pi\)
\(192\) 0 0
\(193\) 13.3137 0.958342 0.479171 0.877722i \(-0.340937\pi\)
0.479171 + 0.877722i \(0.340937\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.65685 −0.260540 −0.130270 0.991479i \(-0.541584\pi\)
−0.130270 + 0.991479i \(0.541584\pi\)
\(198\) 0 0
\(199\) 20.9706i 1.48656i −0.668978 0.743282i \(-0.733268\pi\)
0.668978 0.743282i \(-0.266732\pi\)
\(200\) 0 0
\(201\) 2.48528i 0.175298i
\(202\) 0 0
\(203\) 15.9706i 1.12091i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −8.48528 −0.589768
\(208\) 0 0
\(209\) 17.4853i 1.20948i
\(210\) 0 0
\(211\) 13.3137i 0.916553i 0.888810 + 0.458277i \(0.151533\pi\)
−0.888810 + 0.458277i \(0.848467\pi\)
\(212\) 0 0
\(213\) 9.65685i 0.661677i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 26.1421i 1.77464i
\(218\) 0 0
\(219\) −15.8284 −1.06959
\(220\) 0 0
\(221\) 14.4853 + 13.6569i 0.974385 + 0.918659i
\(222\) 0 0
\(223\) 13.3137i 0.891552i −0.895145 0.445776i \(-0.852928\pi\)
0.895145 0.445776i \(-0.147072\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.82843 −0.320474 −0.160237 0.987079i \(-0.551226\pi\)
−0.160237 + 0.987079i \(0.551226\pi\)
\(228\) 0 0
\(229\) 11.0000 0.726900 0.363450 0.931614i \(-0.381599\pi\)
0.363450 + 0.931614i \(0.381599\pi\)
\(230\) 0 0
\(231\) 22.3137i 1.46813i
\(232\) 0 0
\(233\) 14.4853 0.948962 0.474481 0.880266i \(-0.342636\pi\)
0.474481 + 0.880266i \(0.342636\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2.00000i 0.129914i
\(238\) 0 0
\(239\) 14.4853 0.936975 0.468487 0.883470i \(-0.344799\pi\)
0.468487 + 0.883470i \(0.344799\pi\)
\(240\) 0 0
\(241\) 1.51472i 0.0975716i −0.998809 0.0487858i \(-0.984465\pi\)
0.998809 0.0487858i \(-0.0155352\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 14.4853i 0.921676i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −21.7990 −1.37594 −0.687970 0.725739i \(-0.741498\pi\)
−0.687970 + 0.725739i \(0.741498\pi\)
\(252\) 0 0
\(253\) 49.4558i 3.10926i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 22.9706i 1.43286i −0.697657 0.716432i \(-0.745774\pi\)
0.697657 0.716432i \(-0.254226\pi\)
\(258\) 0 0
\(259\) 36.3137 2.25642
\(260\) 0 0
\(261\) 4.17157i 0.258214i
\(262\) 0 0
\(263\) 0.313708i 0.0193441i −0.999953 0.00967205i \(-0.996921\pi\)
0.999953 0.00967205i \(-0.00307876\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 14.1421 0.865485
\(268\) 0 0
\(269\) 9.82843i 0.599250i 0.954057 + 0.299625i \(0.0968615\pi\)
−0.954057 + 0.299625i \(0.903138\pi\)
\(270\) 0 0
\(271\) −24.9706 −1.51685 −0.758427 0.651758i \(-0.774032\pi\)
−0.758427 + 0.651758i \(0.774032\pi\)
\(272\) 0 0
\(273\) 18.4853i 1.11878i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 27.6569 1.66174 0.830870 0.556467i \(-0.187843\pi\)
0.830870 + 0.556467i \(0.187843\pi\)
\(278\) 0 0
\(279\) 6.82843i 0.408807i
\(280\) 0 0
\(281\) −9.31371 −0.555609 −0.277805 0.960638i \(-0.589607\pi\)
−0.277805 + 0.960638i \(0.589607\pi\)
\(282\) 0 0
\(283\) 2.51472 0.149485 0.0747423 0.997203i \(-0.476187\pi\)
0.0747423 + 0.997203i \(0.476187\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 22.3137i 1.31714i
\(288\) 0 0
\(289\) −1.00000 16.9706i −0.0588235 0.998268i
\(290\) 0 0
\(291\) −14.0000 −0.820695
\(292\) 0 0
\(293\) 11.3431i 0.662674i 0.943513 + 0.331337i \(0.107500\pi\)
−0.943513 + 0.331337i \(0.892500\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 5.82843i 0.338200i
\(298\) 0 0
\(299\) 40.9706i 2.36939i
\(300\) 0 0
\(301\) 30.6274i 1.76533i
\(302\) 0 0
\(303\) 5.65685 0.324978
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 19.3137i 1.10229i 0.834409 + 0.551146i \(0.185809\pi\)
−0.834409 + 0.551146i \(0.814191\pi\)
\(308\) 0 0
\(309\) 6.00000i 0.341328i
\(310\) 0 0
\(311\) 7.82843i 0.443909i 0.975057 + 0.221955i \(0.0712437\pi\)
−0.975057 + 0.221955i \(0.928756\pi\)
\(312\) 0 0
\(313\) −32.7990 −1.85391 −0.926954 0.375174i \(-0.877583\pi\)
−0.926954 + 0.375174i \(0.877583\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.14214 −0.457308 −0.228654 0.973508i \(-0.573432\pi\)
−0.228654 + 0.973508i \(0.573432\pi\)
\(318\) 0 0
\(319\) 24.3137 1.36131
\(320\) 0 0
\(321\) 4.34315 0.242411
\(322\) 0 0
\(323\) 8.48528 9.00000i 0.472134 0.500773i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3.31371i 0.183248i
\(328\) 0 0
\(329\) 33.1421i 1.82719i
\(330\) 0 0
\(331\) −27.6274 −1.51854 −0.759270 0.650776i \(-0.774444\pi\)
−0.759270 + 0.650776i \(0.774444\pi\)
\(332\) 0 0
\(333\) 9.48528 0.519790
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −20.7990 −1.13299 −0.566497 0.824064i \(-0.691702\pi\)
−0.566497 + 0.824064i \(0.691702\pi\)
\(338\) 0 0
\(339\) −10.8284 −0.588119
\(340\) 0 0
\(341\) 39.7990 2.15524
\(342\) 0 0
\(343\) 2.51472 0.135782
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.1716 0.814453 0.407226 0.913327i \(-0.366496\pi\)
0.407226 + 0.913327i \(0.366496\pi\)
\(348\) 0 0
\(349\) −9.00000 −0.481759 −0.240879 0.970555i \(-0.577436\pi\)
−0.240879 + 0.970555i \(0.577436\pi\)
\(350\) 0 0
\(351\) 4.82843i 0.257722i
\(352\) 0 0
\(353\) 15.6274i 0.831763i −0.909419 0.415882i \(-0.863473\pi\)
0.909419 0.415882i \(-0.136527\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 10.8284 11.4853i 0.573101 0.607866i
\(358\) 0 0
\(359\) −3.17157 −0.167389 −0.0836946 0.996491i \(-0.526672\pi\)
−0.0836946 + 0.996491i \(0.526672\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) 0 0
\(363\) 22.9706 1.20564
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 0 0
\(369\) 5.82843i 0.303416i
\(370\) 0 0
\(371\) 31.8284i 1.65245i
\(372\) 0 0
\(373\) 2.68629i 0.139091i −0.997579 0.0695455i \(-0.977845\pi\)
0.997579 0.0695455i \(-0.0221549\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −20.1421 −1.03737
\(378\) 0 0
\(379\) 10.0000i 0.513665i −0.966456 0.256833i \(-0.917321\pi\)
0.966456 0.256833i \(-0.0826790\pi\)
\(380\) 0 0
\(381\) 10.1421i 0.519597i
\(382\) 0 0
\(383\) 7.34315i 0.375217i −0.982244 0.187609i \(-0.939926\pi\)
0.982244 0.187609i \(-0.0600737\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.00000i 0.406663i
\(388\) 0 0
\(389\) −1.02944 −0.0521945 −0.0260973 0.999659i \(-0.508308\pi\)
−0.0260973 + 0.999659i \(0.508308\pi\)
\(390\) 0 0
\(391\) 24.0000 25.4558i 1.21373 1.28736i
\(392\) 0 0
\(393\) 7.31371i 0.368928i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −37.4853 −1.88133 −0.940666 0.339333i \(-0.889799\pi\)
−0.940666 + 0.339333i \(0.889799\pi\)
\(398\) 0 0
\(399\) 11.4853 0.574983
\(400\) 0 0
\(401\) 7.82843i 0.390933i −0.980710 0.195466i \(-0.937378\pi\)
0.980710 0.195466i \(-0.0626221\pi\)
\(402\) 0 0
\(403\) −32.9706 −1.64238
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 55.2843i 2.74034i
\(408\) 0 0
\(409\) 17.3431 0.857563 0.428782 0.903408i \(-0.358943\pi\)
0.428782 + 0.903408i \(0.358943\pi\)
\(410\) 0 0
\(411\) 1.34315i 0.0662525i
\(412\) 0 0
\(413\) −19.7990 −0.974245
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 6.00000i 0.293821i
\(418\) 0 0
\(419\) 21.1421i 1.03286i 0.856329 + 0.516430i \(0.172740\pi\)
−0.856329 + 0.516430i \(0.827260\pi\)
\(420\) 0 0
\(421\) 6.65685 0.324435 0.162218 0.986755i \(-0.448135\pi\)
0.162218 + 0.986755i \(0.448135\pi\)
\(422\) 0 0
\(423\) 8.65685i 0.420911i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 32.4853i 1.57207i
\(428\) 0 0
\(429\) −28.1421 −1.35872
\(430\) 0 0
\(431\) 16.1716i 0.778957i −0.921036 0.389479i \(-0.872655\pi\)
0.921036 0.389479i \(-0.127345\pi\)
\(432\) 0 0
\(433\) 24.6274i 1.18352i −0.806115 0.591759i \(-0.798434\pi\)
0.806115 0.591759i \(-0.201566\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 25.4558 1.21772
\(438\) 0 0
\(439\) 8.48528i 0.404980i −0.979284 0.202490i \(-0.935097\pi\)
0.979284 0.202490i \(-0.0649034\pi\)
\(440\) 0 0
\(441\) 7.65685 0.364612
\(442\) 0 0
\(443\) 34.6274i 1.64520i 0.568622 + 0.822599i \(0.307477\pi\)
−0.568622 + 0.822599i \(0.692523\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −13.1716 −0.622994
\(448\) 0 0
\(449\) 5.31371i 0.250769i 0.992108 + 0.125385i \(0.0400165\pi\)
−0.992108 + 0.125385i \(0.959983\pi\)
\(450\) 0 0
\(451\) 33.9706 1.59961
\(452\) 0 0
\(453\) −15.0000 −0.704761
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.5147i 0.538636i 0.963051 + 0.269318i \(0.0867982\pi\)
−0.963051 + 0.269318i \(0.913202\pi\)
\(458\) 0 0
\(459\) 2.82843 3.00000i 0.132020 0.140028i
\(460\) 0 0
\(461\) 17.1716 0.799760 0.399880 0.916568i \(-0.369052\pi\)
0.399880 + 0.916568i \(0.369052\pi\)
\(462\) 0 0
\(463\) 20.9706i 0.974585i 0.873239 + 0.487292i \(0.162015\pi\)
−0.873239 + 0.487292i \(0.837985\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 27.0000i 1.24941i −0.780860 0.624705i \(-0.785219\pi\)
0.780860 0.624705i \(-0.214781\pi\)
\(468\) 0 0
\(469\) 9.51472i 0.439349i
\(470\) 0 0
\(471\) 22.9706i 1.05843i
\(472\) 0 0
\(473\) 46.6274 2.14393
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 8.31371i 0.380659i
\(478\) 0 0
\(479\) 13.6569i 0.623998i −0.950082 0.311999i \(-0.899002\pi\)
0.950082 0.311999i \(-0.100998\pi\)
\(480\) 0 0
\(481\) 45.7990i 2.08825i
\(482\) 0 0
\(483\) 32.4853 1.47813
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −10.3431 −0.468693 −0.234346 0.972153i \(-0.575295\pi\)
−0.234346 + 0.972153i \(0.575295\pi\)
\(488\) 0 0
\(489\) 3.48528 0.157610
\(490\) 0 0
\(491\) −26.6274 −1.20168 −0.600839 0.799370i \(-0.705167\pi\)
−0.600839 + 0.799370i \(0.705167\pi\)
\(492\) 0 0
\(493\) 12.5147 + 11.7990i 0.563635 + 0.531400i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 36.9706i 1.65836i
\(498\) 0 0
\(499\) 9.79899i 0.438663i −0.975650 0.219332i \(-0.929612\pi\)
0.975650 0.219332i \(-0.0703876\pi\)
\(500\) 0 0
\(501\) −9.65685 −0.431436
\(502\) 0 0
\(503\) 1.31371 0.0585754 0.0292877 0.999571i \(-0.490676\pi\)
0.0292877 + 0.999571i \(0.490676\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 10.3137 0.458048
\(508\) 0 0
\(509\) −32.1421 −1.42468 −0.712338 0.701837i \(-0.752363\pi\)
−0.712338 + 0.701837i \(0.752363\pi\)
\(510\) 0 0
\(511\) 60.5980 2.68070
\(512\) 0 0
\(513\) 3.00000 0.132453
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 50.4558 2.21905
\(518\) 0 0
\(519\) −20.8284 −0.914266
\(520\) 0 0
\(521\) 32.7990i 1.43695i −0.695553 0.718475i \(-0.744841\pi\)
0.695553 0.718475i \(-0.255159\pi\)
\(522\) 0 0
\(523\) 16.9706i 0.742071i −0.928619 0.371035i \(-0.879003\pi\)
0.928619 0.371035i \(-0.120997\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.4853 + 19.3137i 0.892353 + 0.841318i
\(528\) 0 0
\(529\) 49.0000 2.13043
\(530\) 0 0
\(531\) −5.17157 −0.224427
\(532\) 0 0
\(533\) −28.1421 −1.21897
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1.65685 −0.0714985
\(538\) 0 0
\(539\) 44.6274i 1.92224i
\(540\) 0 0
\(541\) 11.5147i 0.495056i 0.968881 + 0.247528i \(0.0796183\pi\)
−0.968881 + 0.247528i \(0.920382\pi\)
\(542\) 0 0
\(543\) 4.82843i 0.207208i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −10.8579 −0.464249 −0.232124 0.972686i \(-0.574568\pi\)
−0.232124 + 0.972686i \(0.574568\pi\)
\(548\) 0 0
\(549\) 8.48528i 0.362143i
\(550\) 0 0
\(551\) 12.5147i 0.533145i
\(552\) 0 0
\(553\) 7.65685i 0.325603i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.6569i 0.493917i −0.969026 0.246958i \(-0.920569\pi\)
0.969026 0.246958i \(-0.0794311\pi\)
\(558\) 0 0
\(559\) −38.6274 −1.63377
\(560\) 0 0
\(561\) 17.4853 + 16.4853i 0.738229 + 0.696009i
\(562\) 0 0
\(563\) 21.2843i 0.897025i 0.893777 + 0.448513i \(0.148046\pi\)
−0.893777 + 0.448513i \(0.851954\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.82843 0.160779
\(568\) 0 0
\(569\) −7.31371 −0.306607 −0.153303 0.988179i \(-0.548991\pi\)
−0.153303 + 0.988179i \(0.548991\pi\)
\(570\) 0 0
\(571\) 26.4853i 1.10837i 0.832392 + 0.554187i \(0.186971\pi\)
−0.832392 + 0.554187i \(0.813029\pi\)
\(572\) 0 0
\(573\) −18.1421 −0.757899
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 31.6569i 1.31789i 0.752190 + 0.658946i \(0.228997\pi\)
−0.752190 + 0.658946i \(0.771003\pi\)
\(578\) 0 0
\(579\) −13.3137 −0.553299
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 48.4558 2.00684
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.62742i 0.0671707i −0.999436 0.0335853i \(-0.989307\pi\)
0.999436 0.0335853i \(-0.0106926\pi\)
\(588\) 0 0
\(589\) 20.4853i 0.844081i
\(590\) 0 0
\(591\) 3.65685 0.150423
\(592\) 0 0
\(593\) 45.6274i 1.87369i −0.349740 0.936847i \(-0.613730\pi\)
0.349740 0.936847i \(-0.386270\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 20.9706i 0.858268i
\(598\) 0 0
\(599\) 39.9411 1.63195 0.815975 0.578087i \(-0.196201\pi\)
0.815975 + 0.578087i \(0.196201\pi\)
\(600\) 0 0
\(601\) 4.48528i 0.182958i 0.995807 + 0.0914792i \(0.0291595\pi\)
−0.995807 + 0.0914792i \(0.970840\pi\)
\(602\) 0 0
\(603\) 2.48528i 0.101208i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −20.1127 −0.816349 −0.408175 0.912904i \(-0.633835\pi\)
−0.408175 + 0.912904i \(0.633835\pi\)
\(608\) 0 0
\(609\) 15.9706i 0.647160i
\(610\) 0 0
\(611\) −41.7990 −1.69101
\(612\) 0 0
\(613\) 18.6274i 0.752354i 0.926548 + 0.376177i \(0.122762\pi\)
−0.926548 + 0.376177i \(0.877238\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.17157 0.208200 0.104100 0.994567i \(-0.466804\pi\)
0.104100 + 0.994567i \(0.466804\pi\)
\(618\) 0 0
\(619\) 34.0000i 1.36658i 0.730149 + 0.683288i \(0.239451\pi\)
−0.730149 + 0.683288i \(0.760549\pi\)
\(620\) 0 0
\(621\) 8.48528 0.340503
\(622\) 0 0
\(623\) −54.1421 −2.16916
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 17.4853i 0.698295i
\(628\) 0 0
\(629\) −26.8284 + 28.4558i −1.06972 + 1.13461i
\(630\) 0 0
\(631\) −1.00000 −0.0398094 −0.0199047 0.999802i \(-0.506336\pi\)
−0.0199047 + 0.999802i \(0.506336\pi\)
\(632\) 0 0
\(633\) 13.3137i 0.529172i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 36.9706i 1.46483i
\(638\) 0 0
\(639\) 9.65685i 0.382019i
\(640\) 0 0
\(641\) 35.1421i 1.38803i 0.719960 + 0.694015i \(0.244160\pi\)
−0.719960 + 0.694015i \(0.755840\pi\)
\(642\) 0 0
\(643\) −36.4558 −1.43768 −0.718839 0.695177i \(-0.755326\pi\)
−0.718839 + 0.695177i \(0.755326\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 44.2843i 1.74099i −0.492173 0.870497i \(-0.663797\pi\)
0.492173 0.870497i \(-0.336203\pi\)
\(648\) 0 0
\(649\) 30.1421i 1.18318i
\(650\) 0 0
\(651\) 26.1421i 1.02459i
\(652\) 0 0
\(653\) −17.6569 −0.690966 −0.345483 0.938425i \(-0.612285\pi\)
−0.345483 + 0.938425i \(0.612285\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 15.8284 0.617526
\(658\) 0 0
\(659\) −6.68629 −0.260461 −0.130230 0.991484i \(-0.541572\pi\)
−0.130230 + 0.991484i \(0.541572\pi\)
\(660\) 0 0
\(661\) −24.9411 −0.970097 −0.485049 0.874487i \(-0.661198\pi\)
−0.485049 + 0.874487i \(0.661198\pi\)
\(662\) 0 0
\(663\) −14.4853 13.6569i −0.562562 0.530388i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 35.3970i 1.37058i
\(668\) 0 0
\(669\) 13.3137i 0.514738i
\(670\) 0 0
\(671\) −49.4558 −1.90922
\(672\) 0 0
\(673\) −27.9411 −1.07705 −0.538526 0.842609i \(-0.681018\pi\)
−0.538526 + 0.842609i \(0.681018\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.34315 −0.0900544 −0.0450272 0.998986i \(-0.514337\pi\)
−0.0450272 + 0.998986i \(0.514337\pi\)
\(678\) 0 0
\(679\) 53.5980 2.05690
\(680\) 0 0
\(681\) 4.82843 0.185026
\(682\) 0 0
\(683\) −7.02944 −0.268974 −0.134487 0.990915i \(-0.542939\pi\)
−0.134487 + 0.990915i \(0.542939\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −11.0000 −0.419676
\(688\) 0 0
\(689\) −40.1421 −1.52929
\(690\) 0 0
\(691\) 40.3431i 1.53473i 0.641213 + 0.767363i \(0.278431\pi\)
−0.641213 + 0.767363i \(0.721569\pi\)
\(692\) 0 0
\(693\) 22.3137i 0.847628i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 17.4853 + 16.4853i 0.662302 + 0.624425i
\(698\) 0 0
\(699\) −14.4853 −0.547884
\(700\) 0 0
\(701\) −3.51472 −0.132749 −0.0663745 0.997795i \(-0.521143\pi\)
−0.0663745 + 0.997795i \(0.521143\pi\)
\(702\) 0 0
\(703\) −28.4558 −1.07323
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −21.6569 −0.814490
\(708\) 0 0
\(709\) 34.9706i 1.31335i −0.754175 0.656674i \(-0.771963\pi\)
0.754175 0.656674i \(-0.228037\pi\)
\(710\) 0 0
\(711\) 2.00000i 0.0750059i
\(712\) 0 0
\(713\) 57.9411i 2.16991i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −14.4853 −0.540963
\(718\) 0 0
\(719\) 22.1127i 0.824664i −0.911034 0.412332i \(-0.864714\pi\)
0.911034 0.412332i \(-0.135286\pi\)
\(720\) 0 0
\(721\) 22.9706i 0.855468i
\(722\) 0 0
\(723\) 1.51472i 0.0563330i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 38.9706i 1.44534i −0.691194 0.722669i \(-0.742915\pi\)
0.691194 0.722669i \(-0.257085\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 24.0000 + 22.6274i 0.887672 + 0.836905i
\(732\) 0 0
\(733\) 40.4853i 1.49536i −0.664060 0.747679i \(-0.731168\pi\)
0.664060 0.747679i \(-0.268832\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.4853 0.533572
\(738\) 0 0
\(739\) −8.28427 −0.304742 −0.152371 0.988323i \(-0.548691\pi\)
−0.152371 + 0.988323i \(0.548691\pi\)
\(740\) 0 0
\(741\) 14.4853i 0.532130i
\(742\) 0 0
\(743\) 39.9411 1.46530 0.732649 0.680607i \(-0.238284\pi\)
0.732649 + 0.680607i \(0.238284\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −16.6274 −0.607553
\(750\) 0 0
\(751\) 19.8579i 0.724624i −0.932057 0.362312i \(-0.881988\pi\)
0.932057 0.362312i \(-0.118012\pi\)
\(752\) 0 0
\(753\) 21.7990 0.794399
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 27.6569i 1.00521i 0.864517 + 0.502603i \(0.167624\pi\)
−0.864517 + 0.502603i \(0.832376\pi\)
\(758\) 0 0
\(759\) 49.4558i 1.79513i
\(760\) 0 0
\(761\) −21.5147 −0.779908 −0.389954 0.920834i \(-0.627509\pi\)
−0.389954 + 0.920834i \(0.627509\pi\)
\(762\) 0 0
\(763\) 12.6863i 0.459275i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 24.9706i 0.901635i
\(768\) 0 0
\(769\) −24.6569 −0.889149 −0.444574 0.895742i \(-0.646645\pi\)
−0.444574 + 0.895742i \(0.646645\pi\)
\(770\) 0 0
\(771\) 22.9706i 0.827265i
\(772\) 0 0
\(773\) 19.6863i 0.708067i −0.935233 0.354033i \(-0.884810\pi\)
0.935233 0.354033i \(-0.115190\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −36.3137 −1.30275
\(778\) 0 0
\(779\) 17.4853i 0.626475i
\(780\) 0 0
\(781\) 56.2843 2.01401
\(782\) 0 0
\(783\) 4.17157i 0.149080i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −5.48528 −0.195529 −0.0977646 0.995210i \(-0.531169\pi\)
−0.0977646 + 0.995210i \(0.531169\pi\)
\(788\) 0 0
\(789\) 0.313708i 0.0111683i
\(790\) 0 0
\(791\) 41.4558 1.47400
\(792\) 0 0
\(793\) 40.9706 1.45491
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.97056i 0.0698009i −0.999391 0.0349005i \(-0.988889\pi\)
0.999391 0.0349005i \(-0.0111114\pi\)
\(798\) 0 0
\(799\) 25.9706 + 24.4853i 0.918772 + 0.866227i
\(800\) 0 0
\(801\) −14.1421 −0.499688
\(802\) 0 0
\(803\) 92.2548i 3.25560i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 9.82843i 0.345977i
\(808\) 0 0
\(809\) 46.2843i 1.62727i −0.581377 0.813634i \(-0.697486\pi\)
0.581377 0.813634i \(-0.302514\pi\)
\(810\) 0 0
\(811\) 13.4558i 0.472499i −0.971692 0.236249i \(-0.924082\pi\)
0.971692 0.236249i \(-0.0759182\pi\)
\(812\) 0 0
\(813\) 24.9706 0.875756
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 24.0000i 0.839654i
\(818\) 0 0
\(819\) 18.4853i 0.645928i
\(820\) 0 0
\(821\) 29.3137i 1.02306i 0.859267 + 0.511528i \(0.170920\pi\)
−0.859267 + 0.511528i \(0.829080\pi\)
\(822\) 0 0
\(823\) −49.8284 −1.73691 −0.868455 0.495768i \(-0.834887\pi\)
−0.868455 + 0.495768i \(0.834887\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 38.1421 1.32633 0.663166 0.748472i \(-0.269212\pi\)
0.663166 + 0.748472i \(0.269212\pi\)
\(828\) 0 0
\(829\) 22.0294 0.765114 0.382557 0.923932i \(-0.375044\pi\)
0.382557 + 0.923932i \(0.375044\pi\)
\(830\) 0 0
\(831\) −27.6569 −0.959406
\(832\) 0 0
\(833\) −21.6569 + 22.9706i −0.750366 + 0.795883i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 6.82843i 0.236025i
\(838\) 0 0
\(839\) 6.17157i 0.213066i −0.994309 0.106533i \(-0.966025\pi\)
0.994309 0.106533i \(-0.0339750\pi\)
\(840\) 0 0
\(841\) 11.5980 0.399930
\(842\) 0 0
\(843\) 9.31371 0.320781
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −87.9411 −3.02169
\(848\) 0 0
\(849\) −2.51472 −0.0863049
\(850\) 0 0
\(851\) −80.4853 −2.75900
\(852\) 0 0
\(853\) 1.31371 0.0449805 0.0224903 0.999747i \(-0.492841\pi\)
0.0224903 + 0.999747i \(0.492841\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 31.3137 1.06966 0.534828 0.844961i \(-0.320376\pi\)
0.534828 + 0.844961i \(0.320376\pi\)
\(858\) 0 0
\(859\) −41.2843 −1.40860 −0.704301 0.709902i \(-0.748739\pi\)
−0.704301 + 0.709902i \(0.748739\pi\)
\(860\) 0 0
\(861\) 22.3137i 0.760449i
\(862\) 0 0
\(863\) 27.3431i 0.930772i 0.885108 + 0.465386i \(0.154084\pi\)
−0.885108 + 0.465386i \(0.845916\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.00000 + 16.9706i 0.0339618 + 0.576351i
\(868\) 0 0
\(869\) 11.6569 0.395432
\(870\) 0 0
\(871\) −12.0000 −0.406604
\(872\) 0 0
\(873\) 14.0000 0.473828
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 8.45584 0.285534 0.142767 0.989756i \(-0.454400\pi\)
0.142767 + 0.989756i \(0.454400\pi\)
\(878\) 0 0
\(879\) 11.3431i 0.382595i
\(880\) 0 0
\(881\) 10.1716i 0.342689i −0.985211 0.171344i \(-0.945189\pi\)
0.985211 0.171344i \(-0.0548111\pi\)
\(882\) 0 0
\(883\) 18.4853i 0.622079i −0.950397 0.311040i \(-0.899323\pi\)
0.950397 0.311040i \(-0.100677\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −16.3431 −0.548749 −0.274375 0.961623i \(-0.588471\pi\)
−0.274375 + 0.961623i \(0.588471\pi\)
\(888\) 0 0
\(889\) 38.8284i 1.30226i
\(890\) 0 0
\(891\) 5.82843i 0.195260i
\(892\) 0 0
\(893\) 25.9706i 0.869072i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 40.9706i 1.36797i
\(898\) 0 0
\(899\) −28.4853 −0.950037
\(900\) 0 0
\(901\) 24.9411 + 23.5147i 0.830909 + 0.783389i
\(902\) 0 0
\(903\) 30.6274i 1.01922i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −2.51472 −0.0834999 −0.0417499 0.999128i \(-0.513293\pi\)
−0.0417499 + 0.999128i \(0.513293\pi\)
\(908\) 0 0
\(909\) −5.65685 −0.187626
\(910\) 0 0
\(911\) 11.8284i 0.391893i −0.980615 0.195947i \(-0.937222\pi\)
0.980615 0.195947i \(-0.0627779\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 28.0000i 0.924641i
\(918\) 0 0
\(919\) 39.0000 1.28649 0.643246 0.765660i \(-0.277587\pi\)
0.643246 + 0.765660i \(0.277587\pi\)
\(920\) 0 0
\(921\) 19.3137i 0.636408i
\(922\) 0 0
\(923\) −46.6274 −1.53476
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 6.00000i 0.197066i
\(928\) 0 0
\(929\) 39.4264i 1.29354i −0.762686 0.646769i \(-0.776120\pi\)
0.762686 0.646769i \(-0.223880\pi\)
\(930\) 0 0
\(931\) −22.9706 −0.752830
\(932\) 0 0
\(933\) 7.82843i 0.256291i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 15.4558i 0.504920i −0.967607 0.252460i \(-0.918760\pi\)
0.967607 0.252460i \(-0.0812397\pi\)
\(938\) 0 0
\(939\) 32.7990 1.07035
\(940\) 0 0
\(941\) 30.0000i 0.977972i −0.872292 0.488986i \(-0.837367\pi\)
0.872292 0.488986i \(-0.162633\pi\)
\(942\) 0 0
\(943\) 49.4558i 1.61050i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −12.6274 −0.410336 −0.205168 0.978727i \(-0.565774\pi\)
−0.205168 + 0.978727i \(0.565774\pi\)
\(948\) 0 0
\(949\) 76.4264i 2.48091i
\(950\) 0 0
\(951\) 8.14214 0.264027
\(952\) 0 0
\(953\) 30.3137i 0.981957i 0.871172 + 0.490979i \(0.163361\pi\)
−0.871172 + 0.490979i \(0.836639\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −24.3137 −0.785951
\(958\) 0 0
\(959\) 5.14214i 0.166048i
\(960\) 0 0
\(961\) −15.6274 −0.504110
\(962\) 0 0
\(963\) −4.34315 −0.139956
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 31.1716i 1.00241i −0.865329 0.501205i \(-0.832890\pi\)
0.865329 0.501205i \(-0.167110\pi\)
\(968\) 0 0
\(969\) −8.48528 + 9.00000i −0.272587 + 0.289122i
\(970\) 0 0
\(971\) 12.1421 0.389660 0.194830 0.980837i \(-0.437585\pi\)
0.194830 + 0.980837i \(0.437585\pi\)
\(972\) 0 0
\(973\) 22.9706i 0.736402i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 18.6863i 0.597827i −0.954280 0.298914i \(-0.903376\pi\)
0.954280 0.298914i \(-0.0966243\pi\)
\(978\) 0 0
\(979\) 82.4264i 2.63436i
\(980\) 0 0
\(981\) 3.31371i 0.105799i
\(982\) 0 0
\(983\) −39.7990 −1.26939 −0.634695 0.772762i \(-0.718874\pi\)
−0.634695 + 0.772762i \(0.718874\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 33.1421i 1.05493i
\(988\) 0 0
\(989\) 67.8823i 2.15853i
\(990\) 0 0
\(991\) 52.1421i 1.65635i −0.560470 0.828175i \(-0.689379\pi\)
0.560470 0.828175i \(-0.310621\pi\)
\(992\) 0 0
\(993\) 27.6274 0.876730
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 27.8284 0.881335 0.440668 0.897670i \(-0.354742\pi\)
0.440668 + 0.897670i \(0.354742\pi\)
\(998\) 0 0
\(999\) −9.48528 −0.300101
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5100.2.k.h.4249.4 4
5.2 odd 4 5100.2.e.f.1801.4 4
5.3 odd 4 1020.2.e.d.781.1 4
5.4 even 2 5100.2.k.i.4249.2 4
15.8 even 4 3060.2.e.g.1801.1 4
17.16 even 2 5100.2.k.i.4249.1 4
20.3 even 4 4080.2.h.n.3841.4 4
85.33 odd 4 1020.2.e.d.781.4 yes 4
85.67 odd 4 5100.2.e.f.1801.1 4
85.84 even 2 inner 5100.2.k.h.4249.3 4
255.203 even 4 3060.2.e.g.1801.4 4
340.203 even 4 4080.2.h.n.3841.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1020.2.e.d.781.1 4 5.3 odd 4
1020.2.e.d.781.4 yes 4 85.33 odd 4
3060.2.e.g.1801.1 4 15.8 even 4
3060.2.e.g.1801.4 4 255.203 even 4
4080.2.h.n.3841.1 4 340.203 even 4
4080.2.h.n.3841.4 4 20.3 even 4
5100.2.e.f.1801.1 4 85.67 odd 4
5100.2.e.f.1801.4 4 5.2 odd 4
5100.2.k.h.4249.3 4 85.84 even 2 inner
5100.2.k.h.4249.4 4 1.1 even 1 trivial
5100.2.k.i.4249.1 4 17.16 even 2
5100.2.k.i.4249.2 4 5.4 even 2