Properties

Label 3060.2.be.b.361.1
Level $3060$
Weight $2$
Character 3060.361
Analytic conductor $24.434$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(361,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.be (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 6 x^{10} - 16 x^{9} + 9 x^{8} - 72 x^{7} + 114 x^{6} - 144 x^{5} + 391 x^{4} - 484 x^{3} + \cdots + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 340)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 361.1
Root \(-1.47591 + 1.40653i\) of defining polynomial
Character \(\chi\) \(=\) 3060.361
Dual form 3060.2.be.b.1441.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{5} +(-3.70031 - 3.70031i) q^{7} +(3.73762 + 3.73762i) q^{11} +2.63690 q^{13} +(-4.12309 - 0.0118173i) q^{17} +4.31329i q^{19} +(-2.94577 - 2.94577i) q^{23} -1.00000i q^{25} +(-1.80095 + 1.80095i) q^{29} +(2.12819 - 2.12819i) q^{31} +5.23303 q^{35} +(6.69720 - 6.69720i) q^{37} +(-0.956555 - 0.956555i) q^{41} +0.613266i q^{43} +5.18546 q^{47} +20.3846i q^{49} +1.77451i q^{53} -5.28579 q^{55} +7.97014i q^{59} +(-2.57942 - 2.57942i) q^{61} +(-1.86457 + 1.86457i) q^{65} +11.7984 q^{67} +(5.08713 - 5.08713i) q^{71} +(-4.58989 + 4.58989i) q^{73} -27.6607i q^{77} +(1.26649 + 1.26649i) q^{79} -12.8929i q^{83} +(2.92382 - 2.90711i) q^{85} +3.34014 q^{89} +(-9.75736 - 9.75736i) q^{91} +(-3.04995 - 3.04995i) q^{95} +(-3.27294 + 3.27294i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{11} + 16 q^{13} + 4 q^{17} - 12 q^{23} - 4 q^{29} - 8 q^{31} + 8 q^{35} - 20 q^{37} - 8 q^{41} + 8 q^{47} + 16 q^{55} - 8 q^{61} - 4 q^{65} + 32 q^{67} - 28 q^{71} - 24 q^{79} - 4 q^{85} + 56 q^{89}+ \cdots - 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i
\(6\) 0 0
\(7\) −3.70031 3.70031i −1.39859 1.39859i −0.804121 0.594466i \(-0.797363\pi\)
−0.594466 0.804121i \(-0.702637\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.73762 + 3.73762i 1.12693 + 1.12693i 0.990673 + 0.136261i \(0.0435084\pi\)
0.136261 + 0.990673i \(0.456492\pi\)
\(12\) 0 0
\(13\) 2.63690 0.731345 0.365672 0.930744i \(-0.380839\pi\)
0.365672 + 0.930744i \(0.380839\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.12309 0.0118173i −0.999996 0.00286611i
\(18\) 0 0
\(19\) 4.31329i 0.989536i 0.869025 + 0.494768i \(0.164747\pi\)
−0.869025 + 0.494768i \(0.835253\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.94577 2.94577i −0.614236 0.614236i 0.329811 0.944047i \(-0.393015\pi\)
−0.944047 + 0.329811i \(0.893015\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.80095 + 1.80095i −0.334428 + 0.334428i −0.854265 0.519838i \(-0.825992\pi\)
0.519838 + 0.854265i \(0.325992\pi\)
\(30\) 0 0
\(31\) 2.12819 2.12819i 0.382235 0.382235i −0.489672 0.871907i \(-0.662883\pi\)
0.871907 + 0.489672i \(0.162883\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.23303 0.884544
\(36\) 0 0
\(37\) 6.69720 6.69720i 1.10101 1.10101i 0.106724 0.994289i \(-0.465964\pi\)
0.994289 0.106724i \(-0.0340363\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.956555 0.956555i −0.149389 0.149389i 0.628456 0.777845i \(-0.283687\pi\)
−0.777845 + 0.628456i \(0.783687\pi\)
\(42\) 0 0
\(43\) 0.613266i 0.0935222i 0.998906 + 0.0467611i \(0.0148900\pi\)
−0.998906 + 0.0467611i \(0.985110\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.18546 0.756378 0.378189 0.925728i \(-0.376547\pi\)
0.378189 + 0.925728i \(0.376547\pi\)
\(48\) 0 0
\(49\) 20.3846i 2.91209i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.77451i 0.243748i 0.992546 + 0.121874i \(0.0388904\pi\)
−0.992546 + 0.121874i \(0.961110\pi\)
\(54\) 0 0
\(55\) −5.28579 −0.712735
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.97014i 1.03762i 0.854888 + 0.518812i \(0.173626\pi\)
−0.854888 + 0.518812i \(0.826374\pi\)
\(60\) 0 0
\(61\) −2.57942 2.57942i −0.330261 0.330261i 0.522425 0.852685i \(-0.325028\pi\)
−0.852685 + 0.522425i \(0.825028\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.86457 + 1.86457i −0.231272 + 0.231272i
\(66\) 0 0
\(67\) 11.7984 1.44141 0.720703 0.693244i \(-0.243819\pi\)
0.720703 + 0.693244i \(0.243819\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.08713 5.08713i 0.603731 0.603731i −0.337570 0.941301i \(-0.609605\pi\)
0.941301 + 0.337570i \(0.109605\pi\)
\(72\) 0 0
\(73\) −4.58989 + 4.58989i −0.537206 + 0.537206i −0.922707 0.385501i \(-0.874028\pi\)
0.385501 + 0.922707i \(0.374028\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 27.6607i 3.15223i
\(78\) 0 0
\(79\) 1.26649 + 1.26649i 0.142491 + 0.142491i 0.774754 0.632263i \(-0.217874\pi\)
−0.632263 + 0.774754i \(0.717874\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.8929i 1.41518i −0.706625 0.707588i \(-0.749783\pi\)
0.706625 0.707588i \(-0.250217\pi\)
\(84\) 0 0
\(85\) 2.92382 2.90711i 0.317133 0.315320i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.34014 0.354055 0.177027 0.984206i \(-0.443352\pi\)
0.177027 + 0.984206i \(0.443352\pi\)
\(90\) 0 0
\(91\) −9.75736 9.75736i −1.02285 1.02285i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.04995 3.04995i −0.312919 0.312919i
\(96\) 0 0
\(97\) −3.27294 + 3.27294i −0.332317 + 0.332317i −0.853466 0.521149i \(-0.825504\pi\)
0.521149 + 0.853466i \(0.325504\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 17.3002 1.72144 0.860719 0.509081i \(-0.170015\pi\)
0.860719 + 0.509081i \(0.170015\pi\)
\(102\) 0 0
\(103\) 18.0638 1.77988 0.889940 0.456077i \(-0.150746\pi\)
0.889940 + 0.456077i \(0.150746\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.72098 8.72098i 0.843089 0.843089i −0.146170 0.989259i \(-0.546695\pi\)
0.989259 + 0.146170i \(0.0466947\pi\)
\(108\) 0 0
\(109\) 4.14463 + 4.14463i 0.396983 + 0.396983i 0.877168 0.480184i \(-0.159430\pi\)
−0.480184 + 0.877168i \(0.659430\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.11083 + 3.11083i 0.292642 + 0.292642i 0.838123 0.545481i \(-0.183653\pi\)
−0.545481 + 0.838123i \(0.683653\pi\)
\(114\) 0 0
\(115\) 4.16595 0.388477
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 15.2130 + 15.3004i 1.39457 + 1.40259i
\(120\) 0 0
\(121\) 16.9395i 1.53996i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.707107 + 0.707107i 0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 4.13619i 0.367027i −0.983017 0.183514i \(-0.941253\pi\)
0.983017 0.183514i \(-0.0587472\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 15.6272 15.6272i 1.36536 1.36536i 0.498419 0.866936i \(-0.333914\pi\)
0.866936 0.498419i \(-0.166086\pi\)
\(132\) 0 0
\(133\) 15.9605 15.9605i 1.38395 1.38395i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.63690 0.225286 0.112643 0.993636i \(-0.464068\pi\)
0.112643 + 0.993636i \(0.464068\pi\)
\(138\) 0 0
\(139\) 9.17535 9.17535i 0.778243 0.778243i −0.201289 0.979532i \(-0.564513\pi\)
0.979532 + 0.201289i \(0.0645130\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.85572 + 9.85572i 0.824177 + 0.824177i
\(144\) 0 0
\(145\) 2.54692i 0.211511i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.47255 −0.448329 −0.224164 0.974551i \(-0.571965\pi\)
−0.224164 + 0.974551i \(0.571965\pi\)
\(150\) 0 0
\(151\) 22.6375i 1.84221i −0.389314 0.921105i \(-0.627288\pi\)
0.389314 0.921105i \(-0.372712\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.00972i 0.241747i
\(156\) 0 0
\(157\) 11.0324 0.880480 0.440240 0.897880i \(-0.354893\pi\)
0.440240 + 0.897880i \(0.354893\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 21.8006i 1.71813i
\(162\) 0 0
\(163\) 6.98640 + 6.98640i 0.547217 + 0.547217i 0.925635 0.378418i \(-0.123532\pi\)
−0.378418 + 0.925635i \(0.623532\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.4318 + 11.4318i −0.884617 + 0.884617i −0.994000 0.109383i \(-0.965113\pi\)
0.109383 + 0.994000i \(0.465113\pi\)
\(168\) 0 0
\(169\) −6.04675 −0.465135
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.25225 + 4.25225i −0.323292 + 0.323292i −0.850029 0.526736i \(-0.823416\pi\)
0.526736 + 0.850029i \(0.323416\pi\)
\(174\) 0 0
\(175\) −3.70031 + 3.70031i −0.279717 + 0.279717i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.0604i 0.901438i −0.892666 0.450719i \(-0.851168\pi\)
0.892666 0.450719i \(-0.148832\pi\)
\(180\) 0 0
\(181\) −2.45754 2.45754i −0.182668 0.182668i 0.609850 0.792517i \(-0.291230\pi\)
−0.792517 + 0.609850i \(0.791230\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 9.47127i 0.696342i
\(186\) 0 0
\(187\) −15.3664 15.4547i −1.12370 1.13016i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.77866 0.345772 0.172886 0.984942i \(-0.444691\pi\)
0.172886 + 0.984942i \(0.444691\pi\)
\(192\) 0 0
\(193\) −16.0784 16.0784i −1.15735 1.15735i −0.985043 0.172307i \(-0.944878\pi\)
−0.172307 0.985043i \(-0.555122\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.96349 + 8.96349i 0.638623 + 0.638623i 0.950216 0.311593i \(-0.100863\pi\)
−0.311593 + 0.950216i \(0.600863\pi\)
\(198\) 0 0
\(199\) 4.36005 4.36005i 0.309076 0.309076i −0.535475 0.844551i \(-0.679867\pi\)
0.844551 + 0.535475i \(0.179867\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 13.3281 0.935452
\(204\) 0 0
\(205\) 1.35277 0.0944818
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −16.1214 + 16.1214i −1.11514 + 1.11514i
\(210\) 0 0
\(211\) 13.9501 + 13.9501i 0.960367 + 0.960367i 0.999244 0.0388769i \(-0.0123780\pi\)
−0.0388769 + 0.999244i \(0.512378\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.433645 0.433645i −0.0295743 0.0295743i
\(216\) 0 0
\(217\) −15.7500 −1.06918
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −10.8722 0.0311610i −0.731342 0.00209611i
\(222\) 0 0
\(223\) 23.7682i 1.59164i 0.605536 + 0.795818i \(0.292959\pi\)
−0.605536 + 0.795818i \(0.707041\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.12811 + 9.12811i 0.605854 + 0.605854i 0.941860 0.336006i \(-0.109076\pi\)
−0.336006 + 0.941860i \(0.609076\pi\)
\(228\) 0 0
\(229\) 23.9466i 1.58244i 0.611534 + 0.791218i \(0.290553\pi\)
−0.611534 + 0.791218i \(0.709447\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.84567 6.84567i 0.448475 0.448475i −0.446372 0.894847i \(-0.647284\pi\)
0.894847 + 0.446372i \(0.147284\pi\)
\(234\) 0 0
\(235\) −3.66668 + 3.66668i −0.239188 + 0.239188i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 18.7624 1.21364 0.606820 0.794839i \(-0.292445\pi\)
0.606820 + 0.794839i \(0.292445\pi\)
\(240\) 0 0
\(241\) −0.400091 + 0.400091i −0.0257721 + 0.0257721i −0.719875 0.694103i \(-0.755801\pi\)
0.694103 + 0.719875i \(0.255801\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −14.4141 14.4141i −0.920884 0.920884i
\(246\) 0 0
\(247\) 11.3737i 0.723692i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −22.5898 −1.42585 −0.712927 0.701238i \(-0.752631\pi\)
−0.712927 + 0.701238i \(0.752631\pi\)
\(252\) 0 0
\(253\) 22.0203i 1.38441i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 19.4988i 1.21630i 0.793823 + 0.608149i \(0.208088\pi\)
−0.793823 + 0.608149i \(0.791912\pi\)
\(258\) 0 0
\(259\) −49.5635 −3.07972
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.17067i 0.195512i 0.995210 + 0.0977560i \(0.0311665\pi\)
−0.995210 + 0.0977560i \(0.968834\pi\)
\(264\) 0 0
\(265\) −1.25477 1.25477i −0.0770799 0.0770799i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 11.2514 11.2514i 0.686009 0.686009i −0.275338 0.961347i \(-0.588790\pi\)
0.961347 + 0.275338i \(0.0887899\pi\)
\(270\) 0 0
\(271\) −12.7342 −0.773546 −0.386773 0.922175i \(-0.626410\pi\)
−0.386773 + 0.922175i \(0.626410\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.73762 3.73762i 0.225387 0.225387i
\(276\) 0 0
\(277\) −8.48144 + 8.48144i −0.509600 + 0.509600i −0.914404 0.404804i \(-0.867340\pi\)
0.404804 + 0.914404i \(0.367340\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.10194i 0.185046i −0.995711 0.0925232i \(-0.970507\pi\)
0.995711 0.0925232i \(-0.0294932\pi\)
\(282\) 0 0
\(283\) 18.3585 + 18.3585i 1.09130 + 1.09130i 0.995390 + 0.0959087i \(0.0305757\pi\)
0.0959087 + 0.995390i \(0.469424\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.07911i 0.417866i
\(288\) 0 0
\(289\) 16.9997 + 0.0974473i 0.999984 + 0.00573220i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.39037 −0.256488 −0.128244 0.991743i \(-0.540934\pi\)
−0.128244 + 0.991743i \(0.540934\pi\)
\(294\) 0 0
\(295\) −5.63574 5.63574i −0.328126 0.328126i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −7.76771 7.76771i −0.449218 0.449218i
\(300\) 0 0
\(301\) 2.26928 2.26928i 0.130799 0.130799i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.64785 0.208875
\(306\) 0 0
\(307\) 14.1398 0.806998 0.403499 0.914980i \(-0.367794\pi\)
0.403499 + 0.914980i \(0.367794\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7.00643 7.00643i 0.397298 0.397298i −0.479981 0.877279i \(-0.659356\pi\)
0.877279 + 0.479981i \(0.159356\pi\)
\(312\) 0 0
\(313\) −0.805586 0.805586i −0.0455344 0.0455344i 0.683973 0.729507i \(-0.260251\pi\)
−0.729507 + 0.683973i \(0.760251\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.19894 1.19894i −0.0673391 0.0673391i 0.672635 0.739974i \(-0.265162\pi\)
−0.739974 + 0.672635i \(0.765162\pi\)
\(318\) 0 0
\(319\) −13.4625 −0.753755
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.0509713 17.7841i 0.00283612 0.989532i
\(324\) 0 0
\(325\) 2.63690i 0.146269i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −19.1878 19.1878i −1.05786 1.05786i
\(330\) 0 0
\(331\) 14.1128i 0.775711i 0.921720 + 0.387856i \(0.126784\pi\)
−0.921720 + 0.387856i \(0.873216\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −8.34274 + 8.34274i −0.455813 + 0.455813i
\(336\) 0 0
\(337\) 2.18076 2.18076i 0.118794 0.118794i −0.645211 0.764005i \(-0.723230\pi\)
0.764005 + 0.645211i \(0.223230\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 15.9087 0.861507
\(342\) 0 0
\(343\) 49.5273 49.5273i 2.67422 2.67422i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.47271 + 4.47271i 0.240107 + 0.240107i 0.816895 0.576787i \(-0.195694\pi\)
−0.576787 + 0.816895i \(0.695694\pi\)
\(348\) 0 0
\(349\) 7.89867i 0.422806i 0.977399 + 0.211403i \(0.0678032\pi\)
−0.977399 + 0.211403i \(0.932197\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −29.9338 −1.59321 −0.796607 0.604498i \(-0.793374\pi\)
−0.796607 + 0.604498i \(0.793374\pi\)
\(354\) 0 0
\(355\) 7.19428i 0.381833i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.08403i 0.268325i −0.990959 0.134163i \(-0.957166\pi\)
0.990959 0.134163i \(-0.0428344\pi\)
\(360\) 0 0
\(361\) 0.395551 0.0208185
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6.49108i 0.339759i
\(366\) 0 0
\(367\) −6.47084 6.47084i −0.337775 0.337775i 0.517754 0.855529i \(-0.326768\pi\)
−0.855529 + 0.517754i \(0.826768\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 6.56625 6.56625i 0.340903 0.340903i
\(372\) 0 0
\(373\) −9.45731 −0.489681 −0.244840 0.969563i \(-0.578736\pi\)
−0.244840 + 0.969563i \(0.578736\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.74892 + 4.74892i −0.244582 + 0.244582i
\(378\) 0 0
\(379\) 0.326606 0.326606i 0.0167766 0.0167766i −0.698669 0.715445i \(-0.746224\pi\)
0.715445 + 0.698669i \(0.246224\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 24.2666i 1.23996i 0.784616 + 0.619982i \(0.212860\pi\)
−0.784616 + 0.619982i \(0.787140\pi\)
\(384\) 0 0
\(385\) 19.5591 + 19.5591i 0.996822 + 0.996822i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 10.9870i 0.557065i −0.960427 0.278533i \(-0.910152\pi\)
0.960427 0.278533i \(-0.0898481\pi\)
\(390\) 0 0
\(391\) 12.1109 + 12.1805i 0.612473 + 0.615994i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.79108 −0.0901191
\(396\) 0 0
\(397\) −12.2054 12.2054i −0.612571 0.612571i 0.331044 0.943615i \(-0.392599\pi\)
−0.943615 + 0.331044i \(0.892599\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.9192 + 10.9192i 0.545278 + 0.545278i 0.925071 0.379793i \(-0.124005\pi\)
−0.379793 + 0.925071i \(0.624005\pi\)
\(402\) 0 0
\(403\) 5.61184 5.61184i 0.279546 0.279546i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 50.0631 2.48154
\(408\) 0 0
\(409\) −30.1548 −1.49106 −0.745530 0.666472i \(-0.767803\pi\)
−0.745530 + 0.666472i \(0.767803\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 29.4920 29.4920i 1.45121 1.45121i
\(414\) 0 0
\(415\) 9.11663 + 9.11663i 0.447518 + 0.447518i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.23437 + 1.23437i 0.0603028 + 0.0603028i 0.736615 0.676312i \(-0.236423\pi\)
−0.676312 + 0.736615i \(0.736423\pi\)
\(420\) 0 0
\(421\) 27.3370 1.33233 0.666163 0.745806i \(-0.267936\pi\)
0.666163 + 0.745806i \(0.267936\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.0118173 + 4.12309i −0.000573222 + 0.199999i
\(426\) 0 0
\(427\) 19.0893i 0.923797i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −26.1296 26.1296i −1.25862 1.25862i −0.951753 0.306866i \(-0.900720\pi\)
−0.306866 0.951753i \(-0.599280\pi\)
\(432\) 0 0
\(433\) 30.8419i 1.48217i −0.671413 0.741084i \(-0.734312\pi\)
0.671413 0.741084i \(-0.265688\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.7060 12.7060i 0.607809 0.607809i
\(438\) 0 0
\(439\) 3.80871 3.80871i 0.181780 0.181780i −0.610351 0.792131i \(-0.708972\pi\)
0.792131 + 0.610351i \(0.208972\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −26.4761 −1.25792 −0.628958 0.777440i \(-0.716518\pi\)
−0.628958 + 0.777440i \(0.716518\pi\)
\(444\) 0 0
\(445\) −2.36184 + 2.36184i −0.111962 + 0.111962i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −8.03081 8.03081i −0.378998 0.378998i 0.491743 0.870740i \(-0.336360\pi\)
−0.870740 + 0.491743i \(0.836360\pi\)
\(450\) 0 0
\(451\) 7.15047i 0.336703i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 13.7990 0.646907
\(456\) 0 0
\(457\) 3.71394i 0.173731i −0.996220 0.0868653i \(-0.972315\pi\)
0.996220 0.0868653i \(-0.0276850\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 13.3511i 0.621821i −0.950439 0.310910i \(-0.899366\pi\)
0.950439 0.310910i \(-0.100634\pi\)
\(462\) 0 0
\(463\) −30.5506 −1.41981 −0.709904 0.704298i \(-0.751262\pi\)
−0.709904 + 0.704298i \(0.751262\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.1558i 0.562504i −0.959634 0.281252i \(-0.909250\pi\)
0.959634 0.281252i \(-0.0907496\pi\)
\(468\) 0 0
\(469\) −43.6579 43.6579i −2.01593 2.01593i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.29215 + 2.29215i −0.105393 + 0.105393i
\(474\) 0 0
\(475\) 4.31329 0.197907
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5.10864 5.10864i 0.233420 0.233420i −0.580699 0.814119i \(-0.697221\pi\)
0.814119 + 0.580699i \(0.197221\pi\)
\(480\) 0 0
\(481\) 17.6599 17.6599i 0.805220 0.805220i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.62864i 0.210176i
\(486\) 0 0
\(487\) 0.819615 + 0.819615i 0.0371403 + 0.0371403i 0.725433 0.688293i \(-0.241640\pi\)
−0.688293 + 0.725433i \(0.741640\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 19.9684i 0.901163i 0.892735 + 0.450581i \(0.148783\pi\)
−0.892735 + 0.450581i \(0.851217\pi\)
\(492\) 0 0
\(493\) 7.44675 7.40418i 0.335385 0.333468i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −37.6479 −1.68874
\(498\) 0 0
\(499\) 0.471180 + 0.471180i 0.0210929 + 0.0210929i 0.717575 0.696482i \(-0.245252\pi\)
−0.696482 + 0.717575i \(0.745252\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4.01218 + 4.01218i 0.178894 + 0.178894i 0.790874 0.611979i \(-0.209626\pi\)
−0.611979 + 0.790874i \(0.709626\pi\)
\(504\) 0 0
\(505\) −12.2331 + 12.2331i −0.544366 + 0.544366i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 13.8648 0.614545 0.307273 0.951622i \(-0.400584\pi\)
0.307273 + 0.951622i \(0.400584\pi\)
\(510\) 0 0
\(511\) 33.9680 1.50266
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −12.7730 + 12.7730i −0.562848 + 0.562848i
\(516\) 0 0
\(517\) 19.3813 + 19.3813i 0.852387 + 0.852387i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −21.6179 21.6179i −0.947097 0.947097i 0.0515719 0.998669i \(-0.483577\pi\)
−0.998669 + 0.0515719i \(0.983577\pi\)
\(522\) 0 0
\(523\) −10.0946 −0.441405 −0.220703 0.975341i \(-0.570835\pi\)
−0.220703 + 0.975341i \(0.570835\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.79989 + 8.74959i −0.383329 + 0.381138i
\(528\) 0 0
\(529\) 5.64483i 0.245428i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.52234 2.52234i −0.109255 0.109255i
\(534\) 0 0
\(535\) 12.3333i 0.533217i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −76.1899 + 76.1899i −3.28173 + 3.28173i
\(540\) 0 0
\(541\) −18.3093 + 18.3093i −0.787179 + 0.787179i −0.981031 0.193852i \(-0.937902\pi\)
0.193852 + 0.981031i \(0.437902\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5.86139 −0.251074
\(546\) 0 0
\(547\) −8.69458 + 8.69458i −0.371753 + 0.371753i −0.868116 0.496362i \(-0.834669\pi\)
0.496362 + 0.868116i \(0.334669\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.76800 7.76800i −0.330928 0.330928i
\(552\) 0 0
\(553\) 9.37279i 0.398572i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −28.6723 −1.21489 −0.607443 0.794363i \(-0.707805\pi\)
−0.607443 + 0.794363i \(0.707805\pi\)
\(558\) 0 0
\(559\) 1.61712i 0.0683970i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 29.7196i 1.25253i 0.779609 + 0.626266i \(0.215418\pi\)
−0.779609 + 0.626266i \(0.784582\pi\)
\(564\) 0 0
\(565\) −4.39938 −0.185083
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 28.0263i 1.17492i 0.809251 + 0.587462i \(0.199873\pi\)
−0.809251 + 0.587462i \(0.800127\pi\)
\(570\) 0 0
\(571\) −29.9668 29.9668i −1.25407 1.25407i −0.953879 0.300192i \(-0.902949\pi\)
−0.300192 0.953879i \(-0.597051\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.94577 + 2.94577i −0.122847 + 0.122847i
\(576\) 0 0
\(577\) 8.16367 0.339858 0.169929 0.985456i \(-0.445646\pi\)
0.169929 + 0.985456i \(0.445646\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −47.7076 + 47.7076i −1.97925 + 1.97925i
\(582\) 0 0
\(583\) −6.63245 + 6.63245i −0.274688 + 0.274688i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.4440i 0.554894i −0.960741 0.277447i \(-0.910512\pi\)
0.960741 0.277447i \(-0.0894884\pi\)
\(588\) 0 0
\(589\) 9.17952 + 9.17952i 0.378235 + 0.378235i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.4936i 0.595182i −0.954693 0.297591i \(-0.903817\pi\)
0.954693 0.297591i \(-0.0961832\pi\)
\(594\) 0 0
\(595\) −21.5763 0.0618402i −0.884540 0.00253520i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 24.1901 0.988382 0.494191 0.869353i \(-0.335464\pi\)
0.494191 + 0.869353i \(0.335464\pi\)
\(600\) 0 0
\(601\) 5.85477 + 5.85477i 0.238821 + 0.238821i 0.816362 0.577541i \(-0.195988\pi\)
−0.577541 + 0.816362i \(0.695988\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −11.9781 11.9781i −0.486978 0.486978i
\(606\) 0 0
\(607\) −21.2283 + 21.2283i −0.861631 + 0.861631i −0.991528 0.129897i \(-0.958535\pi\)
0.129897 + 0.991528i \(0.458535\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 13.6736 0.553173
\(612\) 0 0
\(613\) 1.77264 0.0715963 0.0357982 0.999359i \(-0.488603\pi\)
0.0357982 + 0.999359i \(0.488603\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −19.6189 + 19.6189i −0.789827 + 0.789827i −0.981466 0.191638i \(-0.938620\pi\)
0.191638 + 0.981466i \(0.438620\pi\)
\(618\) 0 0
\(619\) 33.5392 + 33.5392i 1.34806 + 1.34806i 0.887772 + 0.460284i \(0.152252\pi\)
0.460284 + 0.887772i \(0.347748\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.3596 12.3596i −0.495176 0.495176i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −27.6923 + 27.5340i −1.10416 + 1.09785i
\(630\) 0 0
\(631\) 4.14957i 0.165192i −0.996583 0.0825960i \(-0.973679\pi\)
0.996583 0.0825960i \(-0.0263211\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.92473 + 2.92473i 0.116064 + 0.116064i
\(636\) 0 0
\(637\) 53.7522i 2.12974i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 23.7918 23.7918i 0.939721 0.939721i −0.0585627 0.998284i \(-0.518652\pi\)
0.998284 + 0.0585627i \(0.0186518\pi\)
\(642\) 0 0
\(643\) 9.76174 9.76174i 0.384966 0.384966i −0.487922 0.872887i \(-0.662245\pi\)
0.872887 + 0.487922i \(0.162245\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.0014 0.943594 0.471797 0.881707i \(-0.343605\pi\)
0.471797 + 0.881707i \(0.343605\pi\)
\(648\) 0 0
\(649\) −29.7893 + 29.7893i −1.16933 + 1.16933i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −7.75190 7.75190i −0.303355 0.303355i 0.538970 0.842325i \(-0.318814\pi\)
−0.842325 + 0.538970i \(0.818814\pi\)
\(654\) 0 0
\(655\) 22.1002i 0.863526i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 13.8658 0.540136 0.270068 0.962841i \(-0.412954\pi\)
0.270068 + 0.962841i \(0.412954\pi\)
\(660\) 0 0
\(661\) 2.31432i 0.0900166i 0.998987 + 0.0450083i \(0.0143314\pi\)
−0.998987 + 0.0450083i \(0.985669\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 22.5716i 0.875288i
\(666\) 0 0
\(667\) 10.6104 0.410835
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 19.2818i 0.744364i
\(672\) 0 0
\(673\) −1.18174 1.18174i −0.0455527 0.0455527i 0.683964 0.729516i \(-0.260255\pi\)
−0.729516 + 0.683964i \(0.760255\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6.62427 + 6.62427i −0.254592 + 0.254592i −0.822850 0.568259i \(-0.807617\pi\)
0.568259 + 0.822850i \(0.307617\pi\)
\(678\) 0 0
\(679\) 24.2218 0.929548
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 24.4455 24.4455i 0.935382 0.935382i −0.0626534 0.998035i \(-0.519956\pi\)
0.998035 + 0.0626534i \(0.0199563\pi\)
\(684\) 0 0
\(685\) −1.86457 + 1.86457i −0.0712416 + 0.0712416i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.67922i 0.178264i
\(690\) 0 0
\(691\) −13.5700 13.5700i −0.516226 0.516226i 0.400201 0.916427i \(-0.368940\pi\)
−0.916427 + 0.400201i \(0.868940\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 12.9759i 0.492204i
\(696\) 0 0
\(697\) 3.93266 + 3.95527i 0.148960 + 0.149816i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −31.8819 −1.20416 −0.602081 0.798435i \(-0.705661\pi\)
−0.602081 + 0.798435i \(0.705661\pi\)
\(702\) 0 0
\(703\) 28.8870 + 28.8870i 1.08949 + 1.08949i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −64.0163 64.0163i −2.40758 2.40758i
\(708\) 0 0
\(709\) −27.5837 + 27.5837i −1.03593 + 1.03593i −0.0365978 + 0.999330i \(0.511652\pi\)
−0.999330 + 0.0365978i \(0.988348\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −12.5384 −0.469565
\(714\) 0 0
\(715\) −13.9381 −0.521255
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9.12908 9.12908i 0.340457 0.340457i −0.516082 0.856539i \(-0.672610\pi\)
0.856539 + 0.516082i \(0.172610\pi\)
\(720\) 0 0
\(721\) −66.8418 66.8418i −2.48932 2.48932i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.80095 + 1.80095i 0.0668855 + 0.0668855i
\(726\) 0 0
\(727\) −10.4543 −0.387728 −0.193864 0.981028i \(-0.562102\pi\)
−0.193864 + 0.981028i \(0.562102\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.00724714 2.52855i 0.000268045 0.0935218i
\(732\) 0 0
\(733\) 32.9360i 1.21652i 0.793739 + 0.608259i \(0.208132\pi\)
−0.793739 + 0.608259i \(0.791868\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 44.0980 + 44.0980i 1.62437 + 1.62437i
\(738\) 0 0
\(739\) 18.8281i 0.692601i 0.938124 + 0.346301i \(0.112562\pi\)
−0.938124 + 0.346301i \(0.887438\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 15.5719 15.5719i 0.571278 0.571278i −0.361207 0.932485i \(-0.617635\pi\)
0.932485 + 0.361207i \(0.117635\pi\)
\(744\) 0 0
\(745\) 3.86968 3.86968i 0.141774 0.141774i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −64.5407 −2.35827
\(750\) 0 0
\(751\) −11.0755 + 11.0755i −0.404149 + 0.404149i −0.879692 0.475543i \(-0.842252\pi\)
0.475543 + 0.879692i \(0.342252\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 16.0071 + 16.0071i 0.582558 + 0.582558i
\(756\) 0 0
\(757\) 0.298820i 0.0108608i 0.999985 + 0.00543041i \(0.00172856\pi\)
−0.999985 + 0.00543041i \(0.998271\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 49.5107 1.79476 0.897381 0.441257i \(-0.145467\pi\)
0.897381 + 0.441257i \(0.145467\pi\)
\(762\) 0 0
\(763\) 30.6728i 1.11043i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 21.0165i 0.758861i
\(768\) 0 0
\(769\) −28.9566 −1.04420 −0.522100 0.852884i \(-0.674851\pi\)
−0.522100 + 0.852884i \(0.674851\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.56888i 0.0923962i −0.998932 0.0461981i \(-0.985289\pi\)
0.998932 0.0461981i \(-0.0147105\pi\)
\(774\) 0 0
\(775\) −2.12819 2.12819i −0.0764470 0.0764470i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.12590 4.12590i 0.147826 0.147826i
\(780\) 0 0
\(781\) 38.0275 1.36073
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.80107 + 7.80107i −0.278432 + 0.278432i
\(786\) 0 0
\(787\) 28.8848 28.8848i 1.02963 1.02963i 0.0300851 0.999547i \(-0.490422\pi\)
0.999547 0.0300851i \(-0.00957783\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 23.0221i 0.818571i
\(792\) 0 0
\(793\) −6.80167 6.80167i −0.241535 0.241535i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 21.4521i 0.759873i 0.925013 + 0.379937i \(0.124054\pi\)
−0.925013 + 0.379937i \(0.875946\pi\)
\(798\) 0 0
\(799\) −21.3801 0.0612781i −0.756375 0.00216786i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −34.3105 −1.21079
\(804\) 0 0
\(805\) −15.4153 15.4153i −0.543319 0.543319i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −15.3542 15.3542i −0.539825 0.539825i 0.383653 0.923477i \(-0.374666\pi\)
−0.923477 + 0.383653i \(0.874666\pi\)
\(810\) 0 0
\(811\) 30.4708 30.4708i 1.06998 1.06998i 0.0726162 0.997360i \(-0.476865\pi\)
0.997360 0.0726162i \(-0.0231348\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −9.88026 −0.346090
\(816\) 0 0
\(817\) −2.64519 −0.0925436
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 20.8172 20.8172i 0.726526 0.726526i −0.243400 0.969926i \(-0.578263\pi\)
0.969926 + 0.243400i \(0.0782628\pi\)
\(822\) 0 0
\(823\) −19.2852 19.2852i −0.672241 0.672241i 0.285991 0.958232i \(-0.407677\pi\)
−0.958232 + 0.285991i \(0.907677\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.15465 + 2.15465i 0.0749244 + 0.0749244i 0.743576 0.668652i \(-0.233128\pi\)
−0.668652 + 0.743576i \(0.733128\pi\)
\(828\) 0 0
\(829\) 36.6800 1.27395 0.636975 0.770885i \(-0.280186\pi\)
0.636975 + 0.770885i \(0.280186\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.240891 84.0476i 0.00834637 2.91208i
\(834\) 0 0
\(835\) 16.1670i 0.559481i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −11.8209 11.8209i −0.408101 0.408101i 0.472975 0.881076i \(-0.343180\pi\)
−0.881076 + 0.472975i \(0.843180\pi\)
\(840\) 0 0
\(841\) 22.5132i 0.776316i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.27570 4.27570i 0.147089 0.147089i
\(846\) 0 0
\(847\) 62.6816 62.6816i 2.15377 2.15377i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −39.4569 −1.35256
\(852\) 0 0
\(853\) −0.894962 + 0.894962i −0.0306429 + 0.0306429i −0.722262 0.691619i \(-0.756898\pi\)
0.691619 + 0.722262i \(0.256898\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −8.83375 8.83375i −0.301755 0.301755i 0.539945 0.841700i \(-0.318445\pi\)
−0.841700 + 0.539945i \(0.818445\pi\)
\(858\) 0 0
\(859\) 30.5126i 1.04108i 0.853839 + 0.520538i \(0.174269\pi\)
−0.853839 + 0.520538i \(0.825731\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 24.4910 0.833685 0.416842 0.908979i \(-0.363137\pi\)
0.416842 + 0.908979i \(0.363137\pi\)
\(864\) 0 0
\(865\) 6.01359i 0.204468i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 9.46728i 0.321155i
\(870\) 0 0
\(871\) 31.1113 1.05417
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 5.23303i 0.176909i
\(876\) 0 0
\(877\) −17.6487 17.6487i −0.595953 0.595953i 0.343280 0.939233i \(-0.388462\pi\)
−0.939233 + 0.343280i \(0.888462\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −24.3106 + 24.3106i −0.819045 + 0.819045i −0.985970 0.166925i \(-0.946616\pi\)
0.166925 + 0.985970i \(0.446616\pi\)
\(882\) 0 0
\(883\) −32.9362 −1.10839 −0.554196 0.832386i \(-0.686974\pi\)
−0.554196 + 0.832386i \(0.686974\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 20.9126 20.9126i 0.702175 0.702175i −0.262702 0.964877i \(-0.584614\pi\)
0.964877 + 0.262702i \(0.0846136\pi\)
\(888\) 0 0
\(889\) −15.3052 + 15.3052i −0.513320 + 0.513320i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 22.3664i 0.748463i
\(894\) 0 0
\(895\) 8.52801 + 8.52801i 0.285060 + 0.285060i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7.66553i 0.255660i
\(900\) 0 0
\(901\) 0.0209699 7.31648i 0.000698609 0.243747i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.47549 0.115529
\(906\) 0 0
\(907\) 1.70827 + 1.70827i 0.0567222 + 0.0567222i 0.734899 0.678177i \(-0.237230\pi\)
−0.678177 + 0.734899i \(0.737230\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 38.2691 + 38.2691i 1.26791 + 1.26791i 0.947164 + 0.320749i \(0.103935\pi\)
0.320749 + 0.947164i \(0.396065\pi\)
\(912\) 0 0
\(913\) 48.1886 48.1886i 1.59481 1.59481i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −115.651 −3.81914
\(918\) 0 0
\(919\) −9.64435 −0.318138 −0.159069 0.987267i \(-0.550849\pi\)
−0.159069 + 0.987267i \(0.550849\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 13.4142 13.4142i 0.441535 0.441535i
\(924\) 0 0
\(925\) −6.69720 6.69720i −0.220203 0.220203i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 20.8704 + 20.8704i 0.684737 + 0.684737i 0.961064 0.276327i \(-0.0891171\pi\)
−0.276327 + 0.961064i \(0.589117\pi\)
\(930\) 0 0
\(931\) −87.9248 −2.88162
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 21.7938 + 0.0624636i 0.712732 + 0.00204278i
\(936\) 0 0
\(937\) 8.00891i 0.261640i −0.991406 0.130820i \(-0.958239\pi\)
0.991406 0.130820i \(-0.0417609\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 33.4390 + 33.4390i 1.09008 + 1.09008i 0.995519 + 0.0945620i \(0.0301451\pi\)
0.0945620 + 0.995519i \(0.469855\pi\)
\(942\) 0 0
\(943\) 5.63559i 0.183520i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19.6772 19.6772i 0.639424 0.639424i −0.310990 0.950413i \(-0.600660\pi\)
0.950413 + 0.310990i \(0.100660\pi\)
\(948\) 0 0
\(949\) −12.1031 + 12.1031i −0.392883 + 0.392883i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 32.2796 1.04564 0.522819 0.852443i \(-0.324880\pi\)
0.522819 + 0.852443i \(0.324880\pi\)
\(954\) 0 0
\(955\) −3.37903 + 3.37903i −0.109343 + 0.109343i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9.75736 9.75736i −0.315082 0.315082i
\(960\) 0 0
\(961\) 21.9416i 0.707793i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 22.7383 0.731973
\(966\) 0 0
\(967\) 60.1211i 1.93337i −0.255978 0.966683i \(-0.582397\pi\)
0.255978 0.966683i \(-0.417603\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 56.9650i 1.82809i 0.405608 + 0.914047i \(0.367060\pi\)
−0.405608 + 0.914047i \(0.632940\pi\)
\(972\) 0 0
\(973\) −67.9033 −2.17688
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.2881i 0.777045i −0.921439 0.388522i \(-0.872986\pi\)
0.921439 0.388522i \(-0.127014\pi\)
\(978\) 0 0
\(979\) 12.4842 + 12.4842i 0.398996 + 0.398996i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −4.24397 + 4.24397i −0.135362 + 0.135362i −0.771541 0.636179i \(-0.780514\pi\)
0.636179 + 0.771541i \(0.280514\pi\)
\(984\) 0 0
\(985\) −12.6763 −0.403900
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.80654 1.80654i 0.0574447 0.0574447i
\(990\) 0 0
\(991\) 27.5531 27.5531i 0.875254 0.875254i −0.117785 0.993039i \(-0.537579\pi\)
0.993039 + 0.117785i \(0.0375794\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6.16604i 0.195477i
\(996\) 0 0
\(997\) −19.1160 19.1160i −0.605410 0.605410i 0.336333 0.941743i \(-0.390813\pi\)
−0.941743 + 0.336333i \(0.890813\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.be.b.361.1 12
3.2 odd 2 340.2.o.a.21.5 12
12.11 even 2 1360.2.bt.c.1041.2 12
15.2 even 4 1700.2.m.c.1449.2 12
15.8 even 4 1700.2.m.f.1449.5 12
15.14 odd 2 1700.2.o.d.701.2 12
17.13 even 4 inner 3060.2.be.b.1441.1 12
51.2 odd 8 5780.2.c.h.5201.2 12
51.8 odd 8 5780.2.a.n.1.1 6
51.26 odd 8 5780.2.a.m.1.6 6
51.32 odd 8 5780.2.c.h.5201.11 12
51.47 odd 4 340.2.o.a.81.5 yes 12
204.47 even 4 1360.2.bt.c.81.2 12
255.47 even 4 1700.2.m.f.149.5 12
255.98 even 4 1700.2.m.c.149.2 12
255.149 odd 4 1700.2.o.d.1101.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
340.2.o.a.21.5 12 3.2 odd 2
340.2.o.a.81.5 yes 12 51.47 odd 4
1360.2.bt.c.81.2 12 204.47 even 4
1360.2.bt.c.1041.2 12 12.11 even 2
1700.2.m.c.149.2 12 255.98 even 4
1700.2.m.c.1449.2 12 15.2 even 4
1700.2.m.f.149.5 12 255.47 even 4
1700.2.m.f.1449.5 12 15.8 even 4
1700.2.o.d.701.2 12 15.14 odd 2
1700.2.o.d.1101.2 12 255.149 odd 4
3060.2.be.b.361.1 12 1.1 even 1 trivial
3060.2.be.b.1441.1 12 17.13 even 4 inner
5780.2.a.m.1.6 6 51.26 odd 8
5780.2.a.n.1.1 6 51.8 odd 8
5780.2.c.h.5201.2 12 51.2 odd 8
5780.2.c.h.5201.11 12 51.32 odd 8